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Solitons in liquid crystals have generated considerable interest. Several hypotheses of varying
complexity have been advanced to explain how they arise, but consensus has not emerged yet about
the underlying forces responsible for their formation or their structure. In this work, we present a minimal
model for solitons in achiral nematic liquid crystals, which reveals the key requirements needed to generate
them in the absence of added charges. These include a surface inhomogeneity, consisting of an adsorbed
particle capable of producing a twist, flexoelectricity, dielectric contrast, and an applied ac electric field that
can couple to the director’s orientation. Our proposed model is based on a tensorial representation of a
confined liquid crystal, and it predicts the formation of “butterfly” structures, quadrupolar in character, in
regions of a slit channel where the director is twisted by the surface imperfection. As the applied electric
field is increased, solitons (or “bullets”) become detached from the wings of the butterfly, and then
propagate rapidly throughout the system. The main observations that emerge from the model, including the
formation and structure of butterflies, bullets, and stripes, as well as the role of surface inhomogeneity and
the strength of the applied field, are consistent with experimental findings presented here for nematic LCs
confined between two chemically treated parallel plates.
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Traveling waves that propagate without distorting their
shape or losing energy are referred to as solitons; they have
been studied extensively in isotropic liquids [1,2]. Solitons
were first described by Russell et al. over 150 years ago
(1834), who studied how waves in water propagate at
constant speed in a narrow channel [3]. The structures
associated with solitons in liquid crystals (LCs) were first
discussed by de Gennes and Leger [4,5], and their quad-
rupolar structure (butterfly) was originally reported in
experiments by Brand et al. [6]. In achiral nematic liquid
crystals, recent work indicates that solitons can be pro-
duced by applying an electric field [7–13]. After a collision,
solitons preserve their shape, thereby providing opportu-
nities for the design of autonomous materials that rely on
energy transduction for active transport [14–18].
Recent experimental work by our group has revealed that

surface interactions play a decisive and previously unap-
preciated role in the generation and dynamics of solitons
[19,20]. However, the precise structure of a nematic soliton
or the forces that lead to its creation remain unknown.
Simulations of the formation and structure of solitons
have not been reported before. In this work, we propose
a minimal model that reproduces the central features of
solitons observed in experiments. With that model, we
show that surface imperfections serve to nucleate solitons,
we find that their structure is a function of the applied
electric field, and we dissect how the balance of free energy

contributions from flexoelectricity, surface anchoring, and
elasticity is altered throughout the soliton formation proc-
ess. We also present the results of controlled experiments
that serve to validate the predictions of our model.
Methodology.—Theoretical framework: The free energy

functional of the tensorial order parameter (Q) is written in
the form ofQ ¼ Sðnn − I=3Þ, where the unit vectorn is the
director field and S is the scalar order parameter [21]. We
introduce an alternating current field (ac) that couples to the
director via a negative anisotropy of the permittivity of the
liquid crystal. The liquid crystal is confined between two
walls, and a surface irregularity is created by appending a
hemispherical particle to one of the walls. Q is evolved
through the Ginzburg-Landau equation [22–25]:

∂

∂t
Q ¼ ΓH; H ¼ −

�
δF
δQ

−
I
3
Tr

δF
δQ

�
: ð1Þ

where Γ is a collective rotational diffusion constant that
controls the relaxation rate, and H is the molecular field.
The free energy of the system is given by

F ¼
Z
V
½fLdG þ felas þ fflex þ fdiel�dV þ

Z
S
½fH þ fP�dS;

ð2Þ
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and the bulk free energy density is given by the sum of an
enthalpic contribution (fLdG), an elasticity contribution
(felas), a flexoelectricity contribution (fflex), and a dielectric
energy contribution (fdiel). At the confining boundaries, dS
has unit normal ν. Anchoring conditions can be imposed by
adding a surface term to the free energy [26,27].
The enthalpic term is given by [28]

fLdG ¼ A
2

�
1 −

U
3

�
TrðQÞ2 − AU

3
TrðQ3Þ

þ AU
4

ðTrðQ2ÞÞ2; ð3Þ

where A and U are phenomenological parameters [29,30].
In the second term, the elastic distortions can be written
as [31,32]

felas ¼
1

2
L1∂kQij∂kQij þ

1

2
L2∂kQjk∂lQjl

þ 1

2
L3Qij∂iQkl∂jQkl: ð4Þ

In this work, we include L1 and L3 and assume L2 ¼ 0. In
the presence of an externally applied electric field, a
flexoelectric contribution to the free energy arises from
the coupling between the nematic distortion and polariza-
tion [33–35]:

fflex ¼ EiPi ¼ ζ1ð∂jQijÞEi þ ζ2Qijð∂kQjkÞEi: ð5Þ

The dielectric energy contribution is given by [36,37]

fdiel ¼ −
1

2
ϵ0ϵijEiEj; ð6Þ

where ϵ0 represents the dielectric permittivity of vacuum,
and ϵij corresponds to the tensorial dielectric permittivity of
the nematic material [38,39]. The above expressions can be
rewritten in terms of the Q tensor as

fdiel ¼ −
1

2
ϵ0ϵaEiQijEj; ð7Þ

and ϵa is the permittivity anisotropy.
A hybrid anchoring of the director field is enforced at the

surface. Homeotropic anchoring at a particle surface (see
below) is imposed using a Rapini-Papoular surface free
energy density of the form [40,41]

fH ¼ 1

2
WðQ −Q0Þ; ð8Þ

which penalizes deviations from the surface-preferred
tensorial order parameter Q0 ¼ Seqðνν − I=3Þ. A fourth-
order Fournier-Galatola free energy density is adopted to
impose degenerate planar anchoring at the walls [42]

fP ¼ 1

2
WðQ̄ − Q̄⊥Þ2 þ

1

4
WðQ̄∶Q̄ − S2eqÞ2; ð9Þ

where W controls the anchoring strength, Q̄ ¼
Qþ ð1=3ÞSeqI and its projection on the surface is given
by Q̄⊥ ¼ p · Q̄ · p, with p ¼ I − νν. An effective electric
field (EF�) can be defined using the ratio between the
flexoelectric term and the elastic energy,

EF� ¼ ζ2
L1

Ei: ð10Þ

Additional details of the theoretical framework and numeri-
cal details are provided in the Supplemental Material [43],
which includes Refs. [44–47].
Experimental system: Our experiments correspond to 40-

butyl-4-heptyl-bicyclohexyl-4-carbonitrile (CCN-47) con-
fined between two surfaces pretreated with self-assembled
monolayers (SAMs) of alkanethiols on obliquely deposited
thin gold films. Prior studies have established that SAMs
of C16SH cause planar anchoring of this material [19].
Additional details of the preparation of the surfaces are
provided in the Supplemental Material [43]. Here we
merely point out that we dispersed 3 μm polyethylene (PE)
particles in CCN-47, and the mixture was drawn into the
optical cell by capillary action at 70° (T > TNI), followed
by cooling to the nematic phase (T ¼ 45° C). Such particles
serve as the site for the nucleation of solitons. The nematic
phase of CCN-47 at 45° C adopts a uniform azimuthal
orientation on the surfaces.
Results and discussion.—Consistent with our experi-

mental system, our model corresponds to a nematic liquid
crystal confined within walls that impart strong planar
anchoring. In the absence of an imposed surface inhomo-
geneity, the director field remains in a homogeneous state.
A small hemispherical particle with homeotropic anchoring
is then placed at the center of the bottom wall; its radius
is one-fifth of the channel thickness (Fig. 1). This particle
introduces a small distortion into an otherwise homo-
geneous structure. An oscillatory electric field is applied
normal to the confining boundaries (Z axis). To better
represent the experimental conditions and to control the
direction of motion of the solitons, a slight dc offset and
white noise are superimposed on the ac electric field (see
Fig. S1 in the Supplemental Material [43]). The director
field is initially aligned along the X axis, with periodic
boundary conditions in the X and Y directions [Fig. 1(b)].
Since the simulated system is two orders of magnitude
smaller than our typical experimental device, the intensity
of the electric field and the size of the director structures are
different than those used in experiments. However, when
properly normalized using the effective electric field (EF�),
one can see that the experimental and simulated structures
exhibit comparable behaviors.
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The structure of the nematic director field in the mid-
plane of the channel is shown in Fig. 1. Note that, in the
absence of the applied field, the director in the midplane is
undisturbed and is aligned along the X axis. For a low EF�,
when the flexoelectric energy is smaller than the elastic
energy intensity (EF� < 1.0), the flexoelectricity contri-
bution is negligible and the orientation of the director
remains unchanged. The cross-polarized light micrographs
were calculated using a Jones matrix, with the incident
polarized wave vector propagated along the Z axis.
When a slightly higher EF� is applied (1.0 < EF� <

1.5), and the flexoelectric energy becomes comparable to
the elastic energy, the flexoelectricity has a strong influence
around the particle surface, leading to the formation of a
quadrupolar structure (a butterfly structure). The analysis of
the director field profile and cross-polarized light simu-
lations show that the director orientation is more distorted
and further tilted in the third dimension for the butterfly.
As shown in Fig. 1, the simulated polarized light image is
consistent with our experimental observations above a
small spherical particle. In all cases, if the electric field
is removed, the system returns to the homogenous con-
figuration after 2000 steps (see Fig. S2 in Supplemental
Material [43]); we define that timescale as the characteristic
relaxation time (τ) and the characteristic frequency�
as τ=steps.
Our experiments and simulations show that for a higher

applied EF� (EF� ¼ 1.7 & 10 < frequency�), the energy
of the system starts to increase, and the butterfly adopts an
asymmetric structure that tilts towards the negative Y axis.
At some point, the butterfly structure releases a propagating
soliton or “bullet,” which can be seen in our experiments

[Fig. 2(a)] and simulations [Fig. 2(b)]. Figure 2(c) shows
all contributions to the free energy of the system. When the
ac field is applied, the energy of the system gradually
increases and, upon the bullet’s detachment, it drops and
remains almost flat. It then increases again until a new
bullet is released. After leaving the butterfly, the bullet
moves in a direction perpendicular to the X axis [Fig. 2(b)],
consistent with our experimental observations [Fig. 2(a)].
The process continues as new bullets are created and
emitted from the butterfly (see movie 1 in the Supple-
mental Material [43]). This 3D soliton structure (see Fig. S3
in the Supplemental Material [43]) is facilitated by the thin
channel because the strong anchoring energy causes the
director to return to a homogenous configuration after
the bullet advances along the channel; note that for the
anchoring strength considered here, the surface contribu-
tion is 2 orders of magnitude smaller than the other
contributions to the free energy [Fig. 2(f)], but it is
sufficient to force the director field to return to the
homogeneous orientation after the 3D soliton structure
moves away. The other contributions to the free energy
(i.e., Landau–de Gennes, elastic, flexoelectric energy)
adopt higher values after each bullet is generated. After
the bullet becomes detached from the butterfly, the energy
drops but not all the way to the butterfly state, because the
entire system now includes the butterfly and the bullet.
With each new bullet, the free energy of the system
increases [Fig. 2(c)]. The dielectric energy exhibits a
nearly monotonic behavior (except for the random noise)
throughout the entire process [Fig. 2(e)] and, for that
reason, it is not included in the total free energy plot
shown in Fig. 2(c).

FIG. 1. Simulated system: (a) the electric field is applied perpendicular to the confining walls, which impart parallel anchoring and
(b) a hemispherical particle is placed on the bottom boundary. (c) The PE particle (indicated by a black circle) in the LC film confined
between two C16SH SAM surfaces. (d),(e) The particle nucleates a stationary quadrupolar distortion when an electric field (300 Hz,
40 V) is applied; (d) bright-field image, (e) imaged under crossed polarizers. Scale bars 50 μm. The results of simulations of the butterfly
structure are consistent with the experimental observations. Experimentally, it is observed that the butterfly remains stable in the vicinity
of the particle. (f) Polscope image showing the LC director profiles within a stationary butterfly. Scale bar 30 μm. (g) In simulations,
polarized light shows the butterfly in the region of the hemisphere with a 1 μm size, and (h) the orientation of the director matches the
experimental observation.
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Figure 3 shows a state diagram, which outlines the five
structures that our model predicts as a function of the
frequency� and intensity of the electric field�. Starting from
a low intensity (EF� < 1.0), we find that the anchoring
of the particle determines the orientation of the director,

leading to a cross pattern under cross polarizers. Upon
increasing the intensity (1.0 < EF� < 1.5), we observe that
a butterfly is formed, where the flexoelectric contribution
begins to change the orientation of the director. Above a
threshold, EF� strength (EF� ¼ 1.7 & 10 < frequency�),

FIG. 2. (a) Experimental observation of bullet release from a butterfly. (b) Corresponding simulation results show the creation of a
butterfly in the region above the particle, and the repeated ejection of bullets that move with uniform speed. (c) Free energy as a function
of simulation time; the energy increases until a bullet becomes detached from the butterfly, at which point the energy drops slightly
before another bullet is ejected. Each colored region corresponds to the ejection of a new bullet. (d) Landau–de Gennes, elastic and
flexoelectric, and surface energy contribution, respectively. (e) The dielectric energy exhibits a small increase throughout the entire
process. (f) The surface energy is 2 orders of magnitude smaller than the other contributions to the free energy; it increases with each
bullet that is formed.

FIG. 3. State diagram delineating regions where different structures are observed as a function of the normalized frequency and
intensity of the electric field. We show the director’s corresponding theoretical and experimental images under cross polarizers,
respectively; starting from low intensity, we observe a cross pattern above the particle. After increasing the intensity, a butterfly is
observed and bullets are generated in a narrow region of frequency. Stripes are observed for a high-intensity field over a wide range of
frequencies. The system enters a chaotic regime when the electric field is even stronger.
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a soliton (bullet) is formed, which travels in the direction
perpendicular to the initial director orientation. When the
intensity of the EF� is increased (1.8 < EF� < 2.0) even
more, the flexoelectric contribution distorts the entire
system homogeneously, and lines (stripes) are formed in
the direction parallel to the orientation of the director; the
stripes move perpendicularly to the director. For an even
stronger EF� (2.0 < EF�), the system enters a chaotic
regime (see Fig. S5 in the Supplemental Material [43]) and
the free energy is 2 orders of magnitude higher than the
energy of the bullet. Our experiments confirm the general
predictions of the theory.
Conclusions.—The minimal model adopted here

includes contributions from surface energy, elasticity,
and flexoelectricity. Our experimental system consists of
a nematic liquid crystal confined between two plates, and
adsorbed particles that promote soliton formation. The
system is charge neutral but, while we did not add any ionic
species to our experiments, we acknowledge that it is
difficult to remove trace amounts of ions in LC films.
However, the results of our simulations confirm that
solitonic structures can be created without ionic effects.
A surface inhomogeneity (a hemispherical particle) is
necessary to “seed” the formation of a butterfly, which
is generated upon application of an ac field. Above a
threshold intensity value, the butterfly ejects solitons or
bullets that travel with uniform velocity throughout the
system. The butterfly and the bullets have a quadrupolar
structure. At higher field strengths, our simulations reveal
the formation of stripes. For even stronger fields we find
evidence of a chaotic regime. The general phenomenology
predicted in simulations is consistent with our own exper-
imental observations.
Our results indicate that flexoelectricity plays a key role

in the formation of solitons. At rest, the butterfly is
stabilized by the balance between flexoelectricity, enthalpic
energy, anchoring, and elasticity. Above a threshold field
intensity, that balance is altered—the flexoelectric contri-
bution rises and the total energy increases to a maximum
when the incipient bullet touches the surface of the
hemispherical particle. The bullet becomes detached from
the particle at that moment, and the total energy decreases
again until a new bullet is generated.
Note that, for our model, bullets are only observed over a

narrow region of field intensity and frequency, and they are
susceptible to the nature of the surface imperfection (size,
strength anchoring, and anchoring type of the hemispheri-
cal particle). Building on the work presented here, it should
be possible to further refine the model by incorporating
the effects of unequal elastic constants, hydrodynamic
effects, and ionic effects, which will all serve to provide a
comprehensive description of soliton structure and dynam-
ics. That work would appear to be warranted, given that a
better understanding of soliton dynamics could lead to

applications in microfluidic separations, reactions, or sens-
ing, where fast transport offers distinct advantages.
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