
Equation of State of Cold Quark Matter to Oðα3
s lnαsÞ

Tyler Gorda ,1,2,* Risto Paatelainen ,3,† Saga Säppi ,4,5,‡ and Kaapo Seppänen 3,§

1Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
2ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH,

64291 Darmstadt, Germany
3Department of Physics and Helsinki Institute of Physics, University of Helsinki,

P.O. Box 64, FI-00014, Finland
4TUM Physik-Department, Technische Universität München, James-Franck-Str.

1, 85748 Garching, Germany
5Excellence Cluster ORIGINS, Boltzmannstrasse 2, 85748 Garching, Germany

(Received 25 July 2023; revised 29 September 2023; accepted 5 October 2023; published 1 November 2023)

Accurately understanding the equation of state (EOS) of high-density, zero-temperature quark matter
plays an essential role in constraining the behavior of dense strongly interacting matter inside the cores of
neutron stars. In this Letter, we study the weak-coupling expansion of the EOS of cold quark matter and
derive the complete, gauge-invariant contributions from the long-wavelength, dynamically screened
gluonic sector at next-to-next-to-next-to-leading order (N3LO) in the strong coupling constant αs. This
elevates the EOS result to the Oðα3s ln αsÞ level, leaving only one unknown constant from the unscreened
sector at N3LO, and places it on par with its high-temperature counterpart from 2003.
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Introduction.—A proper understanding of the thermo-
dynamics of dense strongly interacting matter is an out-
standing problem in theoretical physics. This is in large
part due to the infamous sign problem of lattice field theory
[1–5], which renders nonperturbative lattice Monte Carlo
techniques largely inapplicable in the region of large
baryon chemical potential μB and low temperatures T in
quantum chromodynamics (QCD).
At densities above 40 times the nuclear saturation

density, n0 ≈ 0.16 fm−3, a perturbative weak-coupling
expansion in the strong coupling constant αs becomes
applicable within the fundamental theory of QCD, due to
asymptotic freedom. In this regime, it becomes possible to
study the thermodynamics of cold (zero-temperature) quark
matter (QM) directly using well-established thermal-field-
theory tools [6–9]. The equation of state (EOS) of high-
density cold QM has in recent years received increasing
attention as a robust high-density constraint [10] to be used
when performing neutron-star EOS inference at lower
densities [11–27]. In addition to this phenomenological
application, there is great theoretical interest to study high-
density cold QM, due to the rich physics arising from the
dynamical screening of long-wavelength chromoelectric
and chromomagnetic fields. These screening effects

necessitate the development of an effective field theory
of the long-wavelength gluonic modes, which goes beyond
a fixed loop order in the weak-coupling expansion.
Such screening also occurs in a high-temperature quark-

gluon plasma. However, at high temperatures, low-energy
chromoelectric and chromomagnetic gluons can addition-
ally receive large thermal occupation numbers ∼1=α1=2s or
∼1=αs, respectively [28]. These large occupation numbers
lead to poor perturbative convergence within the long-
wavelength chromoelectric sector of QCD and necessitate a
nonperturbative treatment of the chromomagnetic sector at
high temperatures. Crucially, however, such a long-wave-
length “Bose enhancement” is absent within high-density
unpaired cold QM, and hence the thermodynamics of such
a system always remains a perturbative problem.
Furthermore, we also emphasize that this conclusion is
not modified by any possible color superconducting phases
that may exist at high densities, since the corrections to
bulk thermodynamics from these effects are exponentially
suppressed ∼ expð−#=α1=2s Þ [29–31].
Since long-wavelength gluons are not Bose enhanced in

cold QM, one could, in principle, extend the results for the
EOS to even lower densities by tackling increasingly
higher-order perturbative computations—something which
could lead to dramatic improvements within the aforemen-
tioned neutron-star EOS-inference setups. In this Letter, we
compute the full EOS contributions from the screened
gluonic sector at next-to-next-to-next-to-leading order
(N3LO) in αs in unpaired cold QM, bringing the result
to theOðα3s ln αsÞ level and on par with its high-temperature
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counterpart from 2003 [32]. This is achieved by deriving
the next-to-leading order (NLO) screening corrections to
long-wavelength gluon propagation in cold QM, general-
izing the recent results in [33,34] to zero temperature. We
find that our result shows very small renormalization-scale
dependence for μB where it is convergent, suggesting that
the screened gluonic sector is under good perturbative
control at high densities.
Structure of the weak-coupling expansion of the EOS.—

In the context of cold QM with vanishing quark masses in
the grand canonical ensemble, the EOS is given by the free
energy density Ω ¼ −p, where p is pressure, as a function
of the quark and lepton chemical potentials. In astrophysi-
cal environments, the conditions of charge-neutral, three-
flavor quark matter in equilibrium under the weak inter-
actions (beta equilibrium) are the most relevant. These
conditions reduce the EOS to a function of a single quantity
μB. Up to and including NLO, the EOS, which we
henceforth identify as pðμBÞ, is sensitive only to “hard”
quark and gluonic corrections from momenta K ∼ μB,
since the low-momentum quarks are Pauli blocked and
the screened gluonic sector is phase-space suppressed:R
K<α1=2s μB

d4K ≃ α2sμ
4
B. However, beginning at next-to-

next-to-leading order (N2LO) in αs, which was computed
in 1977 in the context of cold QM [35,36], the pressure
becomes sensitive to long-wavelength, screened gluonic
fluctuations. These field modes can be described via the
hard thermal loop (HTL) effective theory [28,37] [or hard
dense loop (HDL) [38–40] ], which captures the physics of
the “soft” momentum scale mE ∼ α1=2s μB, corresponding to
chromoelectric screening. At N2LO, because of the phase-
space suppression, self-interactions between these screened
gluons do not yet contribute. At the next order in αs,
however, interactions involving these screened fluctuations

must be included. In particular, there arise contributions
from self-interactions among the fluctuating soft modes and
also interactions between fluctuating soft and hard modes.
The pressure correction arising from the self-interactions at
N3LO has been computed within the leading-order HTL
theory [41,42], while the pressure correction arising from
interactions between the soft and hard modes involves
corrections to the leading-order HTL theory. These cor-
rections to high-density HTL have been calculated within
QED [43–45] at zero and high temperatures, and recently
within QCD [33,34] at high temperatures.
In total therefore, the pressure of cold QM at N3LO can

be written in the form

pN3LO ¼ ps þ pm þ ph; ð1Þ

where the three terms on the right-hand side come from the
different combinations of soft and hard momentum scales.
The first term ps is the purely soft contribution arising from
self-interactions between screened gluon field modes. The
second term pm, dubbed the mixed contribution, arises
from the corrections within the HTL theory. Finally, in
addition to soft and mixed terms, there are also fully hard
contributions ph, entering the expansion via four-loop
vacuum graphs in full QCD (see [42] for a list). In this
work, we compute the screened correction pm from the
mixed sector.
The screened gluonic modes lead to nonanalyticities in

the pressure, arising from logarithms of the ratio of the soft
and hard scales lnðmE=μBÞ. To N3LO, the pressure p of
cold and dense, beta-equilibrated three-color, three-flavor
(Nc ¼ Nf ¼ 3) unpaired QM with massless quarks can be
cast into the following form [36,46–48], (see [49] for the
general Nc and Nf expressions)

p
pfree

≃1−2

�
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π

�

−3

�
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π

�
2
�
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�

3
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�

þ3 lnXþ5.0021
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3
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3
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3
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π

�
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�

; ð2Þ

where pfree ¼ 3ðμB=3Þ4=4π2 is the pressure of a free Fermi
gas of quarks in beta equilibrium, αs ¼ αsðΛ̄Þ is the
renormalized strong coupling constant in the MS scheme
at the renormalization scale Λ̄, and X ≡ 3Λ̄=ð2μBÞ is a
quantity which should be taken to be Oð1Þ to minimize
large logarithms. We have written logarithms of αs by
grouping them in the natural expansion parameter Nfαs=π,
and set Nf ¼ 3. The coefficient c3;2 of the leading
logarithm was originally determined in [48]. Recently,
an all-order leading-logarithm resummation was conducted
in [52], using this term as input.
In this work, we conclusively determine the coefficient

c3;1ðXÞ of the next-to-leading logarithm. It should be

emphasized that this term is a well-defined and indepen-
dent coefficient in the perturbative series. While the
coefficient is now fully determined, the parts of the
c3;1ðXÞ contribution proportional to lnX could already
be inferred from renormalization group invariance using
lower-order results. Likewise, given this newly deter-
mined contribution, all parts of c3;0ðXÞ proportional to
lnk X can now be inferred with similar arguments, thus
resulting in the entire pN3LO except for one constant from
the hard sector.
Overview of the calculation.—The mixed contributions

correspond to the following diagrams stemming from the
classification of [42]
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ð3Þ

The double wavy lines correspond to soft, HTL-resummed
gluons; the wavy, solid, and dotted lines correspond to
hard, unresummed gluons, quarks, and ghosts, respectively;
and the trace is over the suppressed Lorentz indices.
Furthermore, a sum over the direction of fermionic flow
is implied. In Eq. (3), the two shaded blobs and the
respective Π’s correspond to the two distinct NLO soft
gluon self-energies at zero temperature: namely, the two-
loop corrections given in the first pair of parentheses
and the power corrections, given by the OðK2Þ term in a
small-K expansion, given in the second. The GLO is the
standard one-loop resummed HTL propagator [37,38],
dA ¼ N2

c − 1, K is the loop momentum associated with
the soft gluon, and the Π’s have been rescaled to be
dimensionless and independent of αs, (see details and
explicit expressions in [49]). In dimensional regularization
and in the MS scheme, the integration measure is defined
by

R
K ≡ðeγEΛ2

h=ð4πÞÞð4−DÞ=2 R dDK=ð2πÞD, where D≡
4 − 2ε and Λh is the factorization scale associated with
the split between the hard and soft modes [42,53]. The
complete Feynman rules can be found in [42].
Note thatΠ2;HTL andΠ1;Pow entering in Eq. (3) have been

recently computed at high temperature and large μB in
general covariant gauge [33], where they have been shown
to contain lnT terms that diverge in the zero-temperature
limit. These terms arise because the temperature regulates
certain infrared (IR) divergences associated with the hard
internal gluon lines in the self-energy diagrams. The
corresponding zero-temperature self-energies are computed
in [49] in terms of d-dimensional integral expressions. The
zero-temperature limit is achieved by using the exact
integral expressions of these self-energies and isolating
divergent bosonic integrals that vanish at exactly zero
temperature in dimensional regularization. This procedure
effectively converts, after renormalization, the lnT terms
into IR 1=ε terms in the strict zero-temperature expressions.
We find that the final expressions for the self-energies
depend linearly on the gauge parameter ξ in a general
covariant gauge, in contrast to the quadratic dependence
found at high temperatures in [33].
With the renormalized self-energies in hand, the mixed

contribution to the pressure can then be obtained by
computing the integral in Eq. (3). The integral over the
soft momentum K contains ultraviolet (UV) divergences

that arise because the HTL theory differs from full QCD in
the UV. These UV divergences must cancel with corre-
sponding IR divergences in the hard theory, contained in
ph. This cancellation has been explicitly shown in QED,
where the soft sector trivially vanishes, [53], but due to the
added complexity of QCD, we do not show this explicitly
—however, the cancellation must occur as long as HTL
does indeed correctly describe the soft physics at this order.
Importantly, upon computing the radial K integral in

Eq. (3), we find that only the specific combination of self-
energies Π2;HTL − Π1;HTLΠ1;Pow appears. Here Π1;HTL

denotes the standard one-loop HTL self-energy [37,38],
appearing in GLO. This particular combination is explicitly
gauge-invariant, guaranteeing the gauge invariance of the
mixed contribution to the pressure. We remark here that this
should be the case since the 2-loop HTL pressure corre-
sponding to the soft sector is known to be gauge indepen-
dent [42,54], and the 4-loop hard-sector diagrams are
likewise known to be algebraically gauge invariant [55].
We note also that the above self-energy combination also
naturally appears when one rescales the HTL effective
Lagrangian including the 2-loop and power corrections to
bring the kinetic term to a canonical form [34,56].
Results and discussion.—Upon computing the renormal-

ized pm in dimensional regularization (details are given
in [49], in general Nc and Nf), we find it to have a similar
form to the ps computed in [41,42], namely,

pm ¼ αsm4
EdA

ð4πÞ3
�
mE

Λh

�
−2ε

�
μB=3
Λh

�
−2ε

×

�
pm
−2

ð2εÞ2 þ
pm
−1ðXÞ
2ε

þ pm
0 ðXÞ

�

; ð4Þ

where the coefficients pm
i denote terms in the ε expansion

and do not depend on the coupling. The factor ðmE=ΛhÞ−2ε
arises from the integral over the soft-theory loop momen-
tumK in Eq. (3), while the factor ½μB=ð3ΛhÞ�−2ε arises from
the hard-theory calculation leading to the self-energies. We
find the new coefficients pm

i in Eq. (4) to be

pm
−2 ¼ −11; pm

−1ðXÞ ¼ 9 lnX − 4.8095;

pm
0 ðXÞ ¼ −

9

2
ln2X þ 2.0598 lnX − 5.6316: ð5Þ
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We note that this now confirms through an explicit
calculation a prediction made in [42]: pm

−2 ¼ −2ps
−2.

We then combine this result with similar expressions for
ps and ph in Eq. (1) (whose expressions are given in [49])
and obtain the renormalized result for the full N3LO
pressure

pN3LO ¼ αsm4
EdA

ð4πÞ3
�

ps
−2ln

2

�
μB=3
mE

�

þ
�

2ps
−1 þ pm

−1ðXÞ
�

× ln

�
μB=3
mE

�

þ ps
0 þ pm

0 ðXÞ þ ph
0ðXÞ

�

: ð6Þ

As mentioned above, we here assume the intermediate IR
and UV divergences between the different sectors to fully
cancel, which in turn ensures that the Λh dependence from
the different sectors cancels. From renormalization-scale
independence of the partial result (see, e.g., [53]), we are
additionally able to determine the full X dependence of
ph
0ðXÞ, leading to the form

ph
0ðXÞ ¼ −

9

4
ln2X − 26.367 lnX þ c0: ð7Þ

Equations (4)–(7) are our main result, and they fix the
coefficients in the pressure in Eq. (2) to be those given in
Table I, with c0 the remaining unknown constant from the
hard sector.
In Fig. 1 we show the partial N3LO pressure, neglecting

only the finite hard contribution ph
0ðXÞ at this order. In the

figure, the uncertainty of the truncation of the perturbative
series is estimated by varying of X∈ ½1=2; 2�, shown as a
shaded uncertainty band. In this and all subsequent figures,
we use the three-loop beta function when computing the
running αsðΛ̄Þ. We see from Fig. 1 that the pressure
contribution when including the screened gluonic sector
at N3LO is remarkably well converged. In particular, it has
nearly vanishing renormalization-scale dependence for all
μB > 2 GeV. In fact, we have verified that one obtains a
similarly well-converged result when neglecting the hard
contribution at N2LO as well. This is consistent with the
observation made in [41,42]: In cold QM, it is the hard
terms phðXÞ that drive the inevitable breakdown of
perturbation theory, in stark contrast to the high-temper-
ature case where the soft modes are responsible for the
breakdown.
We turn now to an analysis of the full N3LO pressure,

which we have now determined up to a single unknown

constant from the hard sector c0. Upon substituting in
different values, we find that the N3LO pressure strongly
depends on c0. An approximate value for this constant can
only be determined by computing many hard four-loop
diagrams—a project which will take several years of effort.
Hence, we are motivated to find an alternative way to
estimate its value in order to quantify how well converged
we may expect the full N3LO result to be.
Since the perturbative series for the pressure of cold QM

is well-behaved up to N2LO, we turn to a Bayesian model
to identify which values of c0 are most consistent with
lower-order results [57]. In particular, we use the abc
model of convergent series as presented in [58] and
implemented in the publicly available MiHO code [59].
This Bayesian model, as well as the geometric model
from [60] was recently applied to the high-density pertur-
bative-QCD EOS in [61]. These models assume that the
perturbative series can be approximated by independent
draws from a statistical model of convergent series. Upon
conditioning these models using the NLO and N2LO
results using Bayes’s theorem, they provide posterior
distributions for the N3LO pressure as a function of μB
and X, quantifying the degree to which a given pN3LO is
consistent with the lower-order results. We choose to
perform the following analysis at a fixed μB ¼ 2.6 GeV,
which is the canonical value down to which the N2LO
results are typically used [11]. We have checked that our
conclusions remain similar if we choose a slightly different
matching μB (see also [61]).
As the N3LO pressure is now a function of a single

parameter c0, posterior distributions of pN3LO at fixed X
can be converted to distributions of c0. To combine the
resulting c0 distributions for different X values, we choose
to marginalize over the fictitious renormalization parameter
X∈ ½1=2; 2� following the procedure introduced in [60].

TABLE I. List of numerical values for the coefficients appear-
ing in Eq. (2).

c3;2 11=12
c3;1 −6.5968ð12Þ − 3 lnX
c3;0 5.1342ð48Þ þ 2

3
c0 − 18.284 lnX − 9

2
ln2X

FIG. 1. The N3LO pressure normalized by the free pressure as a
function of baryon chemical potential, including all contributions
but the hard contributions ph

0ðXÞ in Eq. (7). The shaded region
shows the usual scale variation of X∈ ½1=2; 2�, while the solid
line is the central scale choice X ¼ 1.
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This marginalization weights different values of the
renormalization parameter in proportion to how well the
abc model is converged at that X. This results in larger
values of X receiving slightly larger weights, and further-
more leads to a slightly more conservative distribution
than would result from the alternative scale-averaging
procedure [58] in this case.
The above analysis leads to the probability distribution

Pðc0Þ shown in the left panel of Fig. 2. The distribution is
rather broad, with a 68% credible interval corresponding to
c0 ∈ ½−29;−6�, denoted in Fig. 2 by the dashed gray lines.
We find that the distribution takes its highest value at
c0 ¼ −23, denoted by the blue point in this figure. The
resulting N3LO pressure corresponding to this most-
consistent value of c0 is shown in the right panel of
Fig. 2, where the shaded region denotes the standard scale
variation of X∈ ½1=2; 2�. We find that for this value, the full
N3LO pressure of cold QM lies inside the N2LO result and
is well converged. In particular, the errors reach �25% at
μB ¼ 2.2 GeV, corresponding to about n ¼ 27n0, denoted
in the right panel of this figure by the dashed gray line. This
is to be contracted with n ≈ 40n0 for the N2LO result at
μB ¼ 2.6 GeV. We note that between these densities, the
relative importance of the pairing contribution to the
pressure increases only by ∼2, so pairing effects do not
grow appreciably. We thus see as an outcome of this
Bayesian modeling that significant improvement to the
cold-QM EOS may occur by computing the remainder of
the N3LO pressure.
Conclusions.—In this Letter, we have fully computed the

contributions from the screened gluonic sector at next-to-
next-to-next-to leading order in the strong coupling αs. This
elevates the perturbative-QCD equation of state of cold
quark matter to the Oðα3s ln αsÞ level, leaving only one
constant from the hard sector left to be computed, and
finally places it on par with its high-temperature

counterpart. We have achieved this by deriving the next-
to-leading-order corrections to soft gluon propagation
within a high-density medium, extending existing hard-
thermal-loop results to the zero-temperature limit.
A natural follow-up to this work is the evaluation of the

remaining hard constant. This would allow for the use of
the full N3LO equation of state in applications, such as in
studies of the neutron-star-matter equation of state. As this
is an involved undertaking, it will require the development
of new tools and methods. Some work in this direction has
already been performed [62–64] and more is ongoing.
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