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Observations of the cosmic microwave background (CMB) have cemented the notion that the large-scale
Universe is both statistically homogeneous and isotropic. But is it invariant also under reflections? To probe
this we require parity-sensitive statistics: for scalar observables, the simplest is the trispectrum. We make
the first measurements of the parity-odd scalar CMB, focusing on the large-scale (2 < l < 510)
temperature anisotropies measured by Planck. This is facilitated by new quasi-maximum-likelihood
estimators for binned correlators, which account for mask convolution and leakage between even- and odd-
parity components, and achieve ideal variances within ≈20%. We perform a blind test for parity violation
by comparing a χ2 statistic from Planck to theoretical expectations, using two suites of simulations to
account for the possible likelihood non-Gaussianity and residual foregrounds. We find consistency at the
≈0.4σ level, yielding no evidence for novel early-Universe phenomena. The measured trispectra allow for a
wealth of new physics to be constrained; here, we use them to constrain eight primordial models, including
ghost inflation, cosmological collider scenarios, and Chern-Simons gauge fields. We find no signatures of
new physics, with a maximal detection significance of 2.0σ. Our results also indicate that the recent parity
excesses seen in the BOSS galaxy survey are not primordial in origin, given that the CMB dataset contains
roughly 250× more primordial modes, and is far easier to interpret, given the linear physics, Gaussian
statistics, and accurate mocks. Tighter CMB constraints can be wrought by including smaller scales
(though rotational invariance washes out the flat-sky limit) and adding polarization data.
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Since their inception in the mid-1960s, analyses of the
cosmic microwave background (CMB) have revolutionized
modern physics, most notably through the associated
development of a cosmological model [1,2]. Though early
work focused on the CMB frequency spectrum [3], most
contemporary experiments consider the spatial fluctuations,
both in temperature and polarization [4–6]. Through the
measurement of polyspectra, including the power spec-
trum, bispectrum, and trispectrum, these can be used to
constrain the physics of the early and late Universe, placing
constraints on a wide variety of models. Upcoming experi-
ments will significantly tighten these bounds, with much of
the new information coming from polarization anisotropies
at high multipoles [7,8]. Given this push to smaller scales, it
is interesting to ask whether this is sufficient for all models
of interest; equivalently, have we exhausted all the infor-
mation in the large-scale temperature fluctuations probed
by full-sky experiments such as Planck?
Cosmological parity symmetry provides an intriguing

counterexample. In particle physics, it has long been known
that weak interactions do not preserve parity (hereafter P)
symmetry [9]; cosmologically, most interactions of interest
are gravitational, and thus P invariant. In the early
Universe, this is not the case, and there are theoretical
hints that parity violation could accompany phenomena
such as baryogenesis (via some leptogenesis mechanism)

[10–13]. If this occurs during inflation (with examples
involving massive exchange particles [14] and modified
gravity [10]), signatures would naturally be left in the
distribution of matter and gravitational waves. In the latter
case, P-violating power spectra such as TB and EB would
be generated [15], or higher-order bispectra such as TTB
[20,22–30]. For scalar observables, such as temperature
fluctuations, P-violating physics can only be seen in a
temperature trispectrum or above, due to the equivalence of
parity transformations and three-dimensional rotations for
low order statistics (first discussed for galaxy survey
contexts in [31]). This has been noted in previous works
[32–36], but never explicitly searched for in CMB
data [37].
Determining whether the CMB obeys parity symmetry is

a topic of great current relevance. Recently, tentative
evidence for P violation has been reported using CMB
birefringence [38–40], as well as the large-scale distribu-
tion of galaxies [33,41], with the latter using the approach
first proposed in [31]. Given that systematic effects such as
unaccounted-for cosmic dust [42] or unjustified analysis
choices (e.g., a Gaussian likelihood or mocks of insufficient
fidelity) could be an alternative explanation for such results,
full confirmation requires an independent probe. In this
Letter, we perform the first tests of scalar P violation in the
CMB by measuring the four-point correlator of the CMB
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temperature anisotropies, using methods similar to those of
other primordial non-Gaussianity analyses (see Ref. [43]
and references therein), as well as new tools for estimating
the correlators themselves [44]. Since this is a scalar
observable, it cannot be used to directly constrain birefrin-
gence via axion-photon interactions [12,23,45,46]); these
occur at late times, and affect only photon polarization.
However, it is a direct probe of the primordial density
perturbations, and is thus sensitive to potential early
Universe processes that could source parity violation in
the distribution of galaxies. Indeed, the CMB is likely a
stronger probe, given its large signal-to-noise and almost-
Gaussian statistics.
Given this novel dataset, we may ask two questions:

(i) do we see any evidence of parity violation in the large-
scale Planck temperature map? (ii) what bounds can we
place on physical models of parity violation? The latter can
be compared to constraints from galaxy surveys [34], with
the current results benefiting from a much larger maximum
scale (l ≈ 3), the cosmic-variance limit of the CMB, and
the well understood statistics and covariances. Below, we
present this analysis, with additional details given in the
Supplemental Material [47]. To avoid confirmation bias,
the entire (public) analysis pipeline (including trispectrum
estimation, model computation, and null test pipeline) was
developed and tested on realistic simulations before the
Planck data were analyzed.
Theoretical framework.—The reduced CMB trispec-

trum, tl1l2l3l4
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(choosing spins as in [44] to avoid parity-odd cancella-
tions). Here, the 3 × 2matrices are Wigner 3j symbols, and
the trispectrum is indexed by the multipoles of four sides,
li, and a diagonal, L, with fl1;l2; Lg and fl3;l4; Lg
obeying triangle conditions. Trispectra with even (odd)
l1 þ l2 þ l3 þ l4 probe the parity-even (parity-odd) con-
tributions to the CMB perturbations; we consider the latter
in this work.
The CMB temperature fluctuations are a direct probe of

the underlying primordial curvature perturbation, ζðkÞ:

alm ≡ 4πil
Z
k
ζðkÞT lðkÞY�

lmðk̂Þ; ð3Þ

where Ylm is a spherical harmonic,
R
k ≡

R
d3k=ð2πÞ3, and

T l is the usual transfer function, encoding radiation
physics. It follows that the CMB trispectrum is linearly
related to the curvature trispectrum, Tζ: as such, it can be
used to place constraints on various models of inflationary
parity violation.
Data analysis.—Our dataset is the full-mission Planck

2018 SMICA component-separated temperature map
[43,49]. [50] We additionally use a set of 300 FFP10
simulations [51,52] to validate our pipeline; these are
generated at a cosmology similar to [53] and processed
with the same SMICA pipeline. To model the trispectrum
noise properties, we generate a suite of 1000 Gaussian
random field (hereafter GRF) maps at a HEALPIX Nside ¼
2048 [54] with the Planck 2018 best-fit cosmology and
noise properties [43]. To begin our analysis, we downgrade
all maps toNside ¼ 256 (for computational efficiency), then
modulated them by a linear filter, denoted S−1, similar to
the approach of [55] and [56]. This applies the common sky
mask described in [43] (with 10-arcminute smoothing,
yielding fsky ¼ 0.79) to null the brightest foreground
regions and linearly inpaints small holes (those containing
fewer than 40 pixels), as described in [57]. Maps are
then filtered in harmonic space (at Nside ¼ 256) using a
CTT
l þ Nl transfer function, where CTT

l is the theoretical
power spectrum evaluated at the best-fit cosmology of [2],
and the noise spectrum Nl is extracted from the SMICA
half-mission maps.
Given the data, the S−1 weighting scheme, and the

Planck beam (including the pixel window function),
correlators are obtained using the PolyBin code (see
Ref. [44] for discussion and verification) [58]. This imple-
ments the binned trispectrum estimator, t̂, from a quartic
estimator (t̂num, with residual disconnected contributions
subtracted using 100 GRF simulations) and a data-
independent normalization matrix F :

t̂ðb; BÞ ¼
X
b0;B0

F−1ðb; B;b0; B0Þt̂numðb0; B0Þ; ð4Þ

where b, B are bins in flig and L, respectively (cf. [60,61]
in 3D). F is estimated using 50 Monte Carlo realizations
(using tricks analogous to [56]), and found to be extremely
well converged [44]. Explicit definitions of each compo-
nent can be found in [44]. This is a quasi-maximum-
likelihood estimator, which, through the normalization
matrix (which is approximately the variance of t̂num),
accounts for leakage between bins and components of
different parity, being unbiased for any choice of S−1. [62]
The output spectra are close to minimum variance
(with equality obtained in the limit of Gaussian maps
and S−1 equal to the true inverse pixel covariance), can be
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(approximately) compared to theory without mask con-
volution (cf. [64] for the power spectrum), and can be
efficiently computed [with OðNbinsÞ complexity]. In limit-
ing regimes, the inverse of the normalization matrix is equal
to the analytic trispectrum covariance (i.e., it is a Fisher
matrix); this motivates working with the transformed
variable

τ̂ðb; BÞ≡X
b0;B0

FT=2ðb; B;b0; B0Þt̂ðb0; B0Þ ð5Þ

(for Cholesky factorization F 1=2 and transpose T), which is
close to a unit normal variable, cf. [65]. Since F well
describes the correlation structure of the data (validated in
the Supplemental Material [47]), this accounts for corre-
lations between bins (induced by the mask and cosmic
variance), such that the individual τ bins are uncorrelated.
Noting that the trispectrum dimensionality grows as N5

l
(for Nl bins per dimension), and the expected squared
signal-to-noise scales as l2

max (in the scale-invariant limit,
cf. [66]), we adopt a uniform binning in l2=5, including 9
bins in the range [2, 510] [67], dropping any configurations
whose bin centers do not satisfy the triangle conditions. We
fix lmin ¼ 2 to avoid vanishing weights in (2). Our choice
of lmax (and thus Nside) is motivated both by computational
considerations, [70] and noting that parity-odd spectra are
heavily suppressed at high-l due to projection effects and
Silk damping [66]. To minimize leakage from unmeasured
bins and foreground contamination, we simultaneously
measure the numerators of both parity-even and parity-
odd trispectra (a total of 1273 components, given the
above bin restrictions), then discard the former (and the
first bin) after the deconvolving normalization matrix
has been applied (4). This leaving 460 parity-odd bins
with lmin ¼ 3, lmax ¼ 510. Computation of the (data-
independent) normalization matrix F requires ≈1000
CPU-h (and 200 GB memory, without optimization), with
each simulation requiring an additional 10 CPU-h to
analyze. In the Supplemental Material [47], we show the
normalization matrices, F , and present Fisher forecasts
examining the impact of lmax on parameter constraints.
Blind tests for parity violation.—To examine whether the

Planck data contains evidence for P violation, we first
perform a blind model-agnostic test. Here, we follow a
methodology similar to [31,33,41,71], first computing the
normalized trispectrum τðb; BÞ via (5). This is shown in
Fig. 1. For both the FFP10 and GRF simulations, we find a
variance relatively close to unity, indicating that our
estimators are close to optimal (primarily within ≈20%,
though with slightly larger deviations on small scales).
Deviations arise from (a) insufficient simulations used to
remove disconnected components, (b) suboptimal weights
S−1 (which could be rectified by a conjugate-gradient-
inversion scheme), (c) insufficient GRF simulations used
to estimate the normalization matrix, and (d) likelihood

non-Gaussianity (but not large-scale foregrounds, as evi-
denced by the same behavior for the two sets of simu-
lations). We have verified that (a) can be important (with
larger variances seen when halving the number of bias
simulations), but (c) is negligible, with a well-converged
normalization matrix found even with five Monte Carlo
realizations. Notably, suboptimal variances do not bias our
analyses, cf. [44], though slightly degrade their con-
straining power. In the Supplemental Material [47], we
verify that the correlation matrix does not show any
noticeable departures from the identity.
Data are analyzed via the following χ2 statistic:

χ̂2 ¼
X
b;B

τ̂2ðb; BÞ
var½τðb; BÞ� ; ð6Þ

where the variance is computed from the GRF simulations,
noting that the individual bins of τ are uncorrelated (which
obviates the need for additional data compression). Under
the following assumptions, the statistic can be analyzed
using a χ2 distribution with 460 degrees of freedom: (i) t
obeys Gaussian statistics; (ii) the GRF simulations accu-
rately reproduce the Planck trispectrum covariance. To test
(i), we implement rank tests, comparing χ̂2 to the empirical
χ2 distribution from the GRF (or FFP10) simulations. For
(ii), we note that the GRF simulations adopt a cosmology

FIG. 1. Normalized parity-odd trispectrum, τðb; BÞ measured
from Planck data (blue), 300 FFP10 simulations (red), and 1000
GRF simulations (green) using the PolyBin code with lmin ¼ 3,
lmax ¼ 510. The horizontal axis gives the bin index (with large-
scale modes on the left, ordered with l1 ≤ l2, l1 ≤ l3, l3 ≤ l4),
and shaded regions show the 1σ variance from simulations
(shown explicitly in the bottom panel). The variance is close
to the Gaussian prediction (unity) but exhibits a slight enhance-
ment due to the nontrivial mask and finite number of bias
simulations, though the correlation matrix is consistent with the
identity (see the Supplemental Material [47]).
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close to Planck, and, unlike for LSS, higher-point functions
entering the trispectrum covariance are negligible on the
scales of interest. To test this assumption, we look for
differences between the FFP10 and GRF results; we find
excellent agreement, indicating that deviations of varðτÞ
from unity arise primarily from masking and the finite
number of bias realizations, which affect the simulations
and data identically, i.e., there is no evidence for contami-
nation from residual foregrounds. If the Planck χ̂2 value lies
significantly north of its expectation, we can conclude that
there is evidence for large-scale P violation, since no
conventional CMB physics would generate such a parity-
odd signature. In contrast, a low χ̂2 value would imply
systematic contamination.
Figure 2 shows the χ2 values extracted from the Planck

data, the 300 FFP10 simulations and the 1000 GRF
realizations. Before discussing the data, we first note that
the simulated distributions exhibit slightly wider posteriors
than the analytic prediction; this implies that the trispec-
trum likelihood is mildly non-Gaussian [72]. If not
accounted for (particularly in the distribution tails), this
could lead to a false detection of parity violation. Second,
we find similar empirical distributions from the simulation
suites: relative to the GRF simulations, the FFP10 distri-
bution has a mean probability to exceed (PTE) of
ð46� 2Þ%, relative to the expectation ð50� 2Þ%, implying

that any residual foreground-induced bias is small (though
we note that the simulations do not include all correla-
tions between foregrounds, which are relevant at large
l, cf. [73]).
We now consider the Planck data. From the raw

measurements shown in Fig. 1 it is difficult to draw firm
conclusions; however, Fig. 2 allows us to compare the
observed χ2 to the simulated distributions. Relative to the
GRF suite, we find a rank of 357=1000 (equivalent to a
PTE of 64% or −0.4σ) or 128=300 (equivalent to p ¼ 57%
or −0.2σ) with respect to FFP10. The conclusions are clear:
the large-scale Planck temperature trispectrum shows no
evidence for parity violation.
Discussion.—In this Letter, we have presented con-

straints on parity-violating physics from the large-scale
Planck temperature, through a blind test for P violation
and (in the Supplemental Material [47], which includes
[74–83]) constraints on the amplitudes of various physical
models. We now consider the physical implications of
the above.
Previous constraints on scalar parity violation were

obtained from LSS in [33,41]. To compare the two sets
of results, it is useful to consider the number of linear
modes present in each analysis. For the CMB, this is
straightforward:

NCMB
modes ¼ fsky

Xlmax

l¼lmin

ð2lþ 1Þ
�

CTT
l

CTT
l þ NTT

l

�
2

; ð7Þ

giving ≈2 × 105 modes for lmax ¼ 510 (with the signal-to-
noise scaling roughly supported by the Fisher forecasts
described in the Supplemental Material [47], implying that
projection effects are subdominant on these scales). For
galaxy surveys, we must account for the decorrelation of
modes due to gravitational evolution. Using the approach
of [84], we can estimate the number of remaining linear
modes at a fixed redshift z as

NLSS
modes ¼ V

Z
kmax

kmin

k2dk
2π2

dμ
2

�
G2ðk; μ; zÞPlinðk; μ; zÞ

Ptotðk; μ; zÞ
�
2

; ð8Þ

where V is the survey volume, Plin and Ptot are the
linear theory and total power spectra, and Gðk; μ; zÞ≡
hδlinδtoti=hδlinδlini gives the decorrelation of modes from
the initial conditions, estimated via a Zel’dovich propaga-
tor. Setting k∈2π=½160;20�hMpc−1 and V ≈ 3.9h−3 Gpc3,
matching [33,41], we find a total of ≈103 linear modes, or
≈105 if we ignore the propagator term, and assume all
modes trace the initial conditions.
The above comparison indicates that the CMB dataset is

a much stronger probe of the parity-violating initial con-
ditions. As such, our blind-test results suggest that the
tentative detection of P violation seen in [33,41] is not
primordial (since the 2.9σ hint of [33] would correspond to

FIG. 2. Probability of parity violation in the Planck dataset. We
plot the χ2 values (6) extracted from the Planck SMICA maps
(blue), the FFP10 simulations (red), and GRF simulations
(green), alongside the binned theoretical prediction (black).
Deviation of the Planck results from the expected curves would
give evidence for parity violation. Relative to the GRF simu-
lations, the Planck data has a rank of 357=1000 (i.e., a larger χ2

than that of 356 simulations), or 128=300 with respect to FFP10,
with the consistency of the two sets of simulations indicating that
our pipeline is robust and not affected by residual foregrounds.
For the theoretical distribution, we find a χ2 probability to exceed
of 63%, though caution that the likelihood may be non-Gaussian.
Overall, we find no evidence for parity violation in the Planck
dataset.
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around 50σ in the CMB, based on primordial scaling
arguments alone): instead, it could arise from exotic late-
time physics (though see the caveats in [34]), experimental
artifacts, or analysis systematics (such as mocks of insuf-
ficient quality or likelihood non-Gaussianity).
Turning to the constraints on physical models described

in the Supplemental Material [47], we have found no
evidence for any specific inflationary parity-breaking
paradigm, with a maximal detection significance of 2.0σ.
Our limits on the gauge model are broadly consistent with
those forecasted in [32] (at the level appropriate for the
inexact nature of such predictions). Furthermore, the Fisher
forecasts performed in the Supplemental Material [47]
yield similar constraints to the full analysis, implying that
our posteriors are desirably Gaussian. Comparing to con-
straints from LSS, we find somewhat weaker bounds than
those of former works [33,34]. This may appear to lie in
contrast with the above mode-counting hierarchy; however,
the LSS constraints did not account for mode decorrelation
(instead assuming all modes were in the linear regime) or
nonlinear structure growth (which alters the scale depend-
ence of the signature), and did not marginalize over galaxy
formation uncertainties. Each effect can lead to an inflation
of the error bars by several orders of magnitude [85].
Furthermore, the precise constraints on physical models
should be considered with caution since numerical inac-
curacies in the template computation can lead to falsely
enhanced precision (since noise in τ always increases the
normalization matrix)—the numerical convergence was
more carefully considered for the templates used herein
than for the LSS case.
Though the primordial templates generated by the three

classes of models considered herein span a wide variety of
the primordial space, they are not all encompassing.
Alternative models could include strong breaking of
scale-invariance [87], the exchange of higher spin particles,
or the inclusion of inflationary modified gravity (e.g., with
Chern-Simons interactions [10,88,89]). The bounds on
such models can be straightforwardly computed given
the relevant CMB templates, and proceeds analogously
to the above analysis. An alternative option would be to
devise a general basis for primordial parity-odd trispectra
onto which any model can be projected, in analogy to the
fNL parametrization of bispectra.
Finally, we consider future prospects. On large scales,

the primary CMB is cosmic-variance limited, such that the
signal-to-noise on inflationary models will not increase
with future experiments. However, one can consider the
addition of polarization data (in particular Emodes), which
can add substantial information on scalar physics [90]; in
the case of feqNL, for example, polarization provides ≈60%
of the constraining power [43]. This will require modifying
the trispectrum estimators of [44] to include fields of
nonzero spin, but is not conceptually more complicated
[91]. Furthermore, one can extend the current analysis to

smaller scales (for example, making use of high-resolution
ACT and SPT data), albeit at the cost of increased
dimensionality and computation time. From the Fisher
forecasts performed in the Supplemental Material [47],
doubling the l range could increase the squared signal to
noise by a factor of 4 (depending on the model in question),
though we caution that projection effects start to limit
analyses by lmax ∼ 103 [66]. All in all, while these are the
first constraints on CMB scalar parity violation, they seem
unlikely to be the last.
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