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We consider a quantum lattice spin model featuring exact quasiparticle towers of eigenstates with low
entanglement at finite size, known as quantum many-body scars (QMBS). We show that the states in the
neighboring part of the energy spectrum can be superposed to construct entire families of low-entanglement
states whose energy variance decreases asymptotically to zero as the lattice size is increased. As a
consequence, they have a relaxation time that diverges in the thermodynamic limit, and therefore exhibit the
typical behavior of exact QMBS, although they are not exact eigenstates of the Hamiltonian for any finite
size. We refer to such states as asymptotic QMBS. These states are orthogonal to any exact QMBS at any
finite size, and their existence shows that the presence of an exact QMBS leaves important signatures of
nonthermalness in the rest of the spectrum; therefore, QMBS-like phenomena can hide in what is typically
considered the thermal part of the spectrum.We support our study using numerical simulations in the spin-1
XY model, a paradigmatic model for QMBS, and we conclude by presenting a weak perturbation of the
model that destroys the exact QMBS while keeping the asymptotic QMBS.
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Introduction.—Quantum many-body scars (QMBS)
[1–4] in non-integrable quantum lattice models of any
dimension are one of the paradigms for the weak violation
of the eigenstate thermalization hypothesis (ETH) [5,6],
according to which all local properties of energy eigenstates
in the middle of the spectra of nonintegrable models
coincide with those of a thermal Gibbs density matrix at
a suitable temperature [7–10]. QMBS are isolated energy
eigenstates that are outliers in many respects, e.g., in the
expectation value of a local observable or in the entangle-
ment entropy. Numerous instances of lattice models featur-
ing exact towers of QMBS at finite size have been
discovered [11–23]. Most of these results have also been
understood via unified frameworks or systematic construc-
tion recipes [3,13,17,20,24–30].
A question that has been less explored is whether the

presence of a finite-size QMBS affects the properties of the
rest of the spectrum.Reference [31] pointed out the existence
of low-entanglement states in the PXP model which exhibit
slow relaxation even though they are orthogonal to the
known exact QMBS: the energy variance of such states is
independent of system size and thus their fidelity relaxation
time does not decrease [32]. This is a remarkable phenom-
enology to be contrasted with that of short-range correlated
states, whose energy variance grows with system size,
whereas the fidelity relaxation time decreases.
Are there even more drastic examples of slowly relaxing

states [33], for instance, with an energy variance decreasing

with system size, which would lead to a relaxation time that
diverges polynomially in the thermodynamic limit (TL)?
Slow relaxation of hydrodynamic origin is ubiquitous in
systems with continuous symmetries, where it occurs at a
diverging timescale known as the Thouless time [34–37],
and is related to diffusion or subdiffusion [38–43]. The
interpretation of QMBS as an unconventional nonlocal
symmetry [29,44] motivates the search for such slow
relaxation. Long-lived quasiparticles, e.g., the phonons
of a superfluid with Beliaev decay [45], also induce slow
relaxation. QMBS are associated with quasiparticles with
specific momenta and infinite lifetime [4], hence it is
natural to look for long-lived quasiparticles at neighboring
momenta.
In this Letter we address these questions by considering

the spin-1 XY model featuring exact QMBS at any finite
size [14] and show that it is possible to construct slowly
relaxing low-entanglement initial states that exhibit
QMBS-like features, but nevertheless are orthogonal to
the exact QMBS. They have an energy variance that goes to
zero in the TL and asymptotically display the typical
dynamical phenomenology of a QMBS, i.e., the lack of
thermalization; hence we refer to such initial states as
asymptotic QMBS. Our work widens the range of initial
states that qualitatively exhibit a nonthermalizing phenom-
enology and motivates the search for nonthermal features in
regions of the spectrum where entanglement signatures do
not make them evident.
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The model and the exact QMBS.—We consider a one-
dimensional spin-1 chain of length L even, and consider a
spin-1 XY model with external magnetic field and axial
anisotropy:

H ¼ J
X

j

ðSxjSxjþ1 þ SyjS
y
jþ1Þ þ h

X

j

Szj

þD
X

j

ðSzjÞ2 þ J3
X

j

ðSxjSxjþ3 þ SyjS
y
jþ3Þ; ð1Þ

where Sαj , with α ¼ x, y, z, are the spin-1 operators on site
j. We use open boundary conditions (OBC) for the
numerical simulations and periodic boundary conditions
(PBC) for some of the analytical results. This model with
OBC has been numerically shown to be nonintegrable; the
last term breaks a hidden nonlocal symmetry [4,14,46].
The Hamiltonian in Eq. (1) exhibits QMBS for any finite

value of L [14]. In order to see that, we define the fully
polarized state j⇓i ¼ j− − � � � − −i with all spins in the
eigenstate of Szj with eigenvalue −1, and the operator

Jþk ¼ 1

2

XL

j¼1

eikjðSþj Þ2: ð2Þ

The scar states read

jn; πi ¼ 1ffiffiffiffiffiffiffiffiffi
Nn;π

p ðJþπ Þnj⇓i; ð3Þ

where Nn;π is a normalization constant. The state
satisfies the energy eigenvalue equation Hjn; πi ¼
ð−Lhþ 2nhþ LDÞjn; πi and for generic values of h
and D it lies in the middle of the Hamiltonian spectrum.
Its existence is related to quantum interference effects,
similar to those that are responsible for the existence of
η-pairing states in the Hubbard model [16].
Moreover, it is possible to consider the reduced density

matrix ρA;n;π of jn; πi defined on half the system (conven-
tionally, the region A is 1 ≤ j < L=2), and to compute
its entanglement entropy, Sn;π ¼ −tr½ρA;n;π log ρA;n;π�. The
explicit calculation has been done in Ref. [14], and it shows
that it scales as logL, displaying a mild logarithmic
violation of an entanglement area law; see Supplemental
Material [47] and Ref. [48] for details. QMBS are easily
found numerically by plotting the entanglement entropy SEi

of ρA;Ei
, the reduced density matrix of the eigenstate jEii, as

a function of energy. Indeed, almost all the eigenstates
appear to satisfy the ETH and are characterized by an SEi

that is only a function of the energy Ei; they have a higher
amount of entanglement than the QMBS states, which
indeed violate ETH.
A family of states obtained by deforming the exact

QMBS.—We now consider other initial states for the
dynamics of the model in Eq. (1); they read as follows:

jn; ki ¼ 1ffiffiffiffiffiffiffiffiffi
Nn;k

p Jþk ðJþπ Þn−1j⇓i; ð4Þ

where Nn;k is a normalization constant, and they coincide
with the exact QMBS in Eq. (3) when k ¼ π. When k ≠ π
and is an integer multiple of ð2π=LÞ, they are orthogonal
to the exact QMBS: the relation hn; kjn0; πi ¼ δn;n0δk;π for
any 1 ≤ n, n0 ≤ L − 1 is proved in the Supplemental
Material [47]. Models where such classes of multimagnon
states are exact eigenstates have been studied in [49],
however, for k ≠ π these are not eigenstates of the spin-1
XY model. It is easy to show that the average energy of
these states does not depend on k and reads hn; kjHjn; ki ¼
−Lhþ 2nhþ LD [47].
Furthermore, the entanglement of the states in Eq. (4)

scales with system size as a subvolume law. For a quick
proof, since jn; ki ∝ Jþk jn − 1; πi, we note that Jþk can be
straightforwardly expressed as a matrix product operator
(MPO) of bond dimension χ ¼ 2 [3,50,51], hence the half-
subsystem entanglement entropies of jn − 1; πi and jn; ki
can differ at most of an additive term log 2. In other words,
since the operator Jþk can be split in two terms, one acting
on j < L=2 and one on j ≥ L=2, it is possible to show [47]
that the total number of Schmidt states in jn; ki is at most
twice than that in jn − 1; πi.
To further characterize the states in Eq. (4), we compute

the variance of the energy ΔH2 under the HamiltonianH in
PBC, and as we show in the Supplemental Material [47],
we obtain

ΔH2 ¼ 4

�
J2cos2

�
k
2

�
þ J23cos

2

�
3k
2

��
: ð5Þ

Among the states defined in Eq. (4), the jn; πi are the only
eigenstates of the Hamiltonian, because ΔH2 ¼ 0 only for
k ¼ π. When k ≠ π, jn; kimust be a linear superposition of
the energy eigenstates of H, which are mostly in a window
centered around the same energy of jn; πi and in a width of
about ΔH. When k ≠ π is chosen to be an integer multiple
of ð2π=LÞ, jn; πi is not part of this set of states due to
orthogonality. Since jn; πi numerically appear to be the
only exact QMBS of H [14], we conclude that such states
jn; ki must be a linear superposition of “thermal” eigen-
states, i.e., those that are typically said to satisfy ETH,
having an entanglement entropy and expectation values of
local observables that are smooth functions of energy.
We have numerically verified this statement using the

python-based package QuSpin [52]: we diagonalize the
Hamiltonian (1) and compute the bipartition entanglement
entropy SEi

and the average square magnetization Sz2Ei
¼

ð1=LÞPjhðSzjÞ2i of all eigenstates. Subsequently, we com-
pute the scalar product of the state jn; ki with all eigenstates
for n ¼ L=2 and k ¼ π − ð2π=LÞ and look at the properties
of the eigenstates with whom the overlap is not zero. The
results are reported in Fig. 1, and support our thesis.
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Dynamics and asymptotic QMBS.—The dynamical prop-
erties of the states jn; ki for large system sizes depend on
how we approach L → ∞. If the limit is taken while the
momentum k is held fixed, then the variance is finite in the
TL (see Ref. [31] for examples in the PXP model). Loosely
speaking, we can invoke the well-known energy-time
uncertainty relation, linking the typical timescale of the
dynamics τ of a quantum state to the fluctuations of the
energy:

τ ≥
ℏ

2ΔH
; ð6Þ

to claim that for these states the dynamics is frozen up to a
given timescale τ that is independent of L and that after-
wards an evolution towards thermal equilibration takes
place [47]. To be more precise, the energy variance ΔH2 of
the initial state determines the fidelity relaxation time τ ∼
1=ΔH [53], since the fidelity FðtÞ ¼ jhΨje−iHtjΨij2 of an
initial state jΨi decays at short times as ∼ expð−ΔH2t2Þ;
τ is a lower bound for the relaxation time of local
observables [10,54].

Another class of states can be obtained by approaching
the TL while letting k flow to π. This can be done by setting
k ¼ π þ ð2π=LÞm, with the coefficient m∈Z kept con-
stant while L → ∞. In this case the energy variance scales
as ΔH2 ∼ ðJ2 þ 9J23Þðk − πÞ2 and tends to zero as 1=L2.
We refer to this second class of states as asymptotic QMBS
of the model, since according to (6), the typical relaxation
timescale of their dynamics scales as τ ∼ L, i.e., the system
is frozen for timescales that increase polynomially with the
system size. On the contrary, low entanglement states, by
virtue of their diverging variance [33], are typically
expected to lose fidelity on timescales that decrease with
system size, and the expectation values of typical observ-
ables relax in timescales that do not change drastically with
system size [10,55–61]. Hence the dynamics of this class
of states asymptotically approaches QMBS-like behavior
even though they are not exact QMBS of the system at
finite size, and moreover they are orthogonal to all the
exact QMBS jn; πi. To the best of our knowledge, this
phenomenology has never been discussed before.
We support the previous statements with a numerical

simulation of the dynamics of the states jn; ki under the
action of H using a time-evolving block decimation code
based on a matrix-product-state representation of the state
obtained via the ITensor library [62,63]. We consider in
particular the state jn ¼ L=2; k ¼ π − 2π=Li for several
system sizes up to L ¼ 60 and truncation error 10−12. We
then compute the observable Sz2ðtÞ ¼ ð1=LÞPjhðSzjÞ2it
and the fidelity of the time-evolved state with the initial
state FðtÞ ¼ jhn; kje−iHtjn; kij2. The results, reported in
Fig. 2, show in both cases an important slow-down of the
dynamics as the size increases. In the Supplemental
Material we show that the data concerning the fidelity
can be collapsed via a rescaling of time by a factor of L [47],
which suggests the divergence of the relaxation time in the
TL. The result on the fidelity FðtÞ shows undoubtedly that

FIG. 1. Top: Squared overlap of jn; ki for n ¼ L=2 and k ¼
π − ð2π=LÞwith the eigenstates jEii of Hamiltonian (1) with zero
magnetization, Sz ¼ 0; the parameters of the simulation are
fJ; h; D; J3g ¼ f1; 0; 0.1; 0.1g and L ¼ 10. The information
on jhEijn; kij2 is also encoded in the color code of the marker
of all panels using a logarithmic scale, see color bar. Middle and
bottom: We plot the data of the top panel in a diagram with the
energy E on the abscissa and the bipartition entanglement entropy
SE or the average square magnetisation Sz2ðEÞ of the eigenstate
on the ordinate, respectively. For the entanglement entropy, we
use the natural logarithm and we divide the result by L=2 to
obtain an intensive quantity. The state jn; ki has overlap only with
states whose SEi

or Sz2Ei
lies on the continuous thermal curve. The

red circle and the blue square highlight the regions of the plots
where the QMBS jn ¼ L=2; πi appear: the absence of any gray
mark means that the scalar product is compatible with the
numerical zero.

FIG. 2. The properties of the state e−iHtjn; ki for n ¼ L=2 and
k ¼ π − 2π=L as a function of time for various system sizes L.
Left: time evolution of the squared magnetisation Sz2ðtÞ. Right:
time evolution of the fidelity with the initial state FðtÞ.
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the time-evolved state maintains an overlap with the initial
state that increases with L and it implies the freezing of the
state. In the Supplemental Material we complement this
analysis by contrasting it with the typical dynamics of
other states [47]; we also analyze states obtained by acting
on the exact QMBS with ðJþk Þm, i.e., creating multiple
quasiparticles of momenta close to π, and we argue that
they should also be asymptotic QMBS as long asm does not
scale with L [47].
Slow relaxation and nonthermalness in the middle of the

energy spectrum.—Two properties make the asymptotic
QMBS particularly interesting: (a) they have a limited
amount of entanglement, i.e., a subvolume law, but an
extensive amount of energy; (b) they have an energy
variance ΔH2 that drops fast enough to zero in the TL.
Any state that satisfies these conditions is guaranteed to
have a long relaxation time, both in the fidelity and in the
observables, while having an average energy that lies in the
middle of the Hamiltonian spectrum. Note that both (a) and
(b) are necessary features that make the behavior of
asymptotic QMBS atypical. While any linear superposition
of thermal eigenstates with small energy variance relaxes
slowly, it typically has a large entanglement [33]. On the
other hand, a typical low-entanglement state has an energy
variance that increases with system size [33].
It is tempting to think that the existence of asymptotic

QMBS should imply some kind of “non-thermalness” [31]
or ETH-violation in the “thermal” states orthogonal to the
exact QMBS, even at finite system size. Note that ETH
consists of two parts [6,9,64], pertaining to diagonal and
off-diagonal matrix elements of a local operator in the
energy eigenbasis. The diagonal matrix elements control
the late-time expectation values of observables, and the
existence of asymptotic QMBS does not imply any
violation of diagonal ETH since we expect them to
eventually thermalize for any finite system size. On the
other hand, the timescale of relaxation is controlled by both
the energy variance of the initial state and the off-diagonal
matrix elements [60]. It is plausible that our result entails a
violation of off-diagonal ETH at least in a part of the
Hamiltonian spectrum.
Asymptotic QMBS without exact QMBS.—Our definition

of asymptotic QMBS is based on a deformation of the
tower of exact QMBS supported at finite size; it is not clear
whether asymptotic QMBS can exist in models without any
exact QMBS or at energies distant from those of the
exact QMBS.
We now show that it is possible to weakly perturb the

Hamiltonian H in a way that destroys all exact QMBS, but
such that the perturbed model maintains the asymptotic
QMBS. As an example, we consider H0 ¼ H þ V with
V ¼ ðJz=LÞ

P
j S

z
jS

z
jþ1, which is still a nontrivial local

perturbation since its spectral norm kVk∞ corresponding to
its largest singular value is subextensive and scales as
Oð1Þ. Using the PYTHON-based QuSpin package [52], we

numerically diagonalize H0 and compute the entanglement
entropy SEi

and the average square magnetization Sz2ðEiÞ
for all eigenstates. The plots, in Fig. 3, do not indicate the
presence of any exact QMBS.
We now consider the state jn; πi of Eq. (3), which is an

exact QMBS of H but not an eigenstate of H0. Using the
ITensor library [62,63], we compute Sz2ðtÞ and the fidelity
FðtÞ for the time-evolved state jΨðtÞi ¼ e−iH

0tjn; πi; the
results are in Fig. 4. The plots display the phenomenology
of an asymptotic QMBS in a Hamiltonian that does not
show any exact QMBS at finite size, and the FðtÞ curves
exhibit a collapse when time is rescaled by a factor

ffiffiffiffi
L

p
[47], indicating a diverging relaxation time. This behavior
can be directly attributed to the fact that the variance of the
state jn; πi under the Hamiltonian H0 scales as ∼1=L when
n is a finite fraction of L, as it is proven in the Supplemental
Material [47].
Conclusions.—In this Letter we revisited the paradig-

matic one-dimensional spin-1 XY model that supports
exact QMBS at finite size, and we explored the properties
of the rest of the spectrum. We showed that it is possible to
construct other states, dubbed asymptotic QMBS, with
little entanglement and whose relaxation time diverges

FIG. 3. Properties of the eigenstates of Hamiltonian H0 in the
zero magnetization sector Sz ¼ 0; the parameters of the simu-
lation are fJ; h;D; J3; Jzg ¼ f1; 0; 0.1; 0.1; 1g and L ¼ 10. Top:
Squared overlap of jn; πi for n ¼ L=2 with the eigenstates jEii of
Hamiltonian H0 with zero magnetisation, Sz ¼ 0. The informa-
tion on jhEijn; πij2 is also encoded in the color code of the marker
of all panels using a logarithmic scale, see color bar. Middle and
bottom: We plot the data of the top panel in a diagram with the
energy E on the abscissa and the bipartition entanglement entropy
SE or the average square magnetisation Sz2ðEÞ of the eigenstate
on the ordinate, respectively. The state jn; πi has overlap only
with states whose SEi

or Sz2ðEiÞ lies on a continuous curve. In the
Supplemental Material [47] we show the entire spectrum and
show that the model does not have any QMBS (here the spectrum
is incomplete because we plot only state that have a non-
negligible overlap with jn; πi).
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polynomially in the thermodynamic limit. These asymp-
totic QMBS indicate the existence of slowly relaxing
modes and novel long-lived quasiparticles in systems with
exact QMBS; it would be interesting to understand their
relations to analogous slowly relaxing modes of hydro-
dynamic origin.
Remarkably, asymptotic QMBS are linear combinations

of thermal eigenstates whose entanglement entropy and
average squared magnetization are “smooth” functions of
energy; we leave for future work the investigation of a
possible violation of off-diagonal ETH [65–71].
Asymptotic QMBS with similar properties can also be

constructed in higher dimensional spin-1 XY models [47],
but other extensions would also be interesting, considering
first the exhaustive algebra of local Hamiltonians that have
the same exact QMBS jn; πi [29]. Second, they likely can
always be constructed in Hamiltonians with simple quasi-
particle towers of exact QMBS [11–13,17–19,25,72].
Third, there are many different types of exact QMBS
[3], e.g., with non-local “quasiparticles” [13,27,73], or with
nonisolated states [24,32]; they could appear in gauge
theories [74,75] or Floquet systems [28,76–78]. Are there
asymptotic QMBS in these models?
Finally, one could also consider deformations of

Hamiltonians with exact QMBS (a problem that we
partially addressed in the final part of this Letter), and
ask what are the conditions for a Hamiltonian to display an
asymptotic QMBS without any exact QMBS.
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