
Classical Drift in the Arnold Web Induces Quantum Delocalization Transition

Jan Robert Schmidt , Arnd Bäcker , and Roland Ketzmerick
TU Dresden, Institute of Theoretical Physics and Center for Dynamics, 01062 Dresden, Germany

(Received 13 July 2023; accepted 2 October 2023; published 30 October 2023)

We demonstrate that quantum dynamical localization in the Arnold web of higher-dimensional
Hamiltonian systems is destroyed by an intrinsic classical drift. Thus quantum wave packets and
eigenstates may explore more of the intricate Arnold web than previously expected. Such a drift typically
occurs, as resonance channels widen toward a large chaotic region or toward a junction with other
resonance channels. If this drift is strong enough, we find that dynamical localization is destroyed. We
establish that this drift-induced delocalization transition is universal and is described by a single transition
parameter. Numerical verification is given using a time-periodically kicked Hamiltonian with a four-
dimensional phase space.
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Introduction.—Chaotic dynamics in higher-dimensional
Hamiltonian systems and its quantum mechanical conse-
quences play an important role in many fields of physics.
This is well established for describing atoms, molecules, and
chemical reactions [1–4]. More recently the dynamics in
phase space has also been exploited in the context of quantum
many-body systems [5,6]. For example for Bose-Hubbard
systems semiclassical methods allow one to explain many
phenomena [7–9], including spectral statistics, entangle-
ment, and many-body quantum scars. For current imple-
mentations of quantum computers the destructive role of
classical chaos has been demonstrated [10,11].
The classical phase space of such systems is typically

governed by the presence of regions with regular dynamics
and regions with chaotic dynamics. In higher-dimensional
systems all chaotic regions are connected and form a single
network, the so-called Arnold web [12]. The structure of
this network is governed by resonance channels, charac-
terized by regular dynamics fulfilling resonant frequency
conditions. The chaotic layers of the resonance channels
allow for transport in the Arnold web by so-called Arnold
diffusion [12–17]. Thus, even in predominantly regular
phase-space regions, the Arnold web makes it possible to
get arbitrarily close to any point in phase space.
In the context of quantum mechanics an essential

question is how eigenstates and wave packets explore
the intricate Arnold web. Obviously, the chaotic layer of
a resonance channel must be wide enough to accommodate
a wave packet with minimal uncertainty. But there is
another restriction caused by the important phenomenon
of dynamical localization [18,19]. It leads to quantum
localization in the presence of classical chaotic diffusion.
For a resonance channel this was demonstrated in a 4D
map [20,21]. So one expects that a quantum wave packet
cannot explore a resonance channel of the Arnold web.

In this Letter, however, we demonstrate that dynamical
localization is destroyed by a drift in the Arnold web, if the
drift is strong enough. Such a drift generically occurs when
resonance channels widen toward the chaotic region or
toward junctions of resonance channels. We give a uni-
versal description of this drift-induced delocalization tran-
sition, see Fig. 1. To this end we introduce a transition
parameter, which depends on the classical drift velocity, the
available chaotic phase-space volume, and the size of a
Planck cell. We demonstrate the drift-induced delocaliza-
tion transition using a 4D symplectic map. Thus quantum
wave packets may explore more of the Arnold web than
previously expected.
Delocalization transition.—Dynamical localization is

a fundamental phenomenon in quantum chaos if the
corresponding classical systems shows diffusion along a
one-dimensional coordinate [18,19]. One finds that the
localization length is proportional to the classical diffusion
coefficient. The time evolution of a quantum mechanical
wave packet mimics classical diffusion up to the break
time t� at which it localizes with localization length λ.
Dynamical localization can be destroyed by various

mechanisms, e.g. (i) noise induced by coupling to an
environment [22–27], (ii) diffusion in higher dimensions
[28,29], or (iii) many-body interactions [30,31], which
recently has been studied experimentally in ultracold
gases [32,33].
Here we address the general question of dynamical

localization in the presence of an intrinsic classical drift,
which occurs in addition to classical chaotic diffusion. One
intuitively expects that quantum localization might be
destroyed and quantum transport made possible again.
But how strong has the drift to be?
We propose that there is a universal transition from

localization to delocalization in the presence of a classical
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drift with velocity vcl. Without drift, a wave packet localizes
at the break time t� with localization length λ. With drift, a
wave packet has at this time t� shifted by a distance jvcljt�.
If this distance is larger than λ, no localization with λ is
possible. This motivates the definition of a transition
parameter Λ, which is given by the ratio of drift distance
to localization length in the case of no drift,

Λ ¼ jvcljt�
λ

: ð1Þ

We expect that localization is destroyed if Λ ≫ 1, while it
should still occur if Λ ≪ 1.
Before we provide details of the delocalization transition

let us give a visual overview. The universal transition at
Λ ¼ 1 is demonstrated in Fig. 1 for an example system, a
kicked Hamiltonian, Eq. (5), leading to a 4D symplectic
map. It has a dominant resonance channel, see Fig. 2, along
which classical chaotic diffusion and drift takes place, see
Fig. 3. The quantum dynamics of a wave packet in this
resonance channel is characterized by a quantum drift
velocity and a quantum diffusion coefficient, see Fig. 4.

Transition parameter.—We show for a 2f-dimensional
symplectic map that the transition parameter Λ, Eq. (1), can
be more conveniently expressed in terms of properties of
the classical system and the size hf of a Planck cell by

ΛðxÞ ¼ jvclðxÞjτwchðxÞ
hf

: ð2Þ

Here x is a local phase-space coordinate along the reso-
nance channel, wchðxÞ is the cross-sectional volume of the
chaotic region of the resonance channel at x, i.e. a (2f − 1)-
dimensional phase-space volume, and τ is the time period
of the map. Typically, the drift velocity vcl and the volume
wch will depend on the coordinate x along the resonance
channel and thus so will the transition parameter Λ. Note
that for f ≥ 2 there are resonance channels with 1 up to
f − 1 resonance conditions and we study the maximal case,
where the resonance channel is extended in one dimension.
We expect that these one-dimensional resonance channels
have the largest impact on transport.
Equation (2) gives Λ as the chaotic 2f-dimensional

phase-space volume explored due to the drift within one
time period of the map compared to a Planck cell. Let us
remark, that such a ratio of a phase-space volume to the size
of the Planck cell, also appears in the transport across
partial barriers in phase space [34–41].
We can get from Eq. (1) to Eq. (2) by using the Siberian

argument [42] generalized to a one-dimensional resonance
channel of a 2f-dimensional symplectic map: We assume
that all eigenfunctions in the chaotic region of the reso-
nance channel localize with the same localization length λ.
Then the number of states excited by a wave packet in the
resonance channel is given by

FIG. 2. 3D phase-space slice of the 4D map, Eq. (6), at
q2 ¼ 0.5. Three ensembles with initial conditions started at
different positions p2 near ðq1; p1Þ ¼ ð0; 0Þ in the resonance
channel are shown for 200 iterations. They spread out uniformly
in the chaotic region around the resonance and slightly diffuse
along p2. For larger p2 the chaotic region is wider, as can be also
seen on the q1 ¼ 0 plane in which the fast Lyapunov indicator
from Fig. 3(a) is shown.

FIG. 1. Universal transition from dynamical localization to
(a) quantum drift with velocity vqm and (b) quantum diffusion
with diffusion coefficient Dqm scaled by classical values vcl and
Dcl, respectively. The transition is characterized by the universal
transition parameterΛ, Eqs. (1) and (2). The functionΛ2=ð1þΛ2Þ
serves as a guide to the eye (dotted line). The wave packet
dynamics is studied for the kicked Hamiltonian, Eq. (5), with
parameters and symbols described in the text.
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N ¼ λwch

hf
; ð3Þ

i.e. the chaotic phase-space volume of the resonance
channel within a localization length divided by the size
of a Planck cell. The quasienergies ε∈ ½0;ℏω� with ω ¼
2π=τ thus have an effective mean level spacing
Δε ¼ ℏω=N . This defines an effective Heisenberg time
h=Δε, which equals the break time,

t� ¼ h=Δε ¼ N τ: ð4Þ

Combining Eqs. (4) and (3) gives the ratio t�=λ, which
leads from Eq. (1) to Eq. (2), where the x dependence is

added. Note that the localization length is λ ¼ 2Dclwch=hf,
which follows from Eqs. (4) and (3) and by assuming
that the variance of classical diffusion with diffusion
coefficient Dcl at the break time equals the squared
localization length, 2Dclt� ¼ λ2.
Hamiltonian with large resonance channel.—The

Arnold web occurs in Hamiltonian systems with at least
three degrees of freedom or with at least two degrees of
freedom under time-periodic driving. We concentrate on
the lowest dimensional time-periodic case (f ¼ 2) and a
single resonance channel of the Arnold web. In order to
study the proposed delocalization transition we need to
vary the effective Planck cell over a sufficiently large range.
This range is quantum mechanically limited at its lower end
due to increasing numerical effort and at its upper end by a
Planck cell which is still small enough to fit into the chaotic
layer of the resonance channel.
We are able to fulfill these considerations by engineering

a Hamiltonian with a large resonance channel having a
large chaotic layer. Additionally, the cross-sectional vol-
ume of the chaotic layer varies by construction, which
induces classically a drift in addition to chaotic diffusion, as
demonstrated below. We expect, that in this way the generic
features of a resonance channel widening towards the
chaotic region or a resonance junction are considered.

FIG. 3. Classical properties of the 4D map, Eq. (6), depending
on coordinate x ¼ p2: (a) Fast Lyapunov indicator on the plane
q1 ¼ 0, q2 ¼ 0.5 visualizing the increasing cross-sectional vol-
ume of the resonance channel, (b) chaotic 3D phase-space
volume wch of the resonance channel, (c) drift velocity vcl,
and (d) diffusion coefficient Dcl.

FIG. 4. Time dependence of (a) mean value hp2i and (b) vari-
ance σ2p2

along p2 for a quantum wave packet for various Planck
constants h (light colors), showing a transition from localization
to mimicking a classical ensemble of initial conditions (black).
Temporal fluctuations are reduced by convolution with a Gaus-
sian of width 1 in t.
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The time-periodically kicked Hamiltonian, based on the
coupled standard map [43], is given (in dimensionless
units) by

H ¼ p2
1

2
þ p2

2

2
þ kðp2Þ

4π2
cos ð2πq1Þ

X

n∈Z

δðt − nÞ

þ ξ

4π2
cos ð2π½q1 þ q2�Þ

X

n∈Z

δ½t − ðnþ ϵÞ�: ð5Þ

The kicking strength kðp2Þ in the first degree of freedom
depends on p2. The coupling strength ξ governs the
coupling between the two degrees of freedom. The corre-
sponding kicking term occurs infinitesimally after the first
kicking term by choosing the limit ϵ → 0þ from above. A
different ordering would give a qualitatively similar map.
Periodic boundary conditions with period 1 are applied to
all four coordinates.
Classical phase space, drift, and diffusion.—The kicked

Hamiltonian (5) leads classically to a 4D symplectic map,

q01 ¼ q1 þ p1; ð6aÞ

q02 ¼ q2 þ p2 þ
1

4π2
dkðp2Þ
dp2

cos ð2πq01Þ; ð6bÞ

p0
1¼p1þ

kðp2Þ
2π

sinð2πq01Þþ
ξ

2π
sinð2π½q01þq02�Þ; ð6cÞ

p0
2 ¼ p2 þ

ξ

2π
sin ð2π½q01 þ q02�Þ: ð6dÞ

If the coupling ξ is set to zero, ξ ¼ 0, one has a Cartesian
product of dynamics in ðq1; p1Þ and integrable rotational
dynamics in ðq2; p2Þ. Such a product structure has been
used, e.g., in Refs. [38,44,45]. In particular, Eq. (6)
corresponds to a stack of 2D standard maps in p2 direction
with kicking strength kðp2Þ. We choose kðp2Þ such that it
gives rise to an increasing chaotic layer around the main
resonance with a hyperbolic fixed point at ðq1; p1Þ ¼ ð0; 0Þ
and an elliptic fixed point at (0.5,0). For nonzero but small
coupling, ξ ¼ 0.1, one has a 4D phase space with the
topological features of the product structure. This gives rise
to a widening resonance channel along the p2 coordinate
with slow chaotic diffusion due to the weak coupling ξ. For
the local phase-space coordinate x along the resonance
channel appearing in Eq. (2) we use x ¼ p2.
Specifically, we choose kðp2Þ as a periodic triangular

function approximated by a Fourier expansion ranging
from kð0.5Þ ¼ k̄ − Δk to kð0Þ ¼ kð1Þ ¼ k̄þ Δk with
k̄ ¼ 0.4 and Δk ¼ 0.3 leading to a widening resonance
channel, kðp2Þ¼k̄þΔkCn

P
n
i¼0cos½2πð2iþ1Þp2�=ð2iþ1Þ2

with n ¼ 2 and normalization C2 ¼ ð225=259Þ. The
parameters k̄ and Δk are chosen such that the influence
of other resonance channels crossing the main one is

minimized, while the increase of the cross-sectional volume
wchðp2Þ of the resonance channel governed by chaotic
dynamics is as large as possible.
In Fig. 2 we present a 3D phase-space slice [46] at q2 ¼

0.5 of the 4D map, Eq. (6), for three ensembles with initial
conditions started at different positions p2 along the
resonance channel [near ðq1; p1Þ ¼ ð0; 0Þ in the first degree
of freedom and for all q2]. Each ensemble spreads in the
first degree of freedom along the chaotic layer of the
resonance while staying close to an almost invariant surface
p2ðq1; p1Þ, which is flat in the limit ξ → 0. Furthermore, it
slowly diffuses in p2 direction away from this surface,
which is most prominently seen for the ensemble with
largest p2 values. The dynamics in q2 is purely rotational
with momentum p2.
In Fig. 3(a) the fast Lyapunov indicator [47–49] in the

plane q1 ¼ 0, q2 ¼ 0.5 visualizes the increasing cross-
sectional volume of the chaotic region of the resonance
channel, by measuring the chaoticity of trajectories. In
Fig. 3(b) this is quantified by the 3D chaotic phase-space
volume wchðp2Þ of the resonance channel at a given
coordinate p2. It is measured by iterating trajectories
started in the chaotic sea for long times and counting
the number of visited phase-space boxes. Over the con-
sidered range in p2 an increase by a factor of more than 2
can be observed. Note that we restrict the analysis to the
range p2 ∈ ½0.56; 0.62�, for which no large resonance
channels cross the main one.
Classical transport along p2 is characterized by the drift

velocity vclðp2Þ and the diffusion coefficient Dclðp2Þ. Both
strongly depend on p2, see Figs. 3(c) and 3(d). Over the
considered range in p2 the drift velocity vclðp2Þ increases
by a factor of 5 and the diffusion coefficient Dclðp2Þ by a
factor of 10. They are measured by fitting a linear slope to
the increasing mean value and variance in p2 from
ensembles of initial conditions started at each p2; see as
an example the black lines in Fig. 4. The time interval used
for the linear fit depends on the initial p2 and is chosen
linearly between t∈ ½6000; 10000� for p2 ¼ 0.56 and
t∈ ½500; 1000� for p2 ¼ 0.62. This ensures that the trajec-
tories (i) are spread out in the chaotic region of the almost-
invariant surfaces and (ii) are still close to the initial p2. We
attribute the small fluctuations in Figs. 3(b)–3(d) to the
complex geometry of the Arnold web. Note that the origin
of the drift along the resonance channel is related to the
increasing cross-sectional volume wchðp2Þ of the channel
and the increasing diffusion coefficient Dðp2Þ. It seems
possible to quantitatively relate the p2 dependence of the
drift velocity vclðp2Þ to wchðp2Þ and Dðp2Þ in the 4D map
using concepts from stochastic processes [50], but this is
beyond the scope of this paper.
Quantum delocalization transition.—In order to study

the influence of the classically observed drift on dynamical
localization we study the time evolution of wave packets
for the kicked Hamiltonian (5) for varying effective Planck
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constants h, corresponding to Hilbert space dimensions
1=h2 [51–56]. Its time-evolution operator is given by

U ¼ e−
i
ℏ

ξ

4π2
cos ð2π½q1þq2�Þe−

i
ℏ
kðp2Þ
4π2

cos ð2πq1Þe− i
ℏð

p2
1
2
þp2

2
2
Þ: ð7Þ

As initial wave packets we choose a product of a coherent
state centered at ðq1; p1Þ ¼ ð0; 0Þ in the first degree of
freedom and of a momentum eigenstate at various p2 in the
second degree of freedom, in agreement with the classical
initial ensembles. In Fig. 4 the time dependence of the wave
packet’s mean value hp2i and its variance σ2p2

in p2

direction are shown. A transition from localization for
the largest value of h to drift and diffusion for decreasing h
can be observed, mimicking the classical behavior for the
smallest value of h.
We determine the quantum drift velocity vqmðp2Þ and

diffusion coefficientDqmðp2Þ from a linear fit using the same
time intervals as for the classical values. The ratios with the
classical drift velocity vclðp2Þ and diffusion coefficient
Dclðp2Þ, respectively, versus the transition parameter Λ
are shown in Fig. 1. We find a smooth transition from
localization to drift-induced delocalizationwith increasingΛ
and centered at Λ ¼ 1. The transition is universal as it
depends onΛ, Eq. (2), only. In particular, it is independent of
the specific systemparametersvclðp2Þ,Dclðp2Þ, andwchðp2Þ
for various initial p2 ∈ f0.56; 0.59; 0.6; 0.62g and various
h∈ ½1=500; 1=10000�. For the smallest Planck constant
h ¼ 10−4 the dimension of the Hilbert space is 108, with
the time evolution of the kicked Hamiltonian made possible
by using 2D fast Fourier transforms [28].
Discussion and outlook.—We show that the classical

drift along resonance channels destroys dynamical locali-
zation if it is strong enough. The proposed transition
parameter Λ, Eqs. (1) and (2), leads to a universal
description of this drift-induced delocalization transition.
An important consequence is that a quantum mechanical
wave packet may explore the Arnold web in larger regions
than expected. Namely, the accessible region of a resonance
channel, described by a one-dimensional local phase-space
coordinate x along the resonance channel, is given by those
points where ΛðxÞ≳ 1. For strong enough drift the extent
of this accessible region is larger than the localization
length obtained from purely diffusive dynamics. A direct
consequence is that also chaotic eigenstates extend further
into the Arnold web.
A future task is to control eigenstates and wave packets

in few-body and many-body systems by adjusting classical
drift or relevant phase-space volume. Interesting examples
include many-site Bose-Hubbard systems and quantum
computers with hundreds of qubits. Extending the analysis
to such high-dimensional systems poses a significant
numerical challenge. Still, we expect the drift-induced
delocalization transition to follow the same universal
properties.
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detection of the effective stability of chaotic motions in
quasi-integrable systems, Physica (Amsterdam) 163D, 1
(2002).

[50] S. Lange, A. Bäcker, and R. Ketzmerick, What is the
mechanism of power-law distributed Poincaré recurrences
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