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We propose a solvable class of 1D quasiperiodic tight-binding models encompassing extended,
localized, and critical phases, separated by nontrivial mobility edges. Limiting cases include the Aubry-
André model and the models of Sriram Ganeshan, J. H. Pixley, and S. Das Sarma [Phys. Rev. Lett. 114,
146601 (2015)] and J. Biddle and S. Das Sarma [Phys. Rev. Lett. 104, 070601 (2010)]. The analytical
treatment follows from recognizing these models as a novel type of fixed points of the renormalization
group procedure recently proposed in Phys. Rev. B 108, L100201 (2023) for characterizing phases of
quasiperiodic structures. Beyond known limits, the proposed class of models extends previously
encountered localized-delocalized duality transformations to points within multifractal critical phases.
Besides an experimental confirmation of multifractal duality, realizing the proposed class of models in
optical lattices allows stabilizing multifractal critical phases and nontrivial mobility edges in an undriven
system without the need for the unbounded potentials required by previous proposals.
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Quasiperiodic systems (QPSs) offer a rich playground of
interesting physics ranging from exotic localization proper-
ties in one [1–6] or higher [7–14] dimensions, to intriguing
topological properties [15–19]. Quasiperiodicity has been
studied in widely different platforms, including optical
[2,4,5,20–26] and photonic lattices [3,12,15,17,27–29],
cavity-polariton devices [30], phononic media [31–36],
moiré materials [37], periodically and quasiperiodically
driven systems [38–44], and non-Hermitian quasicrystals
[45–51]. The ubiquity of QPSs and their relevance to
several interdisciplinary topical issues rendered these sys-
tems a hot topic of research.
QPSs host phases with fully localized and extended

wave functions. Interestingly, quasiperiodicity can also
stabilize critical multifractal states, first encountered at
the localization-delocalization transition lines, and later
found to persist over extended regions [40,52–58].
QPSs present substantial challenges for theoretical meth-

ods, and an analytical treatment of the localization phase
diagrams remains restricted to a few fine-tuned models
[1,53,59–63], and even a smaller subset hosts critical phases
[53,57], that have been a subject of very recent experimental
interest [64]. In particular, Ref. [53] found critical phases
with energy-independent transitions to localized and delo-
calized phases, i.e., without mobility edges. These were
shown to be robust to interactions, giving rise to many-body
critical regimes [65] and have been simulated using ultracold

atoms [66]. In Ref. [57] mobility edges were reported,
however, requiring unbounded potentials. Examples of
coexistence of extended, critical, and localized regimes,
separated by mobility edges, were reported in Ref. [67],
but only numerically. As the existence of energy-dependent
critical-to-extended or critical-to-localized transitions has
not been experimentally reported so far, more models with
such physics, no need for diverging potentials, and with
analytically exact phase diagrams, are of topical and practical
interest for experimental implementations.
Here,wepropose a class of 1Dquasiperiodic tight-binding

models that includes extended, localized, and critical phases
and determine its phase diagram analytically in the thermo-
dynamic limit. Physically motivated by previous experimen-
tal realizations in optical lattices, our models contain
exponentially decaying hoppings and quasiperiodic harmon-
ics, with a tunable decay length. As limiting cases, this class
contains the Aubry-André model and the model in Ref. [63],
that were already experimentally realized [2,25], and the
model in Ref. [60]. Away from these limits, our class of
models contains novel features, not found in any of the
limiting cases: critical phases that extend over a considerable
region of parameters and energy-dependent transitions
between critical and extended or localized phases.
Themain results are shown in Fig. 1. In Fig. 1(a), we show

numerical and analytical results for the phase diagram, for a
fixed set of parameters, where a critical phase exists over a
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wide range of the quasiperiodic potential strength V [see
Eq. (1)]. The phase diagram hosts exact dualities that are
more general than the ones previously found for the limiting
models in Refs. [60,63]. They exist not only between the
extended and localized phase and at the self-dual (SD)
transition points, but also within the critical phase.
Examples are shown in Fig. 1(c), where the real-space wave
function amplitude un at site n, is exactly equal to its dual ũn
[seeEq. (4) for definition], at dual points in the phase diagram
marked in Fig. 1(a). In Fig. 1(b), we also show that highly
tunable mobility edges between extended and localized
phases can be introduced by choosing different decay lengths
for the hoppings and quasiperiodic harmonics. Interestingly,
we can have all the phases, including the critical phase,
arising at different energies for a fixed set of parameters, as
also shown in Fig. 1(b).
Model and methods.—We consider a family of models

parameterized by the Hamiltonian

H ¼ t
X

n≠n0
eiαðn−n0Þe−pjn−n0jc†ncn0

þ 2V
X

n

Xþ∞

l¼1

e−ql cos½lð2πτnþ ϕÞ�c†ncn ð1Þ

where c†n creates a particle at site n. The first term describes
hoppings modulated by a magnetic flux α with an expo-
nential decay determined by p. The second term represents
a quasiperiodic potential, incommensurate with the lattice
for τ ≠ Q, obtained by summing harmonics of the incom-
mensurate wave number 2πτ with exponentially decaying
amplitudes controlled by the parameter q. In the following
we set t ¼ 1 unless otherwise stated. The model in Eq. (1)
reduces to that in [60] in the q → ∞ limit and α ¼ 0 after
replacing t → tep and V → Veq. Similarly, it reduces to the
model in [63] for large p, and to the Aubry-André model
when both p and q are large.
We consider finite systems with L sites. In order to avoid

boundary defects, we consider rational approximants of the
irrational parameter τ. We chose 1=τ as the golden ratio in
the numerical calculations, but our analytical results for the
phase diagram are independent of τ. The rational approx-

imants are written as τðnÞc ¼ Fn−1=Fn, where Fn is a
Fibonacci number defining the number of sites L in the unit
cell, with L ¼ Fn [68,69]. We impose twisted boundary
conditions, with phase twists kwhich is the same as working
in a fixed momentum sector of the Hamiltonian in the Bloch
basis defined as cn → cm;r ¼N−1=2P

k e
ikðmþrLÞc̃m;k, where

m ¼ 0;…; L − 1 runs over the L sites of the unit cell, and
r ¼ 0;…; N is the unit cell index, with N → ∞ the total
number of unit cells. The Hamiltonian for a fixed k sector
becomes

HðkÞ¼ t
X∞

r¼−∞

XL−1

m;m0¼0

e−pjrLþm−m0jeiðα−kÞðmþrL−m0Þc̃†m;kc̃m0;k

þ2V
XL−1

m¼0

Xþ∞

l¼1

e−ql cos½lð2πτcmþϕÞ�c̃†m;kc̃m;k: ð2Þ

which is just the Hamiltonian of a system with L sites and a
phase twist k. For the analytical calculations, we study
commensurate approximants (CAs) defined by τc ¼ L0=L,
where L0 and L are coprime integers, in the L → ∞ limit
(infinite unit cell size or quasiperiodic limit). In particular, we
use the methods introduced in Ref. [70] and an exact
generalized duality that we prove below.
Our analytical results are confirmed numerically through

the real-space and momentum-space inverse participation
ratios, respectively, IPR and IPRk. For an eigenstate
jψðEÞi ¼ P

n ψnðEÞjni, where fjnig is a basis localized

at each site, these quantities are defined as IPRðkÞðEÞ ¼
ðPn jψ ðkÞ

n ðEÞj2Þ−2 Pn jψ ðkÞ
n ðEÞj4 [71], where ψk

nðEÞ are the
amplitudes of the discrete Fourier transform of the set

(a) (b)

(c)

FIG. 1. (a) IPR [see below Eq. (2) for definition] results
obtained numerically for L ¼ F16 ¼ 987, p ¼ q ¼ 1 and as a
function of the strength of the quasiperiodic potential V [see
Eq. (1)]. Superimposed are the analytical extended-localized
phase boundaries (SD points) and the critical phase (bounded
by green lines). (b) Phase diagrams obtained for p ¼ 1.5, q ¼ 1
(up) and p ¼ 1, q ¼ 1.5 (down). The dashed lines indicate values
of V for which all the phases can be reached at different energies.
(c) Examples of eigenstates un and dual eigenstates ũn defined in
Eq. (4) at dual points in the phase diagram indicated in (a), for
L ¼ F14 ¼ 377. Since p ¼ q, WðxÞ ¼ 1 and ũ0n and un are
simply related by the Aubry-André duality.
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fψnðEÞg. In the extended phase, the IPR scales as L−1 and
IPRk is L independent, while in the localized phase, the
IPRk scales as L−1 while the IPR is L independent (for large
enough L). At a critical point or critical phase, the wave
function is multifractal: it is delocalized in real and
momentum space and both the IPR and IPRk scale down
with L [71].
Exact duality.—The Schrödinger equation for the model

in Eq. (2) with phase twists k can be written as

hnun −
X∞

m¼−∞
eiðα−kÞðn−mÞe−pjn−mjum ¼ 0; ð3Þ

where hn ¼ η − Vχðq; 2πτnþ ϕÞ, η ¼ Eþ tþ V and
χðλ;xÞ¼P

l e
−λjljeilx¼sinhðλÞ½coshðλÞ−cosðxÞ�−1. At dual

points Pðt; V; p; q; α; E;ϕ; kÞ and P0ðt0; V 0; p0; q0;
α0; E0;ϕ0; k0Þ, this equation can be mapped into a dual
equation under the duality transformation (see Ref. [72] for
proof):

ũn ¼
X

m

ei2πτnmWð2πτmÞum; ð4Þ

where WðxÞ ¼ χðq0; xþ ϕ0Þχ−1ðp; xþ k − αÞ. The dual
points P and P0 satisfy

ϕ0 ¼ k − αþ π
ðs − 1Þ

2
;

− k0 þ α0 ¼ ϕþ π
ðs − 1Þ

2

DðV 0; η0; p0; q0Þ
BðV 0; η0; p0Þ ¼ s

DðV; η; p; qÞ
AðV; η; qÞ ;

AðV0; η0; q0Þ
BðV 0; η0; p0Þ ¼

BðV; η; pÞ
AðV; η; qÞ

η0

BðV 0; η0; p0Þ ¼ s
η

AðV; η; qÞ ð5Þ

where s ¼ �1 and

AðV; η; qÞ ¼ −η coshqþ V sinh q

BðV; η; pÞ ¼ −η coshpþ t sinhp

DðV; η; p; qÞ ¼ η coshp coshq − t cosh q sinhp

− V coshp sinh q: ð6Þ

For fixed p ¼ q, Eq. (4) defines the usual Aubry-André
duality. The self-duality condition is imposed by choosing
P ¼ P0. In this case, Eq. (5) is solved simply through the
condition AðV; η; qÞ ¼ �BðV; η; pÞ, that yields the follow-
ing equation for the SD points:

E ¼ V sinhq ∓ t sinhp
cosh q ∓ coshp

− t − V: ð7Þ

Examples of dual points are shown in Fig. 2(a). Points P
and P0 are globally dual, being described by the duality
transformation in Eq. (4), as well as points P� and P0�.
However, local dualities can also arise close to the SD
points even along directions in the parameter space where
the global duality breaks down [73]. Examples are the
points P� and P in Fig. 2(a). These locally dual points are
defined by invariant local energy dispersions under the
interchange k ↔ ϕ, but only for large enough L [73].
The global duality transformation defined in Eq. (4) was

confirmed to match the definition given in Ref. [73] in
terms of CAs. Given dual points in the phase diagram,
the definition introduced in Ref. [73] allows, for a given
CA, to calculate L samples of the associated duality
function W0ðxÞ ∝ Wð2πxÞ at points xn ¼ mod ðτcn=; 1Þ,
n ¼ 0;…; L − 1 (see Ref. [72], Sec. S2 for details).
Figure 2(b) (top) shows perfect agreement between the
exact global duality function WðxÞ in Eq. (4) and the
samples of duality function W0ðxÞ computed through a CA
with L ¼ 55 sites. The results were obtained by choosing a
fixed point P and different dual points P0 defined by
varying q0. This illustrates that even though P is fixed, the
duality transformation depends on its dual point P0 (in
particular on q0), in accordance with the definition in
Eq. (4), a feature that is absent in previously found exact
duality transformations [60,63]. Finally, Fig. 2(b) (bottom)
shows examples of duality functions W0ðxÞ obtained at

(a) (b)

FIG. 2. (a) Example of globally dual points obeying the global
duality in Eq. (4) (sets of points P ↔ P0 and P� ↔ P0� connected
by black lines), locally dual points obeying local hidden dualities
(P ↔ P� connected by white line, belonging to plane p ¼ 1.3),
and a SD critical point Pc. For this figure, we have set
q ¼ q0 ¼ 1. (b) Top: duality function W0ðxÞ ∝ Wð2πxÞ for a
point P defined by p ¼ 1.3, q ¼ 1, V ≈ 0.73, E ≈ 0.34, and
different dual points parameterized by different values of q0 (the
remaining dual parameters, V 0, p0 and E0 were obtained by
solving Eq. (5) for the different choices of q0). The data points
correspond to the L ¼ 55 samples of the duality function W0ðxÞ
obtained for a CAwith τc ¼ 34=55 (see Ref. [72] for details). The
full lines are plots of the exact analytical duality function in
Eq. (4). The latter was normalized so that Wð0Þ ¼ W0ð0Þ.
Bottom: examples of samples of W0ðxÞ for different locally dual
points within the plane p ¼ 1.3, for τc ¼ 55=89 and τc ¼ 89=144
(the energies for the different CAs were chosen to be the closest
possible to each other).
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locally dual points, being nonsmooth for specific values of
x, as previously found for other models [73,74].
Phase diagram.—We now analytically obtain the com-

plete phase diagram. The transitions between extended and
localized phases obtained through the IPR=IPRk calcula-
tions perfectly match the SD points described by Eq. (7).
Examples are shown in Fig. 1(a) for p ¼ q, when Eq. (7)
reduces to the Aubry-André energy independent SD line
V ¼ t, and Figs. 3(a) and 3(b) for p ≠ q. However, the SD
points can also occur within the critical phase, in which
case they are not associated with any transition. This
implies that the phase boundaries of the critical phase
are not described by SD points.
To obtain the full phase diagram analytically we make

use of the renormalization-group approach developed in
Ref. [70]. In fact, the model studied here is a fixed-point
model according to the classification in [70]. Its character-
istic polynomial PLðφ; κÞ≡ det½HLðφ; κÞ − E�, with
HLðφ; κÞ the Hamiltonian for a CA with L sites, is (see
Ref. [72])

PLðφ;κÞ¼VL cosðφÞþ tL cosðκÞþCL cosðφÞcosðκÞþDL;

ð8Þ

where φ ¼ Lϕ, κ ¼ Lk, and VL, tL, CL and DL are
renormalized couplings. For the simplest CA (one site

per unit cell), we have, using the definitions in Eq. (6),
that t1 ¼ AðV; η; qÞ, V1 ¼ BðV; η; pÞ, C1 ¼ η, and
D1 ¼ DðV; η; p; qÞ. The ratios between the renormalized
couplings VL, tL, and CL can be computed exactly.
If jt1=C1j > 1 or jV1=C1j > 1, we have, respectively,

��� tL
CL

���¼
��gþL

� t1
C1

�þ g−L
� t1
C1

���

2
;

���VL

CL

���¼
��gþL

�V1

C1

�þ g−L
�V1

C1

���

2
;

ð9Þ

where g�L ðxÞ ¼ ðx�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
ÞL. On the other hand, if

jC1=t1j > 1 or jC1=V1j > 1 we have, respectively,

jtL=CLj ¼ jTLðt1=C1Þj; jVL=CLj ¼ jTLðV1=C1Þj;
ð10Þ

where TLðxÞ is the Lth order Chebyshev polynomial. It is
easy to see that if jt1=V1j; jt1=C1j > 1 we have that
jtL=VLj; jtL=CLj → ∞ exponentially in L as L → ∞,
i.e., we are in the extended phase. For jV1=t1j;
jV1=C1j > 1, we have jVL=tLj; jVL=CLj → ∞ and the
phase is localized. Finally, jC1=t1j; jC1=V1j > 1 ensures
that jCL=tLj; jCL=VLj > 1 for any L (a property of
Chebyshev polynomials), and the system is in a critical
phase. Therefore, the phases and phase boundaries are
fully determined through the previous conditions by
knowing the functions in Eq. (6). Summarizing, phases
and phase boundaries are analytically given by

jA=Bj; jA=ηj>1; ext

jB=Aj; jB=ηj>1; loc

jη=Aj; jη=Bj>1; crit ð11Þ

jAj¼ jBj; jAj; jBj> jηj; ext to loc

jAj¼ jηj;jAj; jηj> jBj; crit to ext

jBj¼ jηj;jBj; jηj> jAj; crit to loc; ð12Þ

where we omitted the parameter dependence for clarity.
From the ratios of renormalized couplings we are also able
to calculate the correlation lengths in the extended and
localized phases in terms of A, B, and η (see Ref. [72]).
Note that the L → ∞ limit defines the phase diagram for
any τ because the renormalized couplings only depend
on L.
To confirm our analytical results, we show in Figs. 3(b)–

3(d) some examples of finite-size scaling results that
agree with the analytical phase boundaries here unveiled.
Note that while in the extended-to-localized transitions
both the IPR and IPRk scale down only at the critical point
[Fig. 3(b)], such scaling is observed for the entire range
of the critical phase when the latter exists [Figs. 3(c)
and 3(d)]. In [72] we also carried out a multifractal

(a) (b)

(c) (d)

FIG. 3. (a) IPR results obtained for p ¼ 1.3, q ¼ 1, and
L ¼ F16 ¼ 987, superimposed with the analytical curves for
SD points (black) and phase boundaries of the critical phase
(green). In each phase, we also show the asymptotic results of the
renormalized couplings as L → ∞. (b)–(d) Finite-size scalings of
the IPR (red) and IPRk (blue) for points ðV; EÞ across the paths
shown in the dashed curves in (a). The results were averaged over
70, 25, 16, and 6 random shifts ϕ and twists k, respectively, for
increasing L∈ ½144; 10946�. The dashed vertical lines correspond
to the analytical results for the phase boundaries.
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analysis at some points in the critical phase to show the
nonlinear behavior of the fractal dimension that character-
izes multifractal phases [75].
Discussion.—We analytically obtained the phase dia-

gram of the richest family of 1D quasiperiodic solvable
models, to our knowledge, hosting (i) critical multifractal
phases in addition to localized and extended ones, and
energy-dependent transitions between all these phases; and
(ii) a rich generalized duality symmetry that includes
dualities inside the critical phase.
From a practical perspective, the family of models we

propose can be experimentally realized with currently
available techniques. The model in [63] has exactly the
quasiperiodic potential considered here and was already
experimentally realized using a synthetic lattice of laser-
coupled momentum modes [25]. Our model simply
requires additional longer-range hoppings (but still expo-
nentially decaying), a possibility put forward in [76]. It can
also be simulated in conventional optical lattices, where the
exponential hopping decay rate can be directly estimated
[60]. A single incommensurate potential (our large q limit)
was already realized in optical lattices by applying a second
laser beam with a wave vector τ that is incommensurate
with that of the primary lattice. Additional quasiperiodic
harmonics can be introduced by adding new laser beams
with wave vectors that are multiples of τ, as proposed in
[63]. The engineering of optical lattices with kicked kinetic
energy or quasiperiodic potential is also a possible way to
implement our model, as proposed in [57]. An advantage of
our model is that the critical multifractal phase can be
realized without the need of unbounded potentials. We also
note that the existence of exact dualities has direct
experimental relevance: critical-extended transitions are
dual of critical-localized transitions, implying that the
detailed experimental characterization of one transition
can give us information on both. The impact of interactions
on the phase diagram of this model is an interesting
question for future research.
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