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Linear spin wave theory (LSWT) is the standard technique to compute the spectra of magnetic
excitations in quantum materials. In this Letter, we show that LSWT, even under ordinary circumstances,
may fail to implement the symmetries of the underlying ordered magnetic Hamiltonian leading to spurious
degeneracies. In common with pseudo-Goldstone modes in cases of quantum order by disorder these
degeneracies tend to be lifted by magnon-magnon interactions. We show how, instead, the correct
symmetries may be restored at the level of LSWT. In the process we give examples, supported by
nonperturbative matrix product based time evolution calculations, where symmetry dictates topological
features but where LSWT fails to implement them. We also comment on possible spin split magnons in
MnF2 and similar rutiles by analogy to recently proposed altermagnets.
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From Néel order in the mid 20th century to skyrmion
phases in the 21st, magnetically orderedmaterials have been
a constant source of insights into the collective behavior of
matter. The coherent spin wave excitations, or magnons,
about these magnetic textures provide invaluable informa-
tion about magnetic structures and couplings. They are also
interesting in their own right: as a window into many-
body interactions and quasiparticle breakdown [1], as a
platform for investigating band topology [2–4], and as an
essential ingredient in the functioning of many spintronics
devices [5].
One of the most useful theoretical tools at our disposal to

understand magnons is an expansion in powers of inverse
spin S based on the Holstein-Primakoff bosonization of
quantum spins [6]. The single particle spectrum arising
from spin wave theory to quadratic order (called linear, or
noninteracting, spin wave theory) is often used with great
success to constrain magnetic couplings from experimental
data. This theory is known to fail qualitatively in cases
where coupling between single and multiparticle states
becomes important, e.g., in highly frustrated magnets and
noncollinear spin textures [1,7,8] and close to quantum
phase transitions [9].
Another, more subtle way in which linear spin wave

theory (LSWT) can fail qualitatively is called order by
disorder [10–13] where spurious ground states and sym-
metry enhancement exist at the semiclassical level that are
lifted by fluctuations. In some instances of quantum order
by disorder, a spurious continuous symmetry forces the
presence of a pseudo-Goldstone mode in LSWT where
none should be present [14]. In this Letter, we focus on a

related instance of this physics where, instead of failing to
capture degeneracy breaking in the ground state, the LSWT
instead does not fully capture symmetries that affect
degeneracies higher up in the excitation spectrum [15]. In
essence we note that the Landau theory in cases of order by
disorder has spurious symmetries and it is the task of this
Letter to establish whether finite energy physics can also fail
to implement symmetries. With growing interest in magnon
band topology [16–36], there is additional impetus to
understand how to implement symmetries correctly in
LSWTas these provide important constraints on the possible
topological band structures that can arise [15,37,38].
Overview.—The cases we consider fall into two classes

[see Fig. 1(a)]. The first class is where the lattice symmetries
are not manifest for exchange couplings between moments
out to nth nearest neighbors but where the symmetries do
manifest for longer-range couplings. This, we call the “shell
anomaly.” Such a situation may be completely physical
and, far from being confined to spin wave theory, it may
arise in general tight-binding models. The second class is
more subtle: where LSWT does not capture certain kinds
of exchange anisotropy or “anisotropy blindness.” Then,
LSWT fails to produce the correct magnon spectrum at a
qualitative level and spurious symmetry-protected topologi-
cal magnon degeneracies occur. We show that degeneracy
breaking occurs by carrying out density matrix renormal-
ization group plus matrix product operator time evolution
(DMRGþ tMPO) [39–41] to resolve band splittings non-
perturbatively. While the most straightforward LSWT does
not capture the symmetries of the magnetic Hamiltonian,
one may show that the symmetry breaking terms, treated
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perturbatively, lead to effective magnon hopping terms that
do resolve spurious degeneracies. This fact leads us to
propose a general solution to the problem by including all
symmetry-allowed exchange couplings out to some shell.
Figure 1(a) is a schematic overview of the Letter from a

symmetry perspective. If the symmetry group dictated by
the lattice, the magnetic ground state, and the presence or
absence of exchange anomalies is GM, the symmetries may
be enhanced by the shell anomaly (model A), anisotropy
blindness (model B), or both (model C), leading to new
symmetry groups. The models A, B, and C are discussed
below and serve as worked examples that make contact
with material classes such as altermagnets [42,43], chiral
magnets [44], and Van der Waals magnets [45].
Shell anomaly and connection to altermagnetism.—We

start with an example that illustrates the shell anomaly
(model A). Figure 1(b) shows the crystal and magnetic
structure of MnF2. The symmetries ensure that there is a
single nearest neighbor coupling Jbd on all the bonds joining
the twomagnetic sublattices in a primitive cell. InMnF2 this
is antiferromagnetic and, for this coupling alone, the model
is identical to the simple body-centered tetragonal antifer-
romagnet with a double (spin) degeneracy in the magnon
spectrum. However, further neighbor exchange will, in
general, lift the double degeneracy [see Supplemental
Material (SM) [46] for details]. Specifically, if the further
neighbor couplings Jd and J0d are unequal, as is allowed
by the symmetry of the lattice including the fluoride
ion positions, the magnon bands are nondegenerate
[cf. Fig. 1(b)]. In this instance, not only the linear theory
but in fact the exact spin wave theory has an enhanced
symmetry at the nearest neighbor level that is lifted by
further neighbor couplings. This splitting—also expected
in isostructural materials [60]—is identical to the zero

spin-orbit coupled electronic d-wave spin splitting
reported in Refs. [42,43,61] that goes under the name
“altermagnetism.”
In the language of group theory introduced above, the

nearest neighbor model has a spurious sublattice symmetry
present in GE and absent in the full symmetry group GM. A
shell anomaly may occur in materials where the exchange
couplings are strictly short range. It is problematic when
the exchange couplings in the material break down these
symmetries but where this fact is overlooked by the choice
of model.
We note that it is possible for further neighbor couplings

to be negligible in real materials such that symmetry
enhanced degeneracies are present up to instrumental
resolution. For example, in the case of MnF2 inelastic
neutron data reveals no degeneracy breaking and, thus, the
shell anomaly is active in this material to within instru-
mental resolution [46,62,63].
Anisotropy blindness.—We now describe the origin of

anisotropy blindness. Consider the bilinear magnetic cou-
plings Jαβij between moments labeled by i and j with
respective components α and β in the quantization frame.
Since LSWT is formulated in terms of the transverse spin
fluctuations, transverse-longitudinal components Jz�ij do
not enter into the theory. But, for example, the magnetic
Hamiltonian with these couplings may have lower sym-
metry than the Hamiltonian without them. In such a
situation, one can generally expect that LSWT will fail
to capture certain instances of degeneracy breaking in the
magnon spectrum.
This problem may be resolved by computing the

dynamical structure factor to higher order in perturbation
theory. In particular, the Jz�ij lead to cubic vertices. Then,
bubble diagrams with a pair of such vertices dress the single
magnon propagator restoring the correct symmetry of
the magnon spectrum. While simple in principle, this is
burdensome in practice. Taking model B as an example, we
show how the correct symmetries can be implemented
instead already on the level of LSWT within a real-space
perturbation theory, as verified by the nonperturba-
tive DMRGþ tMPO.
Model B: Honeycomb lattice antiferromagnet.—We

consider the honeycomb lattice spin-1=2 model with
nearest neighbor Heisenberg coupling and interfacial
Dzyaloshinskii-Moriya interaction (DMI); see inset in
Fig. 2(a). The Hamiltonian is

H¼ 1

2

X
hiji

½JzSziSzj þ JðSxi Sxj þSyi S
y
jÞþDij ·Si×Sj�; ð1Þ

with Jz > J > 0 being antiferromagnetic and Dij ¼ Dẑ×
êij; êij is a unit vector along bond direction and ẑ along the
lattice normal. For Jz ≫ J the strong easy-axis Ising
anisotropy stabilizes the Néel ground state. The full model
with group GM has only discrete symmetries whereas the

(a)

b

- -

(b)

FIG. 1. (a) Flow chart indicating the actual and spurious
symmetries that may arise in LSWT. The parent symmetry group
GM constrained by the lattice symmetries, magnetic structure, and
the nature of the exchange may be enhanced via a shell anomaly
and/or anisotropy blindness to new symmetry groups denoted

Gð�Þ
E or G�

M. (b) Spin wave spectrum for model A exhibiting a shell
anomaly in the form of a double degeneracy in the absence of
further neighbor terms. The spectrum shown (for the lattice model
in the inset) has Jd ≠ J0d.
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model without DMI has symmetry group G�
M with a U(1)

symmetry.
Expanding in fluctuations (sublattice-dependent bosons

a and b), one obtains the harmonic Hamiltonian in k space
H2ðJ; JzÞ ¼ 1

2

P
k ψ

†
kHkψk, where Hk ¼ diagðhk; h−kÞ in

the basis ψ†
k ¼ ða†k; b−k; b†k; a−kÞ with

hk ¼
1

2

�
3Jz −Jγk

−Jγ−k 3Jz

�
; γk ¼

X2
n¼0

eik·δn : ð2Þ

The nearest neighbor bonds are δn ¼ ðcosϕn; sinϕnÞ with
ϕn ¼ 2πn=3þ π=2. After diagonalization, we find the
normal mode magnon energies εk;σ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3JzÞ2−J2jγkj2

p
,

which are twofold spin-degenerate over the entire BZ
(σ¼↑;↓). This degeneracy is a result of the spurious U(1)
and PT symmetries in the LSWT. They appear because the
harmonic theory is blind to the symmetry breaking DMI
that enters, to lowest order, to cubic order in the bosons; for
a qualitative discussion, see SM [46].
We explore the effects of the DMI by carrying out a real-

space perturbation theory [64]. We decompose H ¼ H0 þ
V into an unperturbed piece,H0 ¼ ðJz=2Þ

P
hiji S

z
i S

z
j, and a

perturbation V, which includes the other terms in Eq. (1).
The ground state j0i of H0 is the Néel state with fully
polarized sublattices. We are interested in the effective
Hamiltonian for magnons built from states jii with a single
spin flip (at site i) relative to j0i. To second order in V, its
matrix elements read [65]

Heff
ij ¼ hij

�
H0 þ V

þ 1

2

X
v

VjvihvjV
�

1

Ei − Ev
þ 1

Ej − Ev

��
jji;

where jvi labels virtual states with two or more spin flips.
See the SM [46] for details. Importantly, processes lifting
the band degeneracy are found to second-order in the DMI-
induced perturbation VD ¼ 1

2

P
hiji Dij · Si × Sj via virtual

two-spin-flip states:

where tanφij ¼ Dy
ij=D

x
ij. The states depict the pattern of

spin flips generated by VD. White (black) circles indicate
the ground state (spin flips). Such a coupling mimics the
bond-dependent symmetric off-diagonal exchange interac-
tion that breaks spin conservation: e−2iφijðD2=JzÞSþi Sþj .
Thus, by taking these terms to replace the DMI in Eq. (1),
we account for the qualitative effects of DMI. We consider
the amended Hamiltonian

H0 ¼
X
i∈A

X2
j¼0

�
JzS

z
i S

z
iþδj

þ J
2

�
Sþi S

−
iþδj

þ S−i S
þ
iþδj

�

þ J0þþ
2

�
eiϑδj Sþi S

þ
iþδj

þ e−iϑδj S−i S
−
iþδj

��
; ð3Þ

where jJ0þþj ∝ D2=Jz. The i sum runs over all sites of the A
sublattice (spin-up) and the phases along the nearest
neighbor bonds read ϑδn ¼ 2πn=3. A LSWT of H0 yields
a bilinear Hamiltonian H0

2ðJ; Jz; DÞ that no longer features
a block-diagonal kernel. As a result, the degeneracy of the
magnon modes is lifted throughout the BZ except for the Γ
and the K0 points, which feature magnon Dirac cones, in
agreement with Refs. [66,67]; see the SM [46] for details.

(a)

(b) (c) (d)

(e) (f) (g)

FIG. 2. Dynamical spin-structure factor Sðk;ωÞ for the spin-1=2 honeycomb lattice antiferromagnet, Jz=jJj ¼ 2.4, and DMI obtained
by numerically time-evolving amatrix product state [41]. (a) Line plots at the high-symmetry pointsK (top) andK0 (bottom) for increasing
DMI fromD=jJj ¼ 0 toD=jJj ¼ 1 illustrate the splitting of the spin wave bands atK while the splitting is absent atK0. Magnon bands are
highlighted by arrows. Insets show the lattice and the corresponding momenta lines determined by the cylindrical geometry with six sites
circumference. (b)–(g) Representative color plots along aforementioned momenta cuts for zero DMI (top) andD=jJj ¼ 0.8 (bottom). The
magnon bands (bright yellow features) split across the entire BZ apart from the Γ and K0 points that feature Dirac cones.
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The qualitative predictions of the modified LSWT are
borne out by a fully nonperturbative calculation on the
original model, Eq. (1). Figure 2 shows the dynamical spin-
structure factor obtained from DMRGþ tMPO; see SM for
technical details [46]. Constant momentum slices show the
progressive splitting of the bands at K as a function of the
DMI coupling [Fig. 2(a)]; in contrast, themagnon bands stay
degenerate at K0. As predicted, the DMI lifts the double
degeneracy of the single magnon levels almost everywhere
in the zone with exceptions at Γ and K0, where we find
interaction-induced Dirac magnons [Figs. 2(b)–2(g)].
For the ferromagnetic analogue of model B (Jz < J < 0),

symmetry dictates that there should be a topological gap
but spurious symmetries at the LSWT level stabilize
gapless Dirac points [15]. After implementing the correct
symmetries by a perturbation theory, the resulting
amended Hamiltonian is the bosonic version of the
Haldane model [68]. See the SM for details and a
comparison against DMRGþ tMPO [46].
Model C: Tetragonal lattice model.—The previous

examples were intended to showcase in the simplest
possible settings the shell anomaly and anisotropy blind-
ness. We now present an example with highly anisotropic
couplings such as one might find in a realistic strong spin-
orbit coupled insulating magnet. In this non-fine-tuned
model both shell anomaly and anisotropy blindness occur
and lead to enhanced symmetry in the LSWT [captured by
magnetic group G�

E of Fig. 1(a)]. As before, by going to
further shells of interactions, the symmetry is lowered to
that of the magnetic structure.
We consider a ferromagnetic bipartite lattice with a

tetragonal structure described by space group P4 (# 75) and
Wyckoff position 2c ð0; 1=2; zÞ and ð1=2;0;zÞ [Fig. 3(a)].
This has low symmetry—with only a C4 rotation around
the c (vertical) axis. On the basis of this information
alone, one may determine all symmetry-allowed bilinear
exchange couplings within a given shell. In the absence
of symmetry there are, in principle, nine such couplings
on a bond

0
B@

Jxx1 Jxy1 Jxz1
Jyx1 Jyy1 Jyz1
Jzx1 Jzy1 Jzz1

1
CA; ð4Þ

and the nearest neighbor shell has low enough symmetry
that all nine are allowed. In the second shell, symmetry
forbids longitudinal-transverse couplings and antisymmet-
ric exchange giving five exchange parameters in total.
These two shells form the minimal strong spin-orbit
coupled model (the “J1 þ J2 model”) that connects all
moments in three dimensions. Anisotropy blindness elim-
inates a further four couplings leaving 10 in all. We keep all
of these exchange parameters to ensure the model has as
little symmetry as the anisotropy blindness and shell
anomaly allow (see also [38,46]). Representation theory

leads us to expect a Chern gap in this model [38], which
nevertheless is not present in LSWT in the J1 þ J2 model
due to an enforced degenerate nodal line on the boundary of
the BZ [Fig. 3(c)].
The expected gap is recovered by going to the next

shell—the J1 þ J2 þ J3 model [see Fig. 3(b)]. Symmetry
has the effect of forbidding only antisymmetric exchange
for both inequivalent bonds on the third shell leading to a
further 12 couplings and these lift the J1 þ J2 model
degeneracy.
The presence of the extra degeneracy in the J1 þ J2

model can be understood in the context of spin-space group
representation theory [37,46]. The key enhanced symmetry,
present in the LSWT of J1 þ J2, is a glide plane, which is
responsible for the nodal line degeneracy. This symmetry is
allowed by anisotropy blindness which, in symmetry terms,
amounts to a C2 spin rotation around the c axis. This
twofold spin rotation remains trivial for the J1 þ J2 þ J3
model. But in the J1 þ J2 model it combines with the
remaining symmetries leading to an enhancement of the
symmetries to a spin-space group.
The real-space perturbation theory applied to the pre-

vious examples can also be applied here. One may begin
with the J1 model in the Ising limit and perturb in the

(a) (b)

(c)

FIG. 3. (a),(b) Space group P4 tetragonal lattice. (a) The
anisotropic J1 þ J2 exchange model with all nearest and next
nearest neighbor couplings has a spurious LSWT symmetry with
an anisotropy blindness and shell anomaly enabled glide plane
combined with a C4z spin rotation that maps J3a to J3b.
(b) Addition of the J3 couplings breaks this symmetry down.
(c) Magnon dispersions above the field-polarized ground state
along high symmetry directions (see BZ inset) calculated within
LSWT. The J1 þ J2 model (red) features spurious nodal lines,
which are lifted switching on the next shell interaction J3 (blue).
The parameters are listed in the SM [46].
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anisotropic couplings. In this case, one must extend the
calculation to third order in the perturbation V in order to
find inequivalent third neighbor couplings that are allowed
by the crystal symmetry.
Discussion and symmetry context.—Consider the situa-

tion where one wishes to characterize the magnetism of a
material from spin wave data. As will be clear from the
foregoing, the implementation of symmetries in LSWT
contains potential pitfalls. We offer the following practical
guide to using LSWT so that no spurious degeneracies arise.
Given a magnetic structure one may enumerate the spin

and space locked transformations that leave the structure
invariant. These symmetry elements form a magnetic space
group M. However, approximations to the full exchange
Hamiltonian have the potential to break this locking leading
to an enhanced symmetry formally described by spin-space
groups [69,70]. There may be physically well-motivated
cases where the exchange couplings have spin-space
symmetry—for example, in collinear Heisenberg systems,
in Kitaev magnets, or generally when spin-orbit coupling
is weak and there is a selection in the hierarchy of ex-
change terms [37]. There may be, in addition, cases where
materials themselves realize a shell anomaly as a result of
short-ranged couplings, leading to a physically relevant
enhanced symmetry within instrumental resolution. This
mechanism could be at work in MnF2 [42,43,46,62,63].
Further high resolution experimental work may be of
interest to look for degeneracy breaking in MnF2.
However, as we have described, there are ways in which

the intended symmetries may not be represented faithfully
in the excitation spectrum. For example, one may under-
estimate the range of significant exchange couplings in the
material leading to spurious symmetries at the Hamiltonian
level. In the case of anisotropy blindness, LSWT itself has a
spurious twofold spin rotation symmetry around the mag-
netization vector for a collinear system that can lead to spin-
space symmetries that are absent in the exact theory.
In general, as a practical rule of thumb, one should be

especially cautious about LSWT for (i) collinear systems and
for (ii) systems where the magnetic lattice has much higher
symmetry than the entire crystal (models A, C), and, addi-
tionally, in the weak spin-orbit coupling regime when there
are important couplings with longitudinal-transverse com-
ponents (model B) [46]. To realize the desired symmetries in
LSWT—whether deliberately enhanced or identical to those
of the underlying space group—one may find couplings out
to the nth shell that are enforced by the space group of the
crystal and work out the symmetry of the ensuing hopping
model at each shell by finding the symmetry elements
associated with that shell. As an outlook, we emphasize
that, where our discussion of the shell anomaly has focused
on its realization in spin waves, the ingredients to find it may
arise in tight-binding models regardless of the quasiparticle
type, thus enlarging the possibility of enhanced symmetries
beyond the hydrodynamic regime [71,72].
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