
Anyon Statistics through Conductance Measurements of Time-Domain Interferometry

Noam Schiller ,1 Yotam Shapira,2 Ady Stern,1 and Yuval Oreg1
1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel

(Received 24 January 2023; accepted 16 October 2023; published 1 November 2023)

We propose a method to extract the mutual exchange statistics of the anyonic excitations of a general
Abelian fractional quantum Hall state, by comparing the tunneling characteristics of a quantum point
contact in two different experimental conditions. In the first, the tunneling current between two edges at
different chemical potentials is measured. In the second, one of these edges is strongly diluted by an earlier
point contact. We describe the case of the dilute beam in terms of a time-domain interferometer between the
anyons flowing along the edge and quasiparticle-quasihole excitations created at the tunneling quantum
point contact. In both cases, temperature is kept large, such that the measured current is given to linear
response. Remarkably, our proposal does not require the measurement of current correlations, and allows
us to carefully separate effects of the fractional charge and statistics from effects of intra- and interedge
interactions.
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Introduction.—It has been almost four decades since
the initial proposal that the elementary quasiparticles of
fractional quantum Hall (FQH) systems obey anyonic
statistics [1]. Despite the apparent maturity of the field,
the pursuit to definitively observe the physical quantities
and quantum numbers characterizing anyons [2,3] is
constantly being reinvigorated [4–21]. In particular, early
2020 saw two major experimental steps forward: the
observation of anyonic braiding in a Fabry-Perot interfer-
ometer [22], and demonstration of a so-called “anyon
collider” [23,24] using cross-correlation measurements.
Here we show that anyonic statistics can be inferred

directly from conductance measurements, without requir-
ing current correlation measurements or explicitly building
an interferometer. The configuration we propose to obtain
this result consists of a quantum point contact (QPC)
between two edges of a general Abelian FQH state at
filling factor ν. The edges may be driven off equilibrium by
one of three methods: injecting a single quasiparticle into
one of the edges; injecting a Poissonian, dilute beam of
quasiparticles into one of the edges; and placing a finite
bias voltage between the edges.
Our proposed setup, shown in Fig. 1(a), allows a smooth

transition between the dilute Poissonian beam and a full
beam at finite bias voltage. This is obtained by tuning a
second, injection QPC from fully open (a differential
conductance, Ginj ≡ dIinj=dV, satisfying Ginj=σxy → 0) to
fully closed (Ginj=σxy → 1). We henceforth refer to these as
the dilute and full limits, respectively.
We propose sweeping Ginj through this range, and

measuring the ratio I=Iinj, where I is the measured current
after the tunneling QPC, and Iinj is the injected incident
current, as defined in Fig. 1(a). Comparing the values at the

dilute and full limits cancels out nonuniversal constants,
yielding the relation,

�
IðTÞ
IinjðTÞ

�
dilute

¼ νe2

2πe�1e
�
2

sin2θ12

�
IðTÞ
IinjðTÞ

�
full

þGdirect

Ginj
: ð1Þ

Here, e�1=2 is the tunneling or injected quasiparticle charge,
θ12 is the mutual statistics phase between the injected and
tunneling quasiparticles, T is temperature, and Gdirect is
a residual conductance corresponding to direct tunnel-
ing [25–27] through both QPCs. A comparison between
these two limits is shown schematically in Fig. 1(b).
The mechanism leading to this result is a time-domain

interferometer at the tunneling QPC, created by the dilute
incident beam. The interference is between two processes,
in which a quasiparticle-quasihole excitation occurs at
the tunneling QPC either before or after the arrival of an
injected quasiparticle (see Fig. 2). A similar physical
picture has been shown in Refs. [26,28,29]. We further
find that this interference is sensitive to themutual statistics
phase between the injected and the tunneling quasiparticles,
θ12. We emphasize that these quasiparticles are not neces-
sarily of the same type, although they must be supported by
the same FQH liquid.
The key point of our analysis is the identification of the

phase differences in the two interfering of two amplitudes,
which differ from one another by the orderings of events.
These are determined by the quasiparticle charge e�, which
is a fraction of the electron charge for noninteger values
of ν [4–6]; the scaling dimension δ, which defines the zero-
temperature time correlations of the quasiparticle via the
relation hψ†ðτÞψð0Þi ∼ τ−2δ [30–33]; and the exchange
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statistics phase θ, which for anyons take special values
beyond the fermionic π and the bosonic 2π [1–3].
We are interested here in isolating the effect of θ. In

particular, we would like to separate it from the effect of δ.
For noninteracting, fully chiral edges, 2πδ ¼ θ; however, in
general δ is affected by nonuniversal factors, such as intra-
edge and interedge interactions, 1=f noise or neutral modes
[34–39]. This in stark contrast to the charge, exchange
statistics phase, or filling factor, which are universal.

We separate the effect of θ from that of δ by tuning the
system to a regime where δ only affects observables
through a nonuniversal prefactor, which then cancels out
in the ratio of currents given in Eq. (1). This is done via a
careful ordering of the energy scales in the system, such
that ℏIinj=e ≪ kBT at both the dilute and full limits. This
ensures that the current I is given to linear response in Iinj.
As the dominant energy scale in the system is now the
temperature, any renormalization that the edges and the
scaling dimension undergo will be cut off by the same
energy scale. Thus, even if the scaling dimension deviates
from predictions [40,41], it will do so in the same manner at
both limits, and the cancellation described holds. We
present an analytic expression generalizing Eq. (1) outside
of this regime [42].
While in the full limit the edge that enters the tunneling

QPC is in equilibrium at chemical potential e�V, at the
dilute limit we need the injection current to be Poissonian
and rare. Said differently, this limit must satisfy
Iinj ≪ σxyV. The beam must remain dilute when arriving
at the tunneling QPC. Hence, the distance between the
QPCs must be sufficiently small that no equilibration or
dephasing occurs along the way. Finally, we assume tuning
the injection QPC does not affect the transparency of the
tunneling QPC.
Easy extraction of θ12 requiresGdirect to be sub-dominant

[see Eq. (1)]. Quantitatively, this is the case if both kBT ≪
eV and 4δ1 < 2 are satisfied. These constraints result from
the direct tunneling process being dominated by short
timescales. Naive theories describing quasiparticles may
satisfy this condition even if the aforementioned non-
universal effects change the scaling dimension quite

(a) (b)

FIG. 2. Time-domain interferometry. (a) I: A quasiparticle is
injected from the sourced, left edge, through the injection QPC,
and into the upper edge. II: The injected quasiparticle, by virtue
of its chiral motion along the edge, arrives at the tunneling QPC.
III: A quasiparticle-quasihole pair is created at the tunneling
QPC. (b) The two processes by which charge carriers may
ultimately arrive at the drain. The injected quasiparticle arrives at
the tunneling QPC either before (upper panel) or after (lower
panel) the creation quasiparticle-quasihole pair. These two
processes interfere, with a relative phase dictated by the mutual
statistics phase, ei2θ12 .

(a)

(b)

FIG. 1. (a) Two counterpropagating edge modes (u=d) of a
fractional quantum Hall droplet at filling factor ν are connected
by a quantum point contact, through which quasiparticles of
charge e�1 and scaling dimension δ1 can tunnel. Current is
measured at the lower edge’s drain, denoted by I. A current of
Iinj is injected into the upper edge via a second, injection QPC,
e.g., from a third auxiliary edge mode (a). The injection QPC is
placed at a bias voltage of V, and allows tunneling of quasi-
particles of charge e�2 and scaling dimension δ2. All other sources
and drains are grounded. (b) The ratio between I=Iinj in the dilute
case and I=Iinj in the full case, as a function of temperature, for
ν ¼ e�1=e ¼ e�2=e ¼ 1=3, and for different scaling dimensions δ1.
For the dilute case, we use Iinj ¼ 10 pA, and assume kBT ≪ eV
for all relevant temperatures, such that the contribution from
Gdirect to Eq. (1) is negligible. In the full case, we use V ¼ 10 μV.
Both cases use ξ ¼ 72 mK, τc ¼ 10−13 s. When the dilute case
satisfies ℏIinj=e ≪ kBT ≪ eV ≪ ℏ=τc, and the full case satisfies
ℏIinj=e ¼ νeV=2π ≪ kBT ≪ ℏ=τc, the ratio approaches an
asymptote that does not depend on scaling dimension, allowing
extraction of the mutual statistics θ12. Inset: I=Iinj for the dilute
and full cases as a function of temperature for δ1 ¼ 1=6, the
canonical value for a Laughlin 1=3 state.
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significantly. For example, theory gives δ ¼ 1=2m for
Laughlin quasiparticles.
Edge theory.—We now define the system’s Hamiltonian

and derive the current. As shown by Wen, the edge theory
of a general Abelian FQH state can be described by n-
boson fields, ϕðx; tÞ≡ ðϕ1;ϕ2; � � �ϕnÞT [2]. These define
the theory in conjunction with a charge vector, q, which
determines the electric charge carried by each boson field,
and the so-called K matrix, which determines the commu-
tation relations between the boson fields,

½ϕiðxÞ; ∂x0ϕjðx0Þ� ¼ i2πðK−1Þijδðx − x0Þ: ð2Þ

The filling factor is given by ν ¼ qTK−1q, and the charge
density by ρ ¼ −ð1=2πÞq · ∂xϕ. In terms of these fields, the
Hamiltonian of a single FQH edge mode is given by

Hedge ¼
1

4π

Xn
i;j¼1

Z
dx∂xϕiVij∂xϕj; ð3Þ

where V̂ is a positive definite matrix describing the
velocities of the modes and intraedge interactions. These
edges support quasiparticles of the form ψ l ∼ eil·ϕ, where l
is a vector of integers. The charge of these quasiparticles is
then given by e�l ¼ qTK−1l.
The configuration of Fig. 1(a) involves two edges, u and

d, tunnel coupled by a QPC. This is described by two
copies of the HamiltonianHedge, and a tunneling term,HT ,
treated perturbatively. Assuming only one type of quasi-
particle, denoted by the vector l1 and carrying charge e�1,
tunnels between the edges, this is given by

HT ¼ ξ
h
Âþ Â†

i
; ÂðtÞ≡ eiðl1·ϕðuÞð0;tÞ−l1·ϕðdÞð0;tÞÞ: ð4Þ

Here, ξ is a small tunneling amplitude, assumed to be real,
and ϕðu=dÞ are the bosonic field operators on the upper or
lower edge. We project the auxiliary edge a out of the
Hamiltonian, as it is only used to “initialize” the state of the
edge u.
The current that tunnels from the upper edge to the

lower edge is then given by the operator, ÎTðtÞ ¼
iξe�1

h
Â†ðtÞ − ÂðtÞ

i
. Since the lower edge is grounded,

we henceforth identify I ¼ hÎTi. Expanding to leading
order in ξ, the current is given by

IðtÞ¼ e�1ξ
2

Z
t

−∞
dt0

Dh
Â†ðtÞ; Âðt0Þ

i
þ
h
Â†ðt0Þ; ÂðtÞ

iE
: ð5Þ

Here, ½·; ·� denotes commutation, and expectation values are
calculated with respect to the Hamiltonian in the absence of
tunneling.
Deviation from equilibrium.—It is clear from Eq. (5)

that one needs to derive correlation functions such as

hÂ†ðtÞÂðt0Þi. In equilibrium, at temperature T, the system is
particle-hole symmetric, and the correlation functions are
given by [2,43]

hÂ†ðtÞÂðt0Þi0 ¼ hÂðtÞÂ†ðt0Þi0
¼

�
πTτc

sinh ðπTjt − t0jÞ
�
4δ1

e−i2πδ1sgnðt−t0Þ; ð6Þ

where δ1 is the scaling dimension of the quasiparticle l1,
and τc > 0 is a short time cutoff.
We now consider two nonequibrium cases. In the first we

introduce a constant bias voltage V ≡ Vu − Vd between the
edges. In the setup of Fig. 1(a), this corresponds to a fully
closed injection QPC, i.e., Iinj ¼ σxyV. This can be for-
mally absorbed into the boson fields by a simple gauge
transformation, which maps ϕðu=dÞðx; tÞ ↦ ϕðu=dÞðx; tÞ þ
K−1qVu=dðt ∓ x=vÞ=ℏ. The correlation functions accord-
ingly gain a phase factor

hÂ†ðtÞÂðt0Þifull ¼ hÂ†ðtÞÂðt0Þi0ei
e�
1
V

ℏ ðt−t0Þ;

hÂðtÞÂ†ðt0Þifull ¼ hÂðtÞÂ†ðt0Þi0e−i
e�
1
V

ℏ ðt−t0Þ: ð7Þ
In the second nonequilibrium driving, we consider

injecting a single quasiparticle, denoted by the vector l2,
into the upper edge, at the location xinj < 0 and time tinj.
This is shown schematically in Fig. 2(a). From the
commutation relations (2), applying the quasiparticle cre-
ation operator e−il2·ϕ

ðuÞðxinj;tinjÞ on the edge creates a soliton in
each of the boson fields,

ϕðuÞðx; tinjÞ ↦ ϕðuÞðx; tinjÞ − 2πK−1l2Θðx − xinjÞ: ð8Þ

We assume here the injection happens instantaneously. This
assumption will be relaxed to find the subleading term
of Eq. (1).
The fields at general times are obtained using the

equations of motion dictated by the Hamiltonian,
Eq. (3). If all modes are chiral with the same velocity v,
this amounts to replacing x − xinj → x − xinj − vðt − tinjÞ.
The soliton thus arrives at the QPC, x ¼ 0, at time
t0 ≡ tinj − xinj=v.
The c-number shift in the bosonic field of Eq. (8) leads to

a phase shift in the correlator Eq. (6). We see directly from
the definition of the operator Â in Eq. (4) that

hÂ†ðtÞÂðt0Þiqp ¼ hÂ†ðtÞÂðt0Þi0e2πil1K−1l2½Θðt−t0Þ−Θðt0−t0Þ�;

hÂðtÞÂ†ðt0Þiqp ¼ hÂðtÞÂ†ðt0Þi0e−2πil1K−1l2½Θðt−t0Þ−Θðt0−t0Þ�:

ð9Þ

The phase we obtain is the standard definition of mutual
braiding statistics between two quasiparticles, θ12 ≡
πl1K−1l2 [2]. Equation (9) shows that the product gains
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a phase of e2iθ12sgnðt−t0Þ if the arrival time t0 is between the
times t0 and t, and a trivial phase of 1 otherwise. We
emphasize how naturally this result came from the under-
lying theory: the only assumptions necessary to obtain this
are the commutation relations, (2), and the existence of
quasiparticles in the edge’s excitation spectrum.
This result holds for different boson modes with different

velocities if all solitons arrive at the tunneling QPC more or
less concurrently, avoiding dephasing. This is the case if
jxinjjΔðv−1Þ ≪ ℏ=T, where Δðv−1Þ is the inverse velocity
difference between the fastest and the slowest modes.
Time-domain interferometry.—The appearance of the

phase, θ12, can be understood as time-domain interferom-
etry of the two distinct �e�1 quasiparticle-quasihole exci-
tations, before and after the injected e�2 quasiparticle arrives
at the QPC. A similar physical picture has been shown in
Refs. [26,28,29].
To show this we consider the configuration of a single

injected particle, as described in Fig. 2(a). In this case the
nonequilibrium correlation function takes the form,

hÂ†ðtÞÂðt0Þiqp ¼ hψ l2ðt0ÞÂ†ðtÞÂðt0Þψ†
l2
ðt0Þi0; ð10Þ

i.e., the expectation value is calculated with respect to the
state resulting from exciting the ground state j0i with a
single quasiparticle. Here we omit the position variable
from the quasiparticle injection operator ψ†

l2
ðt0Þ, and

assume it arrives at the tunneling QPC x ¼ 0 at time t0.
The current in Eq. (5) is then given by integration over

multiple terms of the form in Eq. (10). Defining jt; t0i− ≡
ÂðtÞψ†

l2
ðt0Þj0i and jt; t0iþ ≡ Â†ðtÞψ†

l2
ðt0Þj0i, Eq. (5) can be

rewritten as

I ∝ −
Z

t

−∞
dt0

X
b¼�

bjjt; t0ib þ jt0; t0ibj2: ð11Þ

This expression involves two interference terms. The
b ¼ − term involves interference between creation of −e�1
quasiholes on the upper edge at the QPC at times t and t0.
The two interfering processes are shown schematically in
Fig. 2(b). From Eq. (9), these two processes are distin-
guished by a non-trivial phase of ei2θ12 if the arrival time t0
is in between the quasiholes’ creation times, t0 < t0 < t.
Combined with the equilibrium correlation function
Eq. (6), this gives an interference term proportional to
cos ð2θ12 − 2πδÞ. Using similar arguments, the b ¼ þ term
gives an interference term proportional to cos ð2θ12 þ 2πδÞ.
The total contribution from the two terms in Eq. (11) is thus
proportional to sin ð2θ12Þ sin ð2πδÞ. A full derivation of the
contributions from all processes, as well as processes in
which a −e�2 quasihole is injected into the upper edge, is
given in Appendix A of the Supplemental Material [42].
This interference happens entirely in the time domain,

and along only one edge. It is, however, crucial that this

edge be part of a two-dimensional bulk. This is important
both because the second edge is required to absorb the
leftover quasiparticle or quasihole resulting from the pair
creation at the QPC, and because the injected quasiparticle
must be created within a bulk FQH droplet. Furthermore, the
bulk is intimately related to the edge through bulk-edge
correspondence [2]. This dictates that the statistical phase
contributing to time-domain interference along a single edge,
which our setup measures, is the same as the phase obtained
from spatial exchange. Indeed, gauge invariance dictates that
the sameK matrix defines both the quasiparticle statistics on
the edge and the topological quantum field theory in the bulk.
The latter determines the statistics in the bulk.
It is easy to generalize this to injection of multiple

quasiparticles: as long as all injected quasiparticles are
mutually independent, each injected quasiparticle contrib-
utes a phase of e2iθ12 if and only if the arrival time at the
point contact was between t0 and t. If this process is
Poissonian, with a quasiparticle injection rate of Iinj=e�2, we
obtain for t > 0

hÂ†ðtÞÂð0Þidilute
hÂ†ðtÞÂð0Þi0

¼
X∞
n¼0

ðtIinj=e�2Þne−tIinj=e
�
2

n!
e2inθ12

¼ e−tIinj=e
�
2
ð1−e2iθ12 Þ; ð12Þ

cf. Refs. [24,26]. Adding injected quasiparticles to the
lower edge and generalizing for t < 0 are straightforward
using the same arguments.
Currents.—The effect of driving the system out of

equilibrium is completely encapsulated in the correlation
functions obtained above. These can then be used to derive
any observable of interest. We present the results of such a
calculation for the charge current at the lower drain,
denoted as I in Fig. 1, and how they can be used to obtain
the mutual statistics θ12.
We focus on the regime where the temperature is large

compared to the injected current, ℏIinj=e ≪ kBT. For the
full limit, this assumption guarantees linear response in the
voltage and in the injected current, which in this limit is
Iinj ¼ σxyV. For the dilute limit, the exponential suppres-
sion of the equilibrium correlation function at times larger
than ℏ=T, guarantees that the exponent in Eq. (12) may be
expanded to first order in Iinj. Consequently,

hÂ†ðtÞÂðt0Þifull=dilute
hÂ†ðtÞÂðt0Þi0

≈ 1þ iωf=dðt − t0Þ; ð13Þ

where the frequencies ωf=d are given by

ωf ¼
e�1V
ℏ

¼ e�1
ℏ

Iinj
σxy

; ωd ¼ i
Iinj
e�2

ð1− e2iθ12Þ: ð14Þ

The zeroth order term corresponds to the equilibrium
state and does not contribute to the current. The ratio of the
two first order contributions is Eq. (1).
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Explicit calculation of the resulting current in Eq. (5),
given in Appendix A [42], finds that

Ifull=dilute ¼ 2πe�1ðξτcÞ2ð2πTτcÞ4δ1−2Bð2δ1; 2δ1ÞRe½ωf=d�;
ð15Þ

where Bðx; yÞ is the Euler beta function. Thus, by focusing
on the ratio between the full and dilute beams, all
dependence on δ1, T and ξ drops out. Examining the ratio
I=Iinj, we thus obtain Eq. (1).
For general temperatures, we are no longer in the linear

response regime, and we obtain the typical power laws
characterizing tunneling in Luttinger liquids [2,35,44,45].
Comparing measurements of the full and dilute limits can
still give a quantity related to the mutual statistics θ12, but
will explicitly depend on the value of δ1. We present
general expressions for the current in this case in
Appendix A [42].
For a fermionic θ12 ¼ π, Eq. (15) gives no current at all

for a dilute electron beam. However, Landauer-Buttiker-
Imry scattering theory [46] tells us the current is given by
the product of the transparencies of the two QPCs along the
electron’s path, regardless of whether they are close to full
transmission or full reflection. This requires accounting for
the direct tunneling term in Eq. (1), which now becomes the
leading contribution.
We do this by accounting for the finite width of

the soliton. This leads to the expected result of
Idilute ¼ 4π2τ2cξ

2Iinj. The intuition behind this solution is
that tunneling without time-domain interferometry, dubbed
the direct tunneling process in [25,26], is dominated by
short times. Performing these calculations explicitly in
Appendix B [42], we show that the ratio between the first
term in Eq. (1) and Gdirect is ∝ ðTτsÞ4δ1−2, where τs is the
soliton width. It has been shown [25,26] that
τ−1s ∝ maxfeV; kBTg; as such, to ensure Gdirect is sub-
dominant, the dilute limit must be measured when kBT ≪
eV and 4δ1 < 2.
Several contemporary experimental setups use the equiv-

alent of noninteracting fermionic formulas to reasonable
success [47], corresponding to the limiting value of
2δ1 ¼ 1. In this case, the second term of Eq. (1) is a
numerical coefficient of order one, which may depend
solely on e�, δ1, and θ12. For noninteracting fermions, this
coefficient is easily found by comparing to known
Landauer-Buttiker-Imry scattering theory [46], but it is
straightforward to generalize. We discuss this coefficient
further in Appendix B [42].
Discussion.—Both the exchange statistics θ11 of the

tunneling quasiparticle, and θ22 of the injection quasipar-
ticle, do not appear in our derivation. Rather, it is the two
particles’ mutual statistics, θ12 that affect the modified
correlation functions, and hence, the physical observables.
Likewise, only δ1 and e�1 directly effect observables,

although properties of the injected quasiparticles may
implicitly enter through the injection rate.
Exchange statistics for a single quasiparticle type are

only obtained if the injected and tunneling quasiparticles
are identical, l1 ¼ l2. This is indeed the case in the
experiment of Ref. [23], where all quasiparticles are
Laughlin e� ¼ e=3 anyons, and subsequent recreations
for the ν ¼ 1=3 and ν ¼ 2=5 cases [27,48,49]. Another
recent experiment employing a similar setup, where the
injected quasiparticle was a e=3 anyon and the tunneling
quasiparticle was an electron, observed Andreev-like
reflection [50]. This is consistent with a mutual statistics
phase of θ12 ¼ π, for which Eq. (1) gives no time-domain
interferometry signal.
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