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In this Letter, we use a model fluid mechanics experiment to elucidate the impact of curvature
heterogeneities on two-dimensional fields deriving from harmonic potential functions. This result is
directly relevant to explain the smooth stationary structures in physical systems as diverse as curved liquid
crystal and magnetic films, heat and Ohmic transport in wrinkled two-dimensional materials, and flows in
confined channels. Combining microfluidic experiments and theory, we explain how curvature hetero-
geneities shape confined viscous flows. We show that isotropic bumps induce local distortions to Darcy’s
flows, whereas anisotropic curvature heterogeneities disturb them algebraically over system-spanning
scales. Thanks to an electrostatic analogy, we gain insight into this singular geometric perturbation, and
quantitatively explain it using both conformal mapping and numerical simulations. Altogether, our findings
establish the robustness of our experimental observations and their broad relevance to all Laplacian
problems beyond the specifics of our fluid mechanics experiment.
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Trying to elucidate the dynamics of astronomical
objects, Pierre-Simon de Laplace introduced a cornerstone
of theoretical physics which we now call Laplace’s equa-
tion [1]. Since then, far beyond the context of celestial
mechanics, we now use the solutions of Laplace’s equation
to model the stationary structures of quantities as diverse as
the temperature distribution in materials [2], the concen-
tration of Brownian particles in a solution [3], the electric
field away from electric charges [4], the current distribution
in Ohmic conductors [5], the wave function of quantum
particles [6], the spin-wave deformations of broken-
symmetry phases [7], and the pressure field of confined
fluid flows [8]. In particular, when an incompressible
viscous fluid is driven in the narrow gap separating two
large parallel plates (a Hele-Shaw cell), the gap-averaged
pressure field pðx; yÞ is given by

Δp ¼ 0; ð1Þ
and Darcy’s law relates linearly p to the gap-averaged
velocity field v via [9]

v ¼ −κ∇p: ð2Þ
We henceforth refer to v as Darcy’s flow. The permeability κ
is a parameter which embodies the properties of both the
liquid and solid walls. In the language of Laplacian physics,
p is called a harmonic potential function. These seemingly
mundane relations have elevated the status of the simple
Hele-Shaw setup to a powerful experimental tool to inves-
tigate Laplacian processes beyond the specifics of fluid
mechanics. Prominent examples include dielectric break-
down [10], dendritic growth, and transport in disordered

media [11–14]. However, aside from rare exceptions,
Darcy’s flows and, more broadly, Laplacian phenomena
have been mostly studied in flat space. Very little is known
about a basic physics question: How do curvature hetero-
geneities alter potential flows and other Laplacian processes?
Surprisingly, this fundamental question has been addressed
in rather complex situations. From a nonlinear physics
perspective, the impact of curvature on Darcy’s flows has
indeed been limited to interfacial instabilities in model
geometries such as cylinders, cones, and spheres [15–20].
From a condensedmatter perspective, most efforts have been
devoted to understanding how the singular solutions of
Laplace’s equation, topological defects, couple to curvature
in broken-symmetry phases such as superfluids, liquid
crystal films, and two-dimensional magnetic systems; see
Refs. [21,22] and references therein. This situation is
unsatisfactory not only from a theoretical perspective but
also because smooth Laplacian phenomena in curved geom-
etries are realized in numerous experimental situations
ranging from Ohmic and heat transport in wrinkled two-
dimensional materials [23,24], to breakdown in curved
dielectric films [25] and flows in porous media confined
between curved fractured rocks [26].
In this Letter, we combine fluid mechanics experiments

and theory to reveal and explain how localized curvature
heterogeneities generically result in long-ranged perturba-
tions to vector fields that derive from a harmonic potential.
For the sake of clarity, we henceforth use the fluid
mechanics terminology directly relevant to our experi-
ments. We first demonstrate that uniform Darcy’s flows
are merely altered over the footprint of axisymmetric
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bumps. In stark contrast, we demonstrate that curvature
asymmetries result in algebraic perturbations to both the
pressure and velocity fields. We explain our findings using
an electrostatic analogy and conformal mapping arguments.
We perform our experiments in three-dimensional (3D)

printed microfluidic channels; see Fig. 1(a). We make our
channels with a Formlab3 printer and use a transparent
photocurable resin (Formlab clear); see also the
Supplemental Material [27]. In all our experiments, the
Hele-Shaw cells have a length L ¼ 120 mm and a width
W ¼ 38 mm. We however perturb the geometry by adding
a Gaussian bump at the center of the device as exemplified
in Fig. 1(a). We stress that the gap of the cells is constant
across the whole device, e ¼ 450 μm; see Fig. 1(b). The
geometry of the channels is fully captured by the shape of
their midsurface. We define it by the height field hðx; yÞ ¼
h0 exp½−x2=ð2σ2xÞ − y2=ð2σ2yÞ�, where σx, σy are the widths
of the bump in the x and y directions, respectively.
We drive the flow with a piezoelectric pressure controller

ElveflowOB1MK4and image itwith aHamamatsuORCA-
Quest quantitative CMOS (complementary metal-oxide
semiconductor) camera mounted on a Nikon AZ100 micro-
scope with a 1.2 zoom. We measure the velocity field
averaged over the depth of field of our objective in the ðx; yÞ
plane. To do so, we use a water-glycerol mixture (20 vol%)
seeded with fluorescent colloidal particles of diameter
4.8 μm (Thermo Scientific G0500) and perform standard
particle imaging velocimetry [39]. Knowing hðx; yÞ, we can
then project the velocity back on the tangent plane and
reconstruct the full 3D structure of the flow vðx; yÞ on the
curved surface. In Fig. 1(c), we can see that the streamlines
bend around the bump.

To better quantify these flow perturbations, we define
v0 ¼ v − v0, where, v0 ¼ v0x̂ is the uniform flow measured
at large distance from the bump. Figure 2(a) shows that v0
has a clear dipolar symmetry, akin to the flow around a
fixed obstacle in a flat channel [9]. Given this symmetry,
and the Laplacian nature of the hydrodynamic problem,
one would expect jv0j to decay algebraically with
ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, the distance to the apex of the bump

(jv0j ∝ 1=ρ2, like the electric field induced by a charge
dipole in two dimensions) [40,41]; see also Supplemental
Material [27]. This prediction is, however, at odds with our
measurements. The flow perturbations are exponentially
localized in space within the footprint of the bump. This
atypically fast decay is better seen in Fig. 2(b), where we
plot the y component of v0 as a function of x.
This counterintuitive effect begs for a theoretical explan-

ation. To address this question analytically and numerically,
we first need to write the covariant generalizations of
Darcy’s law and mass conservation on a curved surface.
They take the compact form

vα ¼ −κgαβ∂βp; ð3Þ

1ffiffiffi
g

p ∂αð
ffiffiffi
g

p
vαÞ ¼ 0: ð4Þ

vα (α ¼ x, y) is the α component of the velocity field in the
local basis ðex; eyÞ of the tangent plane to the midsurface,
ex ¼ x̂þ ẑ∂xh, ey ¼ ŷ þ ẑ∂yh, and gαβ ¼ δαβ þ ∂αh∂βh is
the associated metric. Combining these two equations, we
find that the pressure field p obeys the Laplace-Beltrami
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FIG. 1. (a) Picture of a Hele-Shaw cell made of UV curable resin. It includes a localized curvature heterogeneity in the form of a
Gaussian bump located at the center of the channel. The device is filled with UV fabric paint for visualization purposes (h0 ¼ 3 mm,
σx ¼ σy ¼ 1.5 mm). Scale bar: 8 mm. (b) 3D print of a half device. This side view of the channel shows that the gap between the two
walls is constant even in the curved regions. Scale bar: 1 mm. (c) Top: three-dimensional reconstruction of the velocity field perturbed
by a Gaussian bump with h0 ¼ 3 mm, σx ¼ σy ¼ 1.5 mm. The color indicates the magnitude of the flow perturbation v0. Bottom:
corresponding streamlines projected in the ðx; yÞ plane. (d) Flow field measured across the channel gap. The black arrows show that the
direction of the flow is tangent to the midsurface. The color indicates the magnitude of the velocity field. It has locally a Poiseuille shape.
Note that the magnitude of the gap-averaged flow depends on the local geometry of the midsurface. This observation is consistent with
the magnitude of v0 shown in panel (c).

PHYSICAL REVIEW LETTERS 131, 188201 (2023)

188201-2



equation: ð1= ffiffiffi
g

p Þ∂αð ffiffiffi
g

p
gαβ∂βpÞ ¼ 0; see Supplemental

Material for a detailed derivation of the above equations
[27]. Equations (3) and (4) tell us that any local change in
the metric should alter Darcy’s flows.
When the geometry of the channel is modified by an

axisymmetric bump hðρÞ, we can compute the pressure and
flow fields by taking advantage of the conformal invariance
of the Laplace-Beltrami operator [42]. We consider a single
bump on an infinite surface and a uniform flow away from
the bump. We can then flatten the surface using a global
conformal map described by the conformal factor ΩðρÞ,
solve Laplace’s equation in the plane, and finally apply the
inverse transform to compute the pressure and velocity
fields on the bumpy surface; see Supplemental Material
[27]. Regardless of the specific shape of the bump, the
conformal factor is given by [43]

ΩðρÞ ¼ exp

�Z þ∞

ρ

dϱ
ϱ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0ðϱÞ2

q
− 1

��
: ð5Þ

Figure 2(b) shows that our analytical solution is in excellent
agreement with our experimental findings. This agreement
establishes that the measured deviation to a uniform flow
field originates from curvature heterogeneities. We also
note that conformal invariance readily informs us on the
range of the flow perturbations. Isotropic bumps are
conformally flat; in other words, we can deform them into
a planar surface by applying a global map that solely
involves local dilations of the curved metric. Away from the
bump, the local dilation factor becomes vanishingly small,
and therefore, the solution of Eqs. (3) and (4) reduces to the

uniform flow of a flat Hele-Shaw cell. The decay of jv0j is
therefore set by the decay of ΩðρÞ − 1: For Gaussian
bumps, v0 is exponentially localized in space.
To understand deeper the singular range of the flows

around axisymmetric curvature heterogeneities, we now
take advantage of an electrostatic analogy. In the limit of
small aspect ratio a ¼ h0=σ ≪ 1 (σ ¼ σx ¼ σy), we expand
Eqs. (3) and (4) to second order in a and find that the
lowest-order correction to the pressure field satisfies
Poisson’s equation:

Δpð2Þ ¼ −κ−1ðv0 · ∇hÞΔh; ð6Þ

with pð2Þðx; yÞ → 0 when x; y → ∞ (see also Supplemental
Material [27] for a detailed derivation). Computing the first
correction to the pressure field is thus equivalent to finding
the electric potential induced by a charge distribution
λ ¼ κ−1ðv0 · ∇hÞΔh. To gain some intuition about the form
of the pressure fluctuations, we plot the charge distribution
λðx; yÞ in Fig. 2(c). In the far-field limit, the equivalent
charge distribution can be seen as the sum of two dipoles
pointing in opposite directions as the signs of the local
slope ðv0 · ∇hÞ ¼ v0∂xh and mean curvature Δh change
once and twice, respectively, across the bump. The first
dipole is formed by strong charges separated by a small
distance, while the second dipole is formed by weaker
charges separated by a larger distance; see Fig. 2(c). For
any axisymmetric bump, the two dipoles cancel out exactly.
To see this, we can compute the net dipole associated
with the charge distribution P ¼ ∬ dxdy λðx; yÞðxx̂þ yŷÞ
and find

(a) (b) (c)

FIG. 2. Isotropic bumps. (a) Experiments. Planar projection of v0 in the vicinity of an axisymmetric Gaussian bump with parameters
h0 ¼ 2.25 mm and σx ¼ σy ¼ 1.5 mm. Away from the bump, the fluid flows at a velocity v0 ¼ 120 μms−1 along the x direction. The
velocity field has the same angular symmetry as the electric field induced by a charge dipole antiparallel to the unperturbed flow.
(b) Experiments, theory, and simulations. y component of the velocity perturbation v0y for an axisymmetric Gaussian bump (h0 ¼ 3 mm,
σ ¼ σx ¼ σy ¼ 1.5 mm). v0y is plotted as a function of the coordinate x in the direction of the unperturbed flow. Thevelocity ismeasured at
y=σ ¼ 0.78� 0.09. The theoretical results derived from conformal theory in an infinite channel and from FEM simulations in a finite
channel are in excellent agreement with our measurements. Inset: log-lin plot of the same data. (c) Theory. Color map of the equi-
valent normalized charge distribution κσ3λ=ðv0h20Þ. It roughly corresponds to the superposition of two antiparallel dipoles that exactly
cancel out.
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P ¼ πv0h20
4κ

�
σx
σy

−
σy
σx

�
x̂: ð7Þ

P vanishes when σx ¼ σy, as well as all higher-order
multipoles as shown in Supplemental Material [27].
Therefore, despite the existence of a nontrivial charge
distribution, the far-field correction to the pressure around
an isotropic bump cannot be captured by any multipolar
expansion. The fluctuations of the flow field require some
more attention. v0ðrÞ has indeed both a kinematic and a
dynamic origin which are both impacted by curvature. At a
perturbative level v0 ¼ v0gð2Þ∶ ex − κ½∂xpð2Þex þ ∂ypð2Þey�,
where gð2Þ is the second-order correction to the inverse
metric. The first term is a mere kinematic correction that
stems from the projection of the unperturbed flow field on
the tangent plane. The second term is specific to Darcy’s
flows and may carry nonlocal perturbations to the velocity
field. It is analogous to the electric field induced by the
charge distribution λ. When σx ¼ σy, both terms vanish in
the far-field limit: All curvature-induced flows are screened
past the footprint of the bump.
We note that the agreement between our experimental

observations and theory justifies a priori the relevance of
Darcy’s approximation despite the weak scale separation
between the gap size and the spatial extent of the bump. In
hindsight, this agreement is not surprising as a typical
Brickman description of the gap-averaged viscous flow in
the gap would yield corrections to the velocity field of the
order of ½e=ðπσxÞ�2 ≈ 10−2 [44].
We now move to our second central result. As clearly

seen in Eq. (7), our results heavily rely on rotational
symmetry. We therefore need to address the impact of

curvature anisotropy, which would exist in any natural
setting. At a perturbative level, the electrostatic analogy
tells us that the flow perturbations should be long-ranged
regardless of the specific functional form of h, and jv0j
should decay as 1=ρ2; see Eq. (7). To assess whether this
prediction holds beyond perturbation theory, it would be
tempting to use the same theoretical tools as above, namely,
to look for a global conformal transformation that would
map anisotropic bumps onto planar domains [45]. We
indeed know that simple conformal maps transform aniso-
tropic domains into isotropic ones, such as the celebrated
Joukowski transform in the context of fluid mechanics.
These maps should however cause long-range correlations
in the v0ðx; yÞ field, as they typically involve inversions,
which are nonlocal transformations. There is therefore no
reason to expect any geometrical screening of the curvature-
induced perturbations.
To further confirm our reasoning, we first conduct

experiments in channels deformed by Gaussian bumps
with σy > σx and measure v0; see Fig. 3. We find that the
angular symmetry of the perturbation remains mostly
dipolar; see Fig. 3(a). But, Fig. 3(b) shows that the
perturbation induced by anisotropic bumps extends as
expected over much larger distances. However, unlike
our theoretical prediction, jv0j still decays exponentially.
The finite width of our channels explains this much simpler
screening effect. Using again our electrostatic analogy, the
two side walls of the channel act as two conductors which
screen the electric potential induced by a point dipole over a
distance W=ð2πÞ; see also Supplemental Material [27].
To quantitatively check our reasoning, we perform FEM
simulations of Eqs. (3) and (4); see Supplemental Material
[27]. Figure 3(b) shows an excellent agreement with our

FIG. 3. Anisotropic bumps. (a) Experiments. Planar projection of v0 in the vicinity of an anisotropic Gaussian bump with parameters
h0 ¼ 3.5 mm, σx ¼ 1.5 mm, and σy ¼ 4.5 mm. The streamlines of the velocity field retain a dipolar symmetry. (b) Experiments and
simulations. Log-lin plot of the perturbation to the mean flow for an isotropic Gaussian bump with parameters h0 ¼ 3 mm, σx ¼
σy ¼ 1.5 mm and for an anisotropic bump with parameters h0 ¼ 3.5 mm, σx ¼ 1.5 mm, σy ¼ 4.5 mm as a function of the coordinate x
in the direction of the unperturbed flow for y=σy ¼ 0.78� 0.09. We plot both the experimental and FEM results. (c) FEM simulations.
Log-lin plot of the perturbation to the mean flow for four different anisotropic bumps in channels of two different widthsW. The decay
of jv0j is set by the shape of the isotropic bump; by contrast, jv0j decays much slower for anisotropic bumps. In the far-field limit, the
algebraic decay is exponentially screened over a distance set by the channel width. (d) FEM simulations. Lin-lin plot of the perturbation
to the mean flow for two anisotropic bumps pointing in orthogonal directions (see sketches); opposite anisotropies obtained from FEM
simulations. The sign of the far-field perturbation changes when the orientation of the main axis of the bump exceeds 45°.
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measurements, and Fig. 3(c) confirms that the far-field
decay of the flow is not set by the bump geometry but by
the channel width only.
As a last comment, we note that our electrostatic analogy

informs us on the sign of the far-field perturbation as well.
As P ∝ x̂ when σx > σy, and P ∝ −x̂ otherwise, the far-
field perturbation should be positive (resp., negative) when
the long axis of the bump makes a smaller angle with the
y axis (resp., x axis). Our FEM simulations again confirm
that this last prediction holds even in the limit of high
bumps; see Fig. 3(d).
To conclude, we have shown that unlike Stokes flows

[46], static curvature heterogeneities generically deform the
streamlines of Darcy’s flows. Combining microfluidic
experiments and theory, we have revealed that curvature
anisotropy acts as a singular perturbation to potential flows.
Using a robust electrostatic analogy, we have explained
why the flow distortions induced by isotropic bumps are
screened while vanishingly small curvature asymmetries
could bend the streamlines over system-spanning scales.
We hope that our findings will stimulate a deeper inves-
tigation of the role of curvature heterogeneities on a broader
class of Laplacian phenomena ranging from superfluid film
flows to transport in fractured rocks and Ohmic transport in
wrinkled two-dimensional conductors. We also expect our
results to be relevant to non-Laplacian problems that can
be solved using conformal mappings, such as advection
diffusion in potential flows, electrochemical transport [42],
and possibly stress propagation and adhesion pattern
formation in elastic films [47,48].
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[2] J.-B. J. Fourier, Théorie Analytique de la Chaleur (F. Didot
père et fils, Paris, 1822).

[3] A. Fick, Ann. Phys. (Berlin) 170, 59 (1855).
[4] J. L. de Lagrange, Œuvres Complètes (Gauthier-Villars,
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