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We discuss the methodology of quantum Monte Carlo calculations of the effective mass based on the
static self-energy Σðk; 0Þ. We then use variational Monte Carlo calculations of Σðk; 0Þ of the homogeneous
electron gas at various densities to obtain results very close to perturbativeG0W0 calculations for values of
the density parameter 1 ≤ rs ≤ 10. The obtained values for the effective mass are close to diagrammatic
Monte Carlo results and disagree with previous quantum Monte Carlo calculations based on a heuristic
mapping of excitation energies to those of an ideal gas.
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Landau’s Fermi liquid theory [1] has provided a para-
digmatic frame for the phenomenological description of
equilibrium and transport properties of degenerate fermions
in terms of a very few characteristic parameters. Silin [2] has
provided the path to generalize for long-range forces, in
order to extend it to normalmetals in condensedmatter [3,4].
Although the formal structure of the underlyingmicroscopic
theory has been known for a long time [5–7], most explicit
calculations of the Fermi liquid parameters rely on approx-
imative, perturbative schemes [8,9]. As diagrammatic per-
turbation theory is not expected to converge for typical
electronic densities, basic Fermi liquid parameters of the 3D
homogeneous electron gas (jellium), such as the effective
mass m� and the renormalization factor Z, are sensitive
to the underlying approximation [10,11] (see also Fig. 4
of Ref. [12]).
Recently, variational diagrammatic Monte Carlo calcu-

lations (VDiagMC) [13,14] for 3D jellium have been
performed to include and control higher order terms
of the perturbation series. Those calculations found an
overall reasonable agreement for Z with previous quantum
Monte Carlo (QMC) calculations [15]. However, VDiagMC
results on m� have been strongly questioned by QMC
calculations of Ref. [12] yielding substantially different
values.
In this Letter, we revisit the methodology of zero

temperature QMC calculations of the effective mass, in
order to resolve the discrepancy between QMC and
perturbative-VDiagMC results, show how such calcula-
tions can be done, and provide new results for 3D jellium.
In principle, the effective mass can also be calculated
from the temperature dependence of thermodynamic quan-
tities [16,17], e.g., from finite-temperature path-integral
results [18–20]; finite temperature methods will not be
discussed here. In contrast to systems with short range

interaction [21], size corrections are expected to play an
important role for charged systems [22] as explained in
detail below.
Landau energy functional.—Landau [1] phenomenologi-

cally characterized the low energy excitation of a Fermi
liquid by assuming a one-to-one correspondence of states
of the ideal Fermi gas and those of the interacting system,
such that elementary excitations of the interacting systems
are still described in terms of ideal gas occupation numbers
before adiabatically switching on the interaction. Changes
of the total energy δE can then be considered as a functional
of changes in the quasiparticle occupation number δnkσ of
the momentum k and spin quantum number σ

δE¼
X
kσ

ðεkþμÞδnkσþ
1

2V

X
kσ;k0σ0

fðkσ;k0σ0Þδnkσδnk0σ0 : ð1Þ

Here, μ is the chemical potential, εk ¼ ðk − kFÞkF=m� is
the quasiparticle energy which determines the effective
mass for momenta in the vicinity of the Fermi momentum
kF, and fðkσ; k0σ0Þ is the quasiparticle interaction, inde-
pendent of volume V to leading order. Here, and in the
following, we assume a homogeneous system with iso-
tropic Fermi surface and set ℏ ¼ 1.
The success of Landau’s Fermi liquid theory started with

its application to strongly interacting quantum liquids [23].
Postulating an entropy functional in terms of quasiparticle
occupations, nontrivial predictions could be made using
only a few parameters, notably the effective mass entering
the quasiparticle energy εk.
Fermi liquid behavior results from the assumption of

certain analytical properties of fundamental correlation
functions [7], notably the existence of a Fermi surface [6]
defined by the sharp discontinuity Z of the momentum
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distribution at zero temperature, and the effective mass m�
obtained from the dispersion of the quasiparticle peak of
the spectral function.
Both quantities Z and m� can thus be operationally

defined from the single particle Green’s function, conven-
iently expressed in Fourier space,

Gðk; zÞ ¼ Gþðk; zÞ þ G−ðk; zÞ; ð2Þ

G�ðk; zÞ ¼
X
n

jhEN�1
n jða†k þ akÞjEN

0 ij2
z − ð�ðEN�1

n − EN
0 Þ − μÞ ; ð3Þ

where jEN
n i denotes the nth eigenstate with energy EN

n of
the N-particle system and ak annihilates an electron of
wavevector k. The self-energy Σ defined as

G−1ðk; zÞ ¼ zþ μ − k2=2m − Σðk; zÞ ð4Þ

captures all effects of interactions wherem is the bare mass.
The Fermi surface is then determined fromG−1ðkF; 0Þ ¼ 0,
or μ ¼ k2F=2mþ ΣðkF; 0Þ. The analytic structure ofG close
to the singularity determines Fermi liquid behavior. Under
quite general assumptions the self-energy of the infinite
system allows an expansion [7,24]

Σðk;zÞ−ΣðkF;0Þ¼ ðk−kFÞ∂kΣðkF;0Þþ z∂zΣðkF;0Þ ð5Þ

up to corrections of order k2 and z2 log z. The singularity
dominating the Green’s function close to the Fermi surface
is then

Gðk; zÞ ∼ Z
z − ðk − kFÞkF=m� ; ð6Þ

with

Z−1 ¼ 1 − ∂zΣðkF; 0Þ; ð7Þ

m
m� ¼ Z

�
1þ m

kF
∂kΣðkF; 0Þ

�
; ð8Þ

giving rise to a well defined quasiparticle behavior of
strength Z and energy ðk − kFÞkF=m�. Since Gðk; 0Þ
changes sign at k ¼ kF, the singularity of the Green’s
function close to the Fermi surface is entirely contained in
either Gþðk; zÞ or G−ðk; zÞ. The real-time spectral function
is obtained by approaching the real axis using z ¼ iωþ ηk
where ηk ¼ þ0 (−0) for k > kF (k < kF).
Landau’s energy functional may then be identified

with the quasiparticle energies of the single particle
propagator [4,6], providing a microscopic expression for
the quasiparticle occupation number [4,7]. As knowledge
of the quasiparticle energy is explicitly required and its
definition involves off-diagonal matrix elements in the
energy eigenstate representation, this definition is purely

formal and has not been of much practical use. However, it
provides a strong indication that Landau’s quasiparticle
occupation number may not be expressible as a simple
static observable whose value can be determined from
a single energy eigenstate. Only in the limit k → kF does the
quasiparticle energy approximate an exact energy eigenstate
up to corrections of the order of the inverse lifetime [7],
provided the thermodynamic limit is taken first.
Both Z andm� can be obtained from static observables at

zero temperature. The value of the renormalization constant
Z can be read off from the jump in the momentum
distribution [15], whereas Σðk; 0Þ can be obtained from
the static response to an external perturbation ξðak þ a†kÞ as
we will show below. Together they can be used to calculate
m� very near to the Fermi surface.
Landau’s Fermi liquid theory successfully describes ther-

mal equilibriumor hydrodynamic transport observables [23],
i.e., bulk properties. The form of Landau’s energy functional,
Eq. (1), assures that its energy changes with respect to
variation of the quasiparticle occupations are to first order
additive, with corrections from a small, ∼1=V, pairwise
interaction. Although these energy variations can be mapped
to variations of the unperturbed ideal gas propagator within
adiabatic perturbation theory [7], they cannot, in general, be
mapped to the exact excited energy eigenstates of the
interacting system.
The microscopic theory maps them to the single particle

quasiparticle spectrum, characterized by the emerging pole
in the exact interacting propagator, Eq. (6), when approach-
ing the real axis, z ¼ iωþ ηk with ηk → �0. However, for
any finite system, the exact Green’s function, Eq. (2) is a
highly irregular function on the real axis; a smooth function
can only be expected at a finite distance from the real axis,
jηkj⪆kF2π=ðmLÞ. Instead, the effective mass formula,
Eq. (8), involves only static quantities with z ¼ 0 and is
well defined on the real axis, even before the thermody-
namic limit is performed. Their calculations may still suffer
from important finite-size effects [22], but numerical
extrapolations will eventually converge to the infinite
system size values.
Considering the generalized Hamiltonian H̃ ¼P
NðHN − μNÞ, an external perturbation ξðak þ a†kÞ cou-

ples the ground state of theN particle systems to excitations
containing N � 1 particles. From time-independent pertur-
bation theory, restricting to states jEþi within the subspace
of N and N þ 1 particles, the perturbed ground state up to
linear order in ξ can be written as

jEþ
k ðξÞi ¼ jEN

0 i − ξ
X
n

jENþ1
n ihENþ1

n ja†kjEN
0 i

ENþ1
n − EN

0 − μ
ð9Þ

yielding the energy to second order in ξ:
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Eþ
k ðξÞ ¼ EN

0 þ μ − ξ2
X
n

jhENþ1
n ja†kjEN

0 ij2
ENþ1
n − EN

0 − μ
: ð10Þ

Similarly, E−
k is the ground state of the perturbed

Hamiltonian restricted to the N and N − 1 subspaces.
The Green’s functions are determined by comparing with
the Lehmann representation, Eq. (2),

G�ðk; 0Þ ¼ lim
ξ→0

½�ðE�
k ðξÞ − EN

0 Þ − μ�=ξ2: ð11Þ

Upper bounds to the ground state energies E�
k can be

obtained with a variational ansatz for jE�
k i and minimizing

the expectation value of the perturbed Hamiltonian with
respect to variational parameters.Although technically a little
bit more involved, calculations of the static Green’s function
are thereby reduced to a static response function, analogous to
calculations of the density response [25] previously
employed using ground state Monte Carlo methods.
Quantum Monte Carlo calculations.—Let us now turn to

the calculation of the static single-particle Green’s function
via quantum Monte Carlo methods, focusing on Gþðk; 0Þ.
For that, we minimize the energy Eþ

T ðξÞ of the generalized
Hamiltonian H̃ using a trial wave function jΨTðξÞi in the
Fock space of N and N þ 1 particle wave functions
providing an upper bound for Eþ

k ðξÞ.
Assuming that ξ is sufficiently small, the trial wave

function can be expanded as

jΨTðξÞi ¼ jΨN
0 i þ ξ

XM
i¼1

αijΨNþ1
i i; ð12Þ

with M the number of states in the basis. It couples the
ground state wave function jΨN

0 i of the N particle system
(or our best variational ground state wave function) with
different wave functions jΨNþ1

i i of the N þ 1 particle states
of total momentum corresponding to k. The variational
parameters are the set fαig. Here, we choose M ¼ 2, with
jΨNþ1

1 i as a candidate for a pure excited state wave
function, minimizing separately the excited state energy
ENþ1
k in the N þ 1 section of momentum k, and jΨNþ1

2 i∼
a†kjΨN

0 i; this should maximize the overlap matrix elements
of the perturbation with the ground state, e.g., the numer-
ator of the right-hand side of Eqs. (9) and (10).
Minimizing with respect to α1, α2 in the limit of ξ → 0,

we obtain a variational approximation for the Green’s
function in the particle excitation sector

Gþ
μ ðk; 0Þ ¼ −

ζ21ε22 − 2ζ1ζ2ε12 þ ζ22ε11
ε11ε22 − ε212

; ð13Þ

with εij ¼hΨNþ1
i jHNþ1 − EN

0 − μjΨNþ1
j i; ð14Þ

ζi ¼hΨNþ1
i ja†kjΨN

0 i; ð15Þ

where we have assumed normalized wave functions, e.g.,
hΨN�1

i jΨN�1
i i ¼ 1, with overall phases such that all matrix

elements are real.
An analogous calculation in the hole sector yields

G−
μ ðk; 0Þ from a variational calculation based on super-

position of the lowest energy state for a hole excitation and
akjΨN

0 i. Thus, the static Green’s function Gμðk; 0Þ ¼
Gþ

μ ðk; 0Þ þ G−
μ ðk; 0Þ is determined.

Let us stress that our determination of the static Green’s
function is strictly variational providing upper (lower)
bounds for the perturbed energies by electron (hole)
addition and does not rely on perturbation theory. The
exact Green’s function is approached for a sufficiently
flexible wave functionΨN�1, as can be seen from a spectral
(Lehmann) representation.
So far, the chemical potential μ, entering as a parameter

in G�
μ , has not been specified yet. Since single particle

excitation is gapless in the Fermi liquid, the chemical
potential can be fixed by the implicit equation
limk→kF G

−1
μ ðk; 0Þ ¼ 0.

Finite size effects.—Our quantum Monte Carlo calcu-
lations are done for a finite number of electrons N confined
in a periodic cube of side L and volume V ¼ L3.
Calculations must be extrapolated to the thermodynamic
limit. Shell effects in the single particle energy spectrum
and the Coulombic interaction represent the main source of
finite size effects [26].
Shell effects can be addressed by twisted boundary

conditions [27] corresponding to a shifted grid calculation
in momentum space. Using grand-canonical twist averag-
ing (GC-TABC) [28] we obtain a sharp Fermi surface. We
spherically average G�

μ ðk; 0Þ for any k using 32 equally
weighted points that exactly integrates all polynomials on
the sphere up to the eighth order [29,30].
Although GC-TABC allows us to obtain G�

μ ðk; 0Þ for
arbitrary k, size effects due to intrinsic two-body effects
remain. In charged systems, these are dominated by the
long-range Coulomb interaction [31,32]. In particular,
zk and nk are expected to suffer from important size
effects [15] of order 1=L. Instead of addressing them
directly which necessitates a thorough investigation as a
function of L and k, we will determine the exact leading
order form of the corrections from a diagrammatic analysis
based on Fermi liquid theory [7]. Following Ref. [22],
within the random phase approximation (RPA) approxi-
mation, δΣðk; 0Þ ¼ Σ∞ðk; 0Þ − ΣNðk; 0Þ is given by

δΣðk; 0Þ ≃ −
Z

π=L

−π=L

d3q
ð2πÞ3

Z
∞

−∞

dν
ð2πÞ

vq
ϵðq; iνÞ

1

iνþ μ − ε0kþq

;

ð16Þ

where vq ¼ 4πe2=q2 is the Coulomb interaction,
ε0k ¼ ℏ2k2=2m, and the integral is restricted to a cube with
jqαj < π=L for any spatial component (α ¼ x, y, z).
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Because of this restriction, we can use the expression
ϵðq;ωÞ ≃ 1 − ω2

p=ω for the dielectric function, where ωp is
the plasma frequency. Since the dominant contribution to
the integral stems from the finite values of ω ¼ iν,
substituting this limiting form for the dielectric function
captures the exact behavior in the limit of small q. The
resulting integration then gives

δΣðk; 0Þ ¼ C
ε0k − μ

ωp þ jε0k − μj ; ð17Þ

with C ≃ 1.22e2=L. One can show that Eq. (17) is indeed
exact not only within RPA, if ε0k − μ is replaced by the exact
single particle energies ðk − kFÞkF=m�. This occurs since
irreducible vertex corrections approach 1=Z in the limit of
vanishing momentum transfer at fixed frequency [7] and
exactly cancel against the quasiparticle weight of the exact
propagator replacing the noninteracting propagator in the
RPA expression.
Results and discussion.—We have performed variational

Monte Carlo (VMC) calculations of the self-energy for the
3D homogeneous electron gas, shown in Fig. 1, based on
analytical Slater-Jastrow (SJ) and Slater-Jastrow backflow
(BF) wave functions [33,34] as used in a previous study on
the renormalization factor [15]. Its density n is parame-
trized by rs ≡ a=aB, where aB is the Bohr radius and a ¼
ð4πn=3Þ−1=3 is the mean electron distance. Details of the
VMC procedure are given in Supplemental Material [35].
In Fig. 2 we illustrate the importance of size effects at

rs ¼ 10, comparing canonical simulations with periodic
boundary conditions (PBC) from system sizes, N ¼ 38 to
114 using SJ wave functions. Although, the bare curves
seem to indicate only small variations with size, the size

corrected curves based on the analytical formula above
show that the bare curves for such small systems are still
very far from reaching the thermodynamic limit. Because
of the slow decay ∼L of the corrections, we have not
attempted any numerical extrapolation of the curves.
Extrapolation is more difficult for smaller values of rs
since variations are masked by the larger stochastic error.
In Fig. 1 we compare our size corrected results from BF-

VMC calculations using grand-canonical twist averaging to
perturbative G0W0 results of the infinite system. Even
though rs ¼ 10 is thought to be far outside the range of
validity of a perturbative approach our QMC results
indicate only small modifications in the whole range
rs ≤ 10; differences are hardly visible on the figures.
Uncorrected data at finite N are similarly close to G0W0

curves when finite size effects are accounted by subtracting
Eq. (17) (see also Supplemental Material [35]).
In contrast to Z, perturbative calculations of ∂kΣðkF; 0Þ

seem to be much less sensitive to the underlying approxi-
mation scheme, e.g., self-consistency and vertex correc-
tions [11,36]. We do not believe that the quantitative
agreement of the static self-energy between QMC and
G0W0 is a result of fortuitous error cancellations.
In order to deduce the effective mass, we have fitted our

QMC results for Σðk; 0Þ around kF to obtain ∂kΣðkF; 0Þ. In
Table I we summarize our results based on size corrected
GC-TABC calculations for N ¼ 66 SJ and N ¼ 54 BF
wave functions. We see that the decrease of Z competes
with the increase of ∂kΣðkF; 0Þ, resulting in values ofm�=m
very close to one. However, since mk−1F ∂kΣðkF; 0Þ remains
smaller than one even at rs ¼ 10, the lowering of Z with

FIG. 1. Static self-energy for various densities (rs) using
backflow (BF) trial wave functions and GC-TABC simulations
for N ¼ 38 electrons. They include size corrections. The color
lines are from G0W0 calculations.

FIG. 2. Static self-energy for rs ¼ 10 using SJ-VMC trial wave
functions for simulations with periodic boundary conditions
(PBC) and GC-TABC for various sizes ranging from N ¼ 38
toN ¼ 162, size corrected according to Eq. (17), the line is a fit to
the data, taking into account small difference to G0W0. The inset
shows the uncorrected values for N ¼ 38 and N ¼ 162 (PBC),
the lines are obtained subtracting the size corrections, Eq. (17),
from the fit of the extrapolated data in the main figure.
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increasing rs eventually dominates the effective mass and
m� clearly increases for rs ≳ 4.
Similarly to Z, the change from the SJ trial function to

more accurate BF trial functions reduces ∂kΣðkF; 0Þ by a
small amount, slightly larger than our statistical resolution.
This provides a rough estimate of the bias due to the trial
wave function. Since our approach is variational, we expect
that our results provide upper bounds to ∂kΣ. In addition,
more correlated wave functions tend to lower the values of
Z [15,40], so that our results form� are likely lower bounds.
Future studies based on iterative backflow and machine
learning wave functions [40–43] can be used to further
improve the wave function. Preliminary results for the
momentum distribution [40] do not indicate noticeable bias
beyond BF.
Our results are in rather good agreement with perturba-

tive G0W0 calculations [10,39] and more recent variational
diagrammatic Monte Carlo calculations including higher
order diagrams [14,37]. They are at variance with previous
QMC calculations [12] ofm� which are based on a heuristic
mapping of excitation energies to the ideal gas and not on
the properties of the single particle Green’s function. As we
have reviewed above, the use of Landau’s energy functional
to determine Fermi liquid parameters from the excitation
spectrum of finite systems is highly problematic. The
comparison with those results is further detailed in
Supplemental Material [35]. Our methodology can be
applied to realistic strongly correlated systems as well as

to quantum chemistry based methods addressing ground
and excited state wave functions of finite systems [44,45].
The quantitative agreement between two methodologi-

cally and numerically different methods, real space QMC
and VDiagMC, is highly encouraging. Comparisons with
high precision measurements, as already done in solid
sodium [46] and lithium [47,48] for the renormalization
factor Z can now be extended to the band width and
effective mass.
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