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Coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T))—often
considered the “gold standard” of main-group quantum chemistry—is inapplicable to three-dimensional
metals due to an infrared divergence, preventing its application to many important problems in materials
science. We study the full, nonperturbative inclusion of triple excitations (CCSDT) and propose a new,
iterative method, which we call ring-CCSDT, that resums the essential triple excitations with the same N7

run-time scaling as CCSD(T). CCSDT and ring-CCSDT are used to calculate the correlation energy of the
uniform electron gas at metallic densities and the structural properties of solid lithium. Inclusion of
connected triple excitations is shown to be essential to achieving high accuracy. We also investigate
semiempirical CC methods based on spin-component scaling and the distinguishable cluster approximation
and find that they enhance the accuracy of their parent ab initio methods.
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Introduction.—Accurately predicting energetic proper-
ties of metallic solids is crucial in computational materials
science, with applications in heterogeneous catalysis,
electrochemistry, and battery science [1–3]. Coupled-cluster
theory with single and double excitations (CCSD) [4,5] has
recently been shown to provide reasonable energies for the
uniform electron gas (UEG) [6–8] and for atomistic metallic
solids, such as lithium and aluminum [9–12], but it does not
reliably outperform density functional theory (DFT), which
is significantly cheaper—some inclusion of connected triple
excitations is clearly required. For nonmetallic main-group
solids, CCSD with perturbative triple excitations [CCSD
(T)] [13] is highly accurate for bulk properties [14–18] and
surface chemistry [18–24], mirroring its performance on
molecules, where it commonly yields “chemical accuracy”
of about 1 kcal=mol [5]. However, CCSD(T) is not
expected to be applicable to three-dimensional metals: an
approximate evaluation of the CCSD(T) energy of the UEG
was shown to diverge in the thermodynamic limit [25],
similar to the textbook result of second-order perturbation
theory [26,27].
Here, we investigate the accuracy of CC theory with

nonperturbative triple excitations (CCSDT) to determine
whether such a theory provides the desired accuracy for
metals. Because the high cost of CCSDT limits its routine
application, we also design and test lower cost alternatives.
Below, we first review diagrammatic results on the
ground-state energy of the UEG, including its high-density
expansion, divergences and necessary resummations, and
connections with coupled-cluster theory including double
and triple excitations. An analysis of the (T) correction for
the UEG motivates a new theory, which nonperturbatively

retains the triple excitations necessary to preclude a
divergence and which has the same N7 computational
scaling as CCSD(T). We assess the performance of these
methods with applications to the UEG at metallic densities
and to solid lithium. Furthermore, we test several semi-
empirical modifications, including the distinguishable
cluster (DC) approximation [28–30] and spin-component
-scaled (SCS) CC theory [31–33], which were designed to
approximate the effect of higher excitations without
increasing the computational cost (we use the term “semi-
empirical” to indicate that, although in some cases the
modifications can be constrained by physical principles,
the methods are not rigorously diagrammatic).
Diagrammatic results on the uniform electron gas.—The

UEG, a model of interacting electrons in a uniform positive
background, has been a famous testing ground for new
developments in nonperturbative many-body quantum field
theory. Specifically, the total energy of the UEG with
electron density n has been evaluated to leading orders in
the Wigner-Seitz radius rs ¼ ½3=ð4πnÞ�1=3 [27,34,35], in
the absence and presence of a spin polarization; in this
Letter, we focus on the upolarized case. The kinetic energy
and Hartree-Fock (HF) exchange energy produce terms of
Oðr−2s Þ and Oðr−1s Þ, respectively, and the remaining terms
define the correlation energy.
From dimensionality arguments, it is expected that

second-order perturbation theory contributes all terms of
Oðr0sÞ, which is correct for the second-order exchange
energy [27,36]. The second-order direct (ring) term, whose
diagram is shown in Fig. 1(a), contributes a correlation
energy E2;4 ∝ r0s

R∞
0 dqfðqÞ=q2, where
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fðqÞ¼
Z
jkþqj>1

d3k
Z
jpþqj>1

d3p
θð1−kÞθð1−pÞ
q2þðkþpÞ ·q ð1Þ

and all dimensionless momenta k, p, q are normalized to the
Fermi momentum; we use the notation Em;2n from
Refs. [34,35], where m is the order in perturbation theory
and n is the number of interactions with the same
momentum transfer. It can be shown that fðqÞ ∝ q in
the limit q → 0, and thus the second-order direct term
famously diverges logarithmically. All higher order terms
with the same ring structure (n rings at order n in
perturbation theory), such as the one shown in Fig. 1(b)
(i.e., E3;6) exhibit the strongest divergences at each order,
and their resummation to infinite order defines the random-
phase approximation (RPA) [26,27,34,35,37–39], ε0 ¼
E2;4 þ E3;6 þ E4;8 þ � � �. The RPA provides a correlation
energy that is correct toOðln rsÞ and is therefore exact in the
high-density rs → 0 limit (aside from a constant); the
appearance of termsOðln rsÞ in the density expansion signals
the nonanalyticity of the correlation energy. As is well
known, the CCSD energy contains all terms included in
the RPA [40–42], providing a strong theoretical argument for
the application of CC theories to metallic solids—a research
agenda started more than 40 years ago [40,41,43,44]. As a
reminder, single excitations vanish in theUEG by symmetry,
and the CCSD correlation energy is Ec ¼ 1

4
hijjjabitabij ,

where tabij is the double-excitation amplitude that solves
the CCSD amplitude equations. Here and henceforth, i; j;…
indicate occupied spin orbitals, a; b;… indicate unoccupied
spin orbitals, Coulomb integrals are in h12j12i notation, the
double bar indicates antisymmetrized integrals, and summa-
tion over repeated indices is implied.

Third-order perturbation theory produces convergent
terms that are OðrsÞ (i.e., E3;2), strongly divergent terms
with three rings that are included in the RPA [i.e., Fig. 1(b)
or E3;6], and more weakly divergent terms whose diagrams
have only one ring, such as that shown in Fig. 1(c), which
define E3;4. These latter terms have to be resummed with
higher-order divergent contributions that have analogous
structure (n − 2 rings at order n in perturbation theory),
ε00 ¼ E3;4 þ E4;8 þ � � �, which can be evaluated to identify a
correlation energy that is exact toOðrs; rs ln rsÞ [34,35,45].
Remarkably, all of these terms are included in the CCSD
correlation energy. Although it has long been appreciated
that CCSD resums the most divergent terms that define the
RPA correlation energy ε0 [40–42], to the best of our
knowledge, it has not been noted that it also resums these
next most divergent terms that define ε00. Therefore, CCSD
is exact for the energy of the UEG to Oðrs; rs ln rsÞ, which
is one order higher than the RPA, in addition to recovering
the correct constant term due to second-order exchange.
As expected, the CCSD energy is missing terms from

fourth order in perturbation theory, including those that
yield finite values ofOðr2sÞ or that diverge weakly and must
be resummed with higher-order terms. CCSDT produces an
energy that is exact to fourth order in perturbation theory
and includes resummations necessary to eliminate fourth-
order divergences, thus providing a potentially powerful
theory of the energy of metals. However, CCSDT has a
high computational cost that scales as N8, which precludes
routine application to atomistic materials. Nonetheless,
below we exploit the simplicity of the UEG and carefully
designed composite corrections to provide the first esti-
mates of the performance of CCSDT for the UEG in the
thermodynamic limit and for solid lithium.
The intermediate theory CCSD(T), with a reduced N7

scaling, is very accurate for many molecules and insulating
solids. However, CCSD(T) yields a divergent energy for
metals, which was demonstrated numerically using an
approximate form in Ref. [25]. Here, we provide a dia-
grammatic analysis of the same behavior to shed more light
on the failures of CCSD(T). Neglecting single excitations,
which vanish for the UEG by symmetry, the energy correc-
tion in CCSD(T) is shown by the diagram in Fig. 1(d) (plus
permutations due to exchange), where the double line
indicates tabij from CCSD. To lowest order, the (T) correction
is that of bare fourth-order perturbation theory, shown in
Fig. 1(e), whose analysis elucidates the (T) divergence.
Considering only the contribution without exchange, the
problematic process has four interactions with two pairs of
identical momenta exchanged, q and q0, i.e., the correlation
energy is Ec ∝ r2s

R
d3q

R
d3q0fðq; q0Þ=ðq4q04Þ, where

fðq; q0Þ ¼
Z
jkþqj>1

d3k
Z
jmþq0j>1

d3m
Z

jpþqj>1
jp−q0 j<1

d3p
θð1 − kÞθð1 − pÞθð1 −mÞ

½q2 þ ðkþ pÞ · q�2½q2 þ ðkþ pÞ · qþ ðmþ pÞ · q0� : ð2Þ

FIG. 1. Goldstone diagrams discussed in the text, which are
included at various orders in perturbation theory and various
flavors of CC theory. The dashed red box in (d) and (e) highlights
the problematic feature responsible for the divergence of the
CCSD(T) correlation energy.
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As usual, the correlation energy integral diverges due to the
behavior of the integrand near q; q0 ¼ 0. Letting qc be an
infrared cutoff on both momentum integrals, the integrated
result can be checked to diverge as Oðq−2c ln qcÞ, demand-
ing resummation with higher-order terms.
By replacing the outer Coulomb interactions by tabij from

CCSD as in Fig. 1(d), CCSD(T) regularizes the integral over
q, but not q0. This single ring diagram self-energy insertion,
highlighted with a red box in Figs. 1(d) and 1(e), is
responsible for the divergence of the CCSD(T) energy for
metals. By analytically performing this regularization, the
CCSD(T) energy can be shown to diverge asOðlnqcÞ, which
is naturallyweaker than that of bare fourth-order perturbation
theory, but still useless for quantitative calculations. This rate
of divergence is exactly the same as that of second-order
perturbation theory, which we exploit in the Supplemental
Material [46] to numerically confirm the divergence of
CCSD(T), along the lines of other works [58,59].
Importantly, this analysis also identifies the minimal

physics necessary to regularize the CCSD(T) approximation
for metals, which is an infinite-order RPA-style resumma-
tion of ring diagrams in the self-energy insertion (like in the
GWapproximation [60]), as shown in Fig. 1(f). This can be
achieved approximately by removing many of the terms
from the CCSDT equations, analogous to the equivalence
between (direct) ring-CCD and the RPA. This method,
which we call ring-CCSDT, is implemented as follows. The
singles and doubles amplitude equations are exactly as in
CCSDT. The triples amplitude equation is the same as in the
CCSDT-1 approximation [4,61–64], but is supplemented
with direct ring diagrams, 0 ¼ RCCSDT−1 þ Rdr,

RCCSDT−1 ¼ P̂ðc=abÞfcdtabdijk − P̂ðk=ijÞflktabcijl

þ P̂ðk=ijja=bcÞhbcjjdkitadij
− P̂ði=jkjc=abÞhlcjjjkitabil ; ð3aÞ

Rdr ¼ P̂ði=jkja=bcÞhaljiditdbcljk

þ P̂ði=jkjabcÞhlbjdeitadil tecjk
− P̂ðijkja=bcÞhlmjdjitadil tbcmk

þ P̂ði=jkja=bcÞhlmjdeitadil tebcmjk; ð3bÞ

where P̂ðk=ijja=bcÞ ¼ ½1 − P̂ðikÞ − P̂ðjkÞ�½1 − P̂ðabÞ−
P̂ðacÞ�, P̂ðijÞ generates the permutation of i and j, and
fpq is a Fockmatrix element. Note that Coulomb integrals in
Eq. (3a) are antisymmetrized, whereas those in Eq. (3b)
are not.
Unfortunately, despite its iterative nature, the CCSDT-1

approximation (without the ring diagrams) is a divergent
theory of metals, like CCSD(T), because of the isolated
ring diagram highlighted in Figs. 1(d) and 1(e). In the ring-
CCSDT approximation, not all time orderings of repeated
ring diagrams are included: all forward (Tamm-Dancoff)

time orderings are included, which is sufficient to preclude a
divergence [40], and a subset of the non-Tamm-Dancoff
time orderings are included, but not all those corresponding
to the complete RPA; this is very similar to the diagrammatic
content of the coupled-cluster Green’s function [65,66]. To
include all time orderings that define RPA screening would
require inclusion of connected quadruple excitations.
The first and last terms of Rdr exhibit N8 computational

scaling, like the parent CCSDT method. However, the use
of direct (nonantisymmetrized) ring diagrams enables a
reduction in scaling with the use of density fitting or
Cholesky decomposition of the Coulomb integrals [67]
hpqjjrsi ¼ P

P L
P
prLP

qs, where P is an auxiliary index. For
example, the last term can be constructed as

X
lmde

hlmjdeitadil tebcmjk ¼
X
P

�X
ld

LP
ldt

ad
il

��X
me

LP
metebcmjk

�
: ð4Þ

With such a compression of the Coulomb integrals, ring-
CCSDT is an iterative N7 method, providing an appealing
alternative to the CCSD(T) approximation that is applicable
to metals (although the storage of the triple excitation
amplitudes tabcijk is a separate bottleneck).
Results for the UEG.—CC approximations are difficult

to treat semianalytically, even for the UEG. Therefore, we
simulate a UEG of electron density n via a cubic box of N
electrons with volume V ¼ N=n ¼ ð4=3Þπr3sN and a
plane-wave orbital basis. Several correlated methods,
especially CC and quantum Monte Carlo (QMC), have
been previously applied to UEG models containing a finite
number of electrons [68–71]; these models have a gap in
their single-particle spectrum and thus do not suffer from
the infrared divergences that arise in the TDL. However,
study of these models enables direct comparison between
different levels of theory and can also be viewed as a proxy
for performance on other gapped systems such as mole-
cules or insulating solids. In Table I, we present the
correlation energy for N ¼ 14, 54, and 114 at rs ¼ 2; to
allow direct comparison, all results are at or near the
complete basis set limit and are obtained without twisted
boundary conditions. Overall, we see that CCSDT and
DCSDT agree with each other and with QMC results to
0.5 mEh or better. The new method ring-CCSDT is a
significant improvement over CCSD, and achieves sub-
mEh accuracy compared to these latter reference methods.
A more thorough comparison at rs ¼ 0.5, 1, 2, and 5 is
given in the Supplemental Material [46].
Although the accuracy of various CC methods can be

gleaned from these calculations with finite N, in this Letter
we are primarily concerned with the critical question of
their performance in the N → ∞ limit. Specifically, we
perform CCSD and DCSD calculations on systems con-
taining up toN ¼ 1404 electrons and estimate the complete
basis set limit using calculations on smaller system sizes.
These results are then used to extrapolate to the
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thermodynamic limit assuming that finite-size errors in the
correlation energy decay asymptotically as N−2=3—a func-
tional form that is derived in the Supplemental Material
[46] and has also been proposed in recent work [75].
Our final CCSD correlation energies agree within about
1 mEh with previous studies that targeted the thermody-
namic limit [6,7], despite different technical details, pro-
viding a validation of our methods. CCSDT, ring-CCSDT,
and DCSDT calculations are performed on systems con-
taining up to N ¼ 156 electrons, and we calculate the
energy difference with respect to DCSD. The complete
basis set limit of this energy difference is estimated based
on smaller values of N and then extrapolated to the
thermodynamic limit. Additional technical details are given
in the Supplemental Material [46].
In Fig. 2, we present the correlation energy of the UEG

at metallic densities of rs ¼ 1–5 from various CC theories
as a fraction of the numerically exact result, estimated via
recent Slater-Jastrow-backflow diffusion Monte Carlo
(DMC) results [76]; a table of all values is given in the
Supplemental Material [46]. The magnitude of the DMC
correlation energy ranges from 60 mEh at rs ¼ 1 to
29 mEh at rs ¼ 5. As expected based on the density
expansion discussed above, the relative accuracy of dia-
grammatic methods shown in Fig. 2(a) (CCSD, CCSDT,
and ring-CCSDT) decreases with increasing rs. Compared
to CCSD, which recovers only about 76%–92% of the
DMC correlation energy, CCSDT performs extremely well
and recovers between 98% (at rs ¼ 1) and 92% (at rs ¼ 5),
corresponding to an absolute accuracy of 1.3–2.4 mEh.
The good performance of ring-CCSDT, with errors of
1.7–3.2 mEh, shows that the same ring diagram resumma-
tion responsible for curing the divergence of CCSD(T) is
also responsible for most of the correlation energy asso-
ciated with connected triple excitations.

The semiempirical CC methods shown in Fig. 2(b)
(SCS-CCSD, DCSD, SCS-DCSD, and DCSDT) typically
perform better than their parent diagrammatic method.
SCS-CCSD [32] improves over CCSD, except at small rs,
demonstrating that semiempirical modifications can spoil
valuable formal properties like the exactness of CC
theories in the high-density limit. DCSD [28] is better
behaved and roughly halves the error of CCSD over this
density range. SCS-DCSD [33] is a further improvement
and provides the best overall performance of the N6

scaling methods. Remarkably, DCSDT [29,30] yields
results of extremely high accuracy, recovering more
than 94% of the DMC correlation energy at all densities,
which corresponds to an error of less than 1.7 mEh, i.e.,
about 1 kcal=mol.
Results on solid lithium.—Next, we investigate the

transferability of the above performance to a real material.
We study solid lithium, which is a simple metal with a
valence electron density corresponding to rs ≈ 3.2. We use
CCSD, DSCD, ring-CCSDT, CCSDT, and DCSDT to
calculate the equilibrium lattice parameter, bulk modulus,
and cohesive energy. All calculations were performed with
a development branch of PySCF [77–79], and all technical
details—such as pseudopotentials, basis sets (up to quad-
ruple-zeta Gaussian type orbitals), and Brillouin zone
samplings (up to 64 k points, plus extrapolation)—are
the same as in our previous work [11]; in that work, we
found that CCSD predictions had significant room for
improvement (at the CCSD level, we find that our updated
finite-size extrapolations cause only small differences from
our previous work, e.g., under 0.1 mEh in the cohesive
energy and under 0.01 Å for the lattice parameter). We
estimate the ring-CCSDT, CCSDT, and DCSDT energies
using composite corrections, by again considering the
differences to DCSD, based on calculations with small

FIG. 2. Ratio of the coupled-cluster correlation energy to the
diffusion Monte Carlo (DMC) correlation energy [76] for the
three-dimensional UEG with rs ¼ 1–5, as given by the methods
indicated in the legend. The methods are separated into those that
are purely diagrammatic (left) and those that are semiempirical
(right). Range of chemical accuracy (�1 kcal=mol or�1.6 mEh)
is shown with a gray shaded area.

TABLE I. UEG correlation energy per electron for rs ¼ 2 from
various correlated methods at or near the complete basis set limit
for N ¼ 14, 54, and 114 electrons with a Γ-Point centered mesh.
The first seven rows of data are from this Letter.

Ec=N (mEh)

N ¼ 14 N ¼ 54 N ¼ 114

CCSD −29.2 −30.2 −36.5
ring-CCSDT −30.9 −32.3 −39.8
CCSDT −31.4 −32.9 −40.7
SCS-CCSD −36.2 −37.3 −44.9
DCSD −30.5 −31.5 −38.9
SCS-DCSD −32.6 −33.9 −41.9
DCSDT −31.5 −33.0 −41.1

CCSDTQ [68] −31.7 � � � � � �
ph-AFQMC [72] −31.6 −33.1 −40.7
DMC [69,73] −31.0 −31.9 � � �
FCIQMC [74] −31.8 � � � � � �
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supercells (containing 8 and 16 Li atoms), frozen core
orbitals, and frozen virtual natural orbitals [46].
Results are presented in Fig. 3, where they are compared

to low temperature experimental results [80–83] that have
been corrected for zero-point vibrational effects based on
HSE06 phonon calculations [80]; a table of all values is
given in the Supplemental Material [46]. Consistent with
our results on the UEG, we see relatively systematic
improvement with increasing sophistication of the theory.
DCSD, ring-CCSDT, CCSDT, and DCSDT are all
improvements over CCSD and they achieve accuracies
of 0.009–0.022 Å, 0.16–0.28 GPa, and 4.5–6.6 mEh in the
lattice constant, bulk modulus, and cohesive energy,
respectively. It is hard to disentangle the remaining dis-
crepancies, which likely include some combination of
pseudopotential, basis set, and finite-size error, incomplete
correlation, and experimental uncertainty, including vibra-
tional corrections. We also compare to DFT results reported
in Ref. [80] using the LDA [84] and HSE06 [85–87]
functionals. While the LDA functional does not predict
accurate structural properties (despite its exactness for
the UEG), the HSE06 functional performs very well.
Importantly, we see that the improved methods explored
in this Letter clearly outperform CCSD, bringing CC theory
in line with the best performing DFT functionals.
Conclusion.—Despite the apparent simplicity of simple

metals, including the UEG, achieving high accuracy for the

electron correlation energy with ab initio wave function or
diagrammatic methods is clearly a challenge. By contrast,
this limit is almost trivial for DFT, where the LDA plus
gradient corrections is ideal. We have shown that within the
family of CC theories, the infinite-order inclusion of
connected triple excitations is essential, although semi-
empirical treatments of these effects are surprisingly
effective. We expect that the methods explored here, which
have been evaluated for their ability to predict the proper-
ties of nearly uniform systems, will outperform DFT for
more heterogeneous and complex systems, such as those
arising in surface chemistry that require accurate treatments
of dispersion interactions and stretched bonds. Before CC
methods are widely used in this context, their compara-
tively high computational and storage costs must be
addressed. However, in the meantime, they can be used
to provide predictions of benchmark quality, especially in
the many situations where experimental values cannot be
obtained to the required precision.

Note added.—Recently, a related work byMasios et al. [88]
appeared, proposing a new method that removes the
infrared divergence from CCSD(T).

Data for this study can be found at [89].
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