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We propose a new formula that extracts the quantum Hall conductance from a single ð2þ 1ÞD gapped
wave function. The formula applies to general many-body systems that conserve particle number, and is
based on the concept of modular flow, i.e., unitary dynamics generated from the entanglement structure of
the wave function. The formula is shown to satisfy all formal properties of the Hall conductance: it is odd
under time reversal and reflection, even under charge conjugation, universal and topologically rigid in
the thermodynamic limit. Further evidence for relating the formula to the Hall conductance is obtained
from conformal field theory arguments. Finally, we numerically check the formula by applying it to a
noninteracting Chern band where excellent agreement is obtained.
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Since the discovery of the quantum Hall effect, the
investigation of gapped topological phases has been at the
forefront of quantum many-body physics [1–3]. Such
phases cannot be characterized by any local order param-
eters and all of their unusual properties emerge from the
entanglement of the ground state wave function [4].
Quantifying this connection has been a persistent and
interesting challenge for the past few decades.
For example, entanglement entropy in a ground state

wave function reveals the total quantum dimension of
anyons [5–7] while access to multiple ground states on a
torus allows for a determination of modular matrices
characterizing the anyons [8,9]. Further information, such
as the entanglement spectrum, reveals the protected edge
states [6,7,10–16]. Yet, how to extract the quantum Hall
conductance, the first discovered topological quantity, from
the entanglement pattern of a gapped wave function alone
remains an open question. Here, by gapped wave function,
we mean the ground state wave function of a gapped, local
Hamiltonian. Solving this question also provides an entan-
glement characterization of the boundary chiral anomaly
via the bulk-edge correspondence. Besides its foundational
interest, evaluating such a formula in various variational
ansatz of wave functions could help characterize limits to
the efficient representations of quantum states especially by
tensor networks or stabilizers [17–21].
There are several approaches to extracting Hall conduct-

ance that do not invoke entanglement. For free fermion
systems, there are the Thouless-Kohmoto-Nightingale-Nijs
formula [22] and Fredholm index formula [23–25]. While
the latter idea has been generalized to the interacting case,
its formalism uses quasiadiabatic evolution and is more
convenient to work with if the actual Hamiltonian, rather
than a single wave function, is known [26,27]. We also note
earlier works on extracting the many-body Chern number
from a single wave function based on connections to

topological quantum field theory and surgery [28,29].
This quantity coincides with the Hall conductance in
free-fermion systems but is a distinct quantity in generic
interacting systems (see Ref. [29] for details).
In this Letter, we conjecture a new formula, with analytical

and numerical support, which uses entanglement to compute
the Hall conductance from a single wave function directly.
The formula is proposed for generic interacting systems
without assuming translational invariance [30].
The Hall conductance relies on charge conservation,

which the entanglement spectrum of a state is blind to [31].
Therefore, more data are necessary, motivating our use
of the modular Hamiltonian and modular flow in the
formula presented here. In a recent advance, the modular
Hamiltonian has appeared in a proposed formula for the
chiral central charge [32,33], which can be viewed as
entanglement transport under the modular flow [34]. (See
also [20,21] for related works.) Here, we are interested in
the Hall conductance σxy, a distinct topological invariant,
which requires an additional conserved U(1) charge Q.
Proposed formula for Hall conductance.—Consider a

lattice system on the plane with a U(1) symmetry that is
generated by the total charge operator Q ¼ P

i ni, where i
labels the lattice sites. Let jψi be a U(1) symmetric gapped
wave function, ρD ¼ TrD̄jψihψ j the reduced density matrix
of any given regionD. The modular Hamiltonian is defined
as KD ≔ − ln ρD, which is a Hermitian operator with a
lower-bounded spectrum and conserves the total number of
charges QD in that region, i.e., ½QD;KD� ¼ 0. The modular
Hamiltonian generates a unitary evolutionUDðsÞ ≔ e−isKD ,
called modular flow, where the modular time s is dimen-
sionless [35]. The Hall conductance is encoded in a charge
response under modular flow at the linear order in s.
Specifically, divide the plane into four regions A, B, C,

and D, whose linear sizes are larger than the correlation
length, and every three regions meet at a point once and
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only once [25,32]. Let K• and Q• denote the modular
Hamiltonian and charge of the corresponding region. The
response function we focus on is

ð1Þ

i.e., the charge response in BC under the modular flow on
AB. The modular Hamiltonian itself is nonuniversal and
ultraviolet divergent, but the expectation value of the
commutator will be argued to be topological and insensitive
to details of the wave function. Our proposal for Hall
conductance σxy is

Σðψ ;A;B; CÞ ¼ σxy: ð2Þ

Note that the left-hand side containing Q2
BC is consistent

with the fact that the unit of Hall conductance is e2=ℏ.
The rest of the Letter presents evidence for this formula

from various angles. We first show that the formula shares
the same general properties as the Hall conductance. We
then establish their quantitative connection via the bulk-
edge correspondence and conformal field theory (CFT)
arguments. Our discussion, which uses the defect operator,
provides a unifying viewpoint on the two different formulas
for the chiral central charge and Hall conductance. Finally,
we provide numerical evidence using both lattice and
continuum free-fermion models.
General properties.—Any formula for the Hall conduct-

ance needs to meet the following minimal requirements.
First of all, Σðψ ;A;B; CÞ should be real and additive under
stacking, i.e., on combining independent systems:

Σðψ1 ⊗ ψ2;A; B;CÞ ¼ Σðψ1;A;B;CÞ
þ Σðψ2;A;B;CÞ; ð3Þ

which are clear from its definition. Although additivity may
seem trivial, other topological quantities, e.g., the many-
body Chern number, do not possess this property [29]. We
now show that Σðψ ;A; B;CÞ also satisfies other require-
ments that are not manifest in the construction. It has the
same CRT transformation rules as the Hall conductance,
namely, it (i) is even under charge conjugation:

C∶ Σðψ ;A;B; CÞ ¼ ΣðCψ ;A; B;CÞ; ð4Þ

and (ii) is odd under the reflection [36]

R∶ Σðψ ;A; B;CÞ ¼ −Σðψ ;B; A;CÞ; ð5Þ

and (iii) is also odd under the time reversal

T ∶ Σðψ ;A; B;CÞ ¼ −ΣðT ψ ;A;B;CÞ: ð6Þ

Furthermore, (iv) it is topological, in the sense that

Σðψ ;A; B;CÞ ¼ Σðψ ;A0; B0; C0Þ; ð7Þ

where A0, B0,C0 are smoothly deformed subregions with the
same topology as A, B, C. Finally, (v) it is universal

Σðψ ;A;B; CÞ ¼ Σðψ 0;A;B;CÞ; ð8Þ

where ψ 0 is equal to ψ deformed by a U(1) symmetric local
operator.
The justification of these properties uses three ingre-

dients. The first one is a conversion formula that follows the
Schmidt decomposition

KDjψi ¼ KD̄jψi; ð9Þ

where KD and KD̄ are the modular Hamiltonians of the
state jψi for an arbitrary region D and the complement D̄,
respectively. The second is the clustering property, the
correlation function of two operators Ox and Oy factorizes
when their distance jx − yj is larger than the correlation
length ξ

hOxOyiψ ¼ hOxiψhOyiψ þOðe−jx−yj=ξÞ;

where h·iψ is the expectation value in the state jψi. The
third one is an assumption on the decomposition of
modular Hamiltonians when they act on the state:

where A and C do not meet directly [39]. We expect the
decomposition to hold when the linear sizes of the sub-
regions are larger than the correlation length. The proof
of the CRT transformation rules only uses Eq. (9). The
argument of the topological rigidity and universal nature
uses the other two ingredients as well. The third assumption
was also used in [32] to argue the rigidity of the modular
commutator formula for the chiral central charge as well.
Charge conjugation: The charge conjugation sends the

charge operator from QD to ND −QD, where ND is the
maximal number charge of the region D. Here, we have
assumed a finite Hilbert space per site. Thus, the right-hand
side of Eq. (4) is essentially

h½KAB;ðNBC−QBCÞ2�iψ ¼h½KAB;−2NBCQBCþQ2
BC�iψ ;

which can be shown to equal to the left-hand side by using
h½KAB;QBC�iψ ¼ 0 [36].
Reflection: For a symmetric choice of A, B, and C,

reflection effectively interchanges A and B. In fact, Eq. (5)
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holds more generally even when A, B, C have unequal sizes
and different shapes. Nevertheless, we still call Eq. (5) the
reflection transformation. Proving it is equivalent to show-
ing the vanishing of the following quantity

h½KAB;Q2
BC þQ2

AC�iψ ¼ h½KAB;Q2
BC þQ2

AC −Q2
ABC�iψ ;

where we have used h½KAB;Q2
ABC�iψ ¼ 0 in the second

step, i.e., modular flow in AB does not change the charge in
ABC. Expanding the charge operators in terms of QA, QB,
and QC gives h½KAB;Q2

C − 2QAQB�iψ , which vanishes by
using Eq. (9).
Time reversal: The time reversal keeps the charge

operator invariant. Equation (6) follows from hT ψ jT ϕi ¼
hϕjψi and the Hermiticity of KAB and QBC.
Topological: There are two types of deformation that

should be considered: deformations of the boundary
between regions that are (1) far from any triple contact
point or (2) close to one of them. Typical examples are
shown in Figs. 1(a) and 1(b), respectively, where a small
blob b is removed fromD and attached to B. One can check
that Σðψ ;A;B; CÞ does not change under either of these
two deformations when the size of b is larger than the
correlation length [36].
Universal: We deform the state jψi to jψ 0

xi ∝ jψi þ
Oxjψi by a U(1) symmetric local operator at position x, and
show Eq. (8). If Ox is inside a region and far from any
boundary, it follows from the clustering property, which
implies that the reduced density matrices and thus modular
Hamiltonians of other regions do not change [36]. The case
where Ox is close to a boundary can be justified by
exploiting the topological rigidity of Σðψ ;A; B;CÞ, similar
to the argument in [7].
Although the results thus far are compatible with

identifying Σ ∝ σxy in Eq. (2), the constant of proportion-
ality must be determined. In particular we need to eliminate
the trivial possibility that (2) always vanishes. We turn to
this task next.
Connection to Hall conductance.—The universal prop-

erty Eq. (8) allows us to deform the state to a nicer form.
Therefore, without loss of generality, we can consider
gapped states whose edge can be described by a ð1þ 1ÞD
conformal field theory (CFT) with the central charge c and

c̄ that quantifies the number of chiral and antichiral edge
modes. The modular Hamiltonian of a simply connected
region D with a smooth boundary can be approximated
by the same CFT Hamiltonian supported on the boundary
∂D [7,10]

ρD ¼ 1

ZD
e−KD; KD ¼ βHCFT; ð10Þ

where β is a nonuniversal constant. HCFT is defined by the
Virasoro generators L0 and L̃0 that governs the dynamics of
the chiral and antichiral modes, respectively

HCFT ¼ 2π

lD

�
L0 þ L̃0 −

cþ c̄
24

�
;

where lD is the circumference of the region D. Thus,
KD only generates nontrivial modular flow along ∂D,
where the excitation moves with the speed v ¼ β. In the
case with U(1) symmetry, the CFT is augmented by a
holomorphic and antiholomorphic current J, J̃ at level kL,
kR, which characterizes the U(1) current associated to the
chiral and antichiral modes. The Hall conductance is σxy ¼
ðkL − kRÞ=2π.
It is more instructive to consider the U(1) defect operator

eiμQD and obtain Q2
D via Taylor expansion in μ. This

operator creates a line defect along the boundary of D, and
thus its expectation value ZDðμÞ ≔ hψ jeiμQD jψi satisfies an
area law

lnZDðμÞ ¼ −αlD þ γ þ � � � ; ð11Þ

where α is the line tension, γ is universal, and the ellipsis
represents terms that vanish in the limit lD → ∞ [40]. Our
focus is the area law coefficient, which is dictated by the
charged Cardy formula [41]

α ¼ ðkL þ kRÞμ2
4πβ

: ð12Þ

This result is related to the spectral flow of the CFT ground
state energy under a U(1) twist [37]. Its linearity in kL þ kR
is because the levels physically quantify the number of
charged modes. The μ2 dependence will play an important
role in our following derivation.
We reinterpret the result with a quasiparticle picture.

There are chiral and antichiral modes sitting near the
boundary ∂D, the numbers of which are proportional to
kL and kR, respectively. Their correlation across the
boundary contributes to the line tension. We can then
separate α into two terms that account for the contribution
from the two types of modes

αchiral ¼
kLμ2

4πβ
; αantichiral ¼

kRμ2

4πβ
: ð13Þ

FIG. 1. Geometric deformation. Undeformed regions A, B, C
with: (a) Deformation “b” is away from the triple contact points.
(b) Deformation is close to one triple contact point.
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The idea is sketched in Fig. 2(a), where the chiral and
antichiral modes are the red and blue dots, respectively.
Under the modular flow generated by KD, the chiral and
antichiral modes inside the region D move in opposite
directions, as shown by the arrows.
Corresponding to Eq. (1), we apply this picture to

compute the response of eiμQBC under the modular flow
generated by KAB

ZBCðμ; sÞ ≔ hψ jeisKABeiμQBCe−isKAB jψi:

It suffices to focus on the chiral modes, the contribution
from the antichiral ones is the opposite. See Fig. 2(b). Only
the motion of chiral modes that are near the ABC and ABD
triple-contact points can affect ZBCðμ; sÞ at the linear order
in s. Near the ABC triple-contact point, chiral modes in B
that are correlated with C will enter A and increase the line
tension. The ABD triple-contact point can be analyzed
similarly. After summing up the two contributions, we have

d
ds

lnZBCðμ; sÞjs¼0 ¼ −2ðαchiral − αantichiralÞv;

where the velocity is v ¼ β as introduced before. By
plugging in Eq. (13), we have

d
ds

lnZBCðμ; sÞjs¼0 ¼ −
kL − kR

2π
μ2 ¼ −σxyμ2: ð14Þ

Here, the nonuniversal factor β is completely canceled,
which yields a universal answer. This is the main result of
this work. Expanding eiμQBC on the left-hand side above to
quadratic order in μ gives the right-hand side of Eq. (1)
which verifies our identification in Eq. (2). In [36], we
apply the same idea to purely 1þ 1DCFTs and show that it
detects the perturbative chiral anomaly, which is consistent
with the spirit of the bulk-edge correspondence.
Numerics.—We provide numerical support to our con-

jecture by simulating free fermion systems. In this section
we report on a lattice model and focus on Σðψ ;A; B;CÞ in

different phases, its finite size scaling, and topological
rigidity. The noninteger values are attributed to either finite-
size effect or the closing of the energy gap. [36] contains
other aspects as well as results on a continuum model. In
particular, we numerically check the remarkable μ2 depend-
ence in the area law coefficient Eq. (12) in lattice systems
and find excellent agreement.
We simulate the π-flux model on a square lattice. The

Hamiltonian,H ¼ P
ij tijc

†
i cj, consists of nearest-neighbor

hopping terms that implement π flux per plaquette and
next-nearest-neighbor hoppings that open up a gap and give
rise to various phases. We choose a one-dimensional path
inside the entire phase diagram that is parametrized by
η∈R. The system is time-reversal symmetric for η⩽0 and
breaks the symmetry for η > 0. There is a topological phase
at 0 < η < 2 with a Chern number C ¼ 1 and two trivial
phases elsewhere. In the numerics, we also add weak on-
site disorders to make the situation more general.
The result of Σðψ ;A;B; CÞ across the phase diagram is

shown in Fig. 3(a), where we obtain the correct Hall
conductance of each phase. Our formula indeed vanishes
identically in the time-reversal symmetric region η < 0.
Near the two phase boundaries, the curve becomes steeper
for larger subsystem sizes. In the topological phase, we
perform a more detailed finite size scaling. Let Δ ≔ 1 −
2πΣðψ ;A;B; CÞ be the difference between the theoretical
and numerical value, and the result is shown in Fig. 3(b).
The deviation decays exponentially with the linear size of
the subsystem and the decaying exponent is twice of the
correlation length. As a sanity check, if A, B, C form an
annulus (replace a disk neighborhood of the ABC triple-
contact point by region D) we find a null result. This is
consistent with our quasiparticle picture.
We also provide numerical evidence on the topological

rigidity as independent support from our analytical argu-
ment. For example, we deform the boundaries near the
triple-contact points, depicted in Figs. 4(a1)–4(a3), and
compute ΣðψÞ for the deformed geometry. As shown in

(a) (b)

FIG. 2. (a) Red and blue dots are the chiral and antichiral
modes, the bonds represent the correlation. The arrows designate
their motion under the modular flow UDðsÞ. (b) The antichiral
degrees of freedom are suppressed for the clarity of the figure.
The arrows designate the motion under the modular flow UABðsÞ.
The yellow shaded disks emphasis modes that make contribution
to the change of ZBCðμ; sÞ at the linear order in s.

(a) (b)

FIG. 3. (a) Σðψ ; A; B; CÞ across the phase diagram. Blue,
red, and green curves correspond to the disk geometry at
the corresponding radii r. The dashed line is the value
of the quantized Hall conductance. (b) Finite size scaling. The
blue dots are the data points and the red line is the fitting result.
We choose Lx ¼ Ly ¼ 40. For the annulus geometry, the inner
and outer radius is 7 and 14. For (b), the inverse correlation length
is ξ−1 ¼ 0.398.
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Fig. 4(b), its value remains the same across the entire phase
diagram even though the added blobs are not much larger
than the correlation length. The results are the same for
other deformations.
Discussion.—The present results can be understood as

linear response extensions that go beyond “static” entan-
glement features by utilizing the dynamics generated by the
modular (or entanglement) Hamiltonian. Here, the charged
Cardy formula evaluates the static features of the U(1) twist
operator eiμQ [40], and its linear response under the
modular flow is shown to give the Hall conductance. We
would like to note that the dynamical perspective presented
here is distinct from the one discussed in [32] which
assumes the equivalence of the modular and physical
Hamiltonians. It is important to highlight that our perspec-
tive is not only crucial in deriving the main result stated in
Eq. (1), but it also points to new potential connections
between conventional responses and quantum entangle-
ment. For instance, in free fermion systems with single-
charge fermion, we may anticipate an entanglement version
of the Wiedemann-Franz (WF) law, which indeed can be
obtained by combining the result in [32] and our formula

��
KAB; KBC −

π2

3
Q2

BC

��
ψ

¼ 0. ð15Þ

Understanding the violation of this entanglement WF law
and finding other such relations can shed new light on the
study of entanglement of many-body systems.
In addition to connecting entanglement and topological

response, our formula also shows how it encodes the
boundary ’t Hooft anomaly, which is a natural, albeit
less explored, question. Furthermore, it is interesting to
generalize our argument to other symmetries and higher
dimensions.
Moreover, both the previous work [32] and our formula

could aid in understanding the “expressibility” of different
variational ansatz wave functions, which is important for
numerical simulation of strongly correlated quantummany-
body systems. There is a long-standing puzzle whether the

projected entangled pair state (PEPs) is able to represent
interacting chiral states [42]. Evaluating these two formulas
in PEPs provide a path forward toward solving this
question and may shed light on developing new tensor
network architecture.
Entanglement entropy suffers from UV divergence in

generic Lorentz invariant quantum field theories (QFTs).
Distilling universal information from entanglement
requires a careful definition of entanglement in QFTs.
Our formula, shown to be universal, is an interesting
quantity to compute especially in topological quantum
field theories. Formulating the calculation in a meaningful
way requires a better understanding of multipartite entan-
glement in QFTs, which is an interesting and nontrivial
question in its own right.
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