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We derive a rigorous upper bound on the classical computation time of finite-ranged tensor network
contractions in d ≥ 2 dimensions. Consequently, we show that quantum circuits of single-qubit and finite-
ranged two-qubit gates can be classically simulated in subexponential time in the number of gates.
Moreover, we present and implement an algorithm guaranteed to meet our bound and which finds
contraction orders with vastly lower computational times in practice. In practically relevant cases this beats
standard simulation schemes and, for certain quantum circuits, also a state-of-the-art method. Specifically,
our algorithm leads to speedups of several orders of magnitude over naive contraction schemes for two-
dimensional quantum circuits on as little as an 8 × 8 lattice. We obtain similarly efficient contraction
schemes for Google’s Sycamore-type quantum circuits, instantaneous quantum polynomial-time circuits,
and nonhomogeneous (2þ 1)-dimensional random quantum circuits.
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Introduction.—Tensor networkmethods are a singlemost
impactful toolkit responsible for some of the most dramatic
improvements in a large number of areas of physics and
computer science. They revolutionized our understanding of
condensed matter physics [1,2], lattice field theories [3–7],
quantum information and computing [8–15], and machine
learning [16], achieving results which are far out of reach
for analytical methods. Recently, Google exhibited a quan-
tum computational device capable of reaching quantum
supremacy—by presenting a highly unstructured computa-
tional task which would reportedly take an exceptionally
long time on a classical supercomputer to solve [17]. In the
absence of a formal proof of hardness, this challenge spurred
a number of exciting developments on the classical algo-
rithms side with the aim to find an efficient solution by
classical means [18–20]. Tensor network contraction meth-
ods coupled with ingenious empirical contraction strategies
exhibited their immense power reducing the classical
computational time tomere hours and evenminutes [21–23].
The quest for an efficient solution using tensor networks

allows one to develop new contraction techniques and
intuition about the problem instance. Alas, the resulting
simulation algorithm does not typically allow us to solve
generic problems in this class efficiently: a slightly tweaked
computational task—while still being easy for a quantum

computer—can invalidate the speedup obtained by classical
simulation algorithms in this case. This presents one of the
major problems when applying tensor network methods:
the lack of explicit analytical guarantees on contraction
complexity that work well for a range of problems in the
class. Efficient empirical approaches that work well for a
particular problem instance may comprehensively fail,
forcing one to start the search for an efficient simulation
method from a clean slate by a costly path of trial and error.
Furthermore, nontrivial analytical runtime guarantees that
have been found thus far depend on quantities that are
themselves hard to compute [24,25].
Clearly, little can be done analytically when the under-

lying problem is unstructured, i.e., the quantum circuit is
made up of uniformly random gates acting on a random
subset of qubits. However, as noted in Ref. [26], this
model is not representative of practical quantum computa-
tional processes—quantum algorithms expressed in the
circuit model yield circuits which are far from uniformly
random. Considering circuit topology and the “macro-
scopic” structure (or layout) of quantum circuits can
provide us with valuable extra information which may
subsequently be used to derive efficient quantum simu-
lation algorithms. We develop a method which allows us
to take advantage of the circuit structure and thus for the
first time yields tensor network contraction algorithms
with nontrivial theoretical runtime guarantees. This
method is based on the idea contained in a rich class of
so-called separator theorems [27,28]. In their simplest
form, they represent isoperimetric inequalities for planar
graphs. Such (planar) separator theorems state that any
planar graph can be split into smaller subgraphs by
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removing a fraction of its vertices. The planar separ-
ator theorem [27] has found uses in classical complexity
theory—counting satisfiability problems (#SAT) and
#Cubic-Vertex-Cover, where it was decisively better than
the state-of-the-art solvers [29] and Boolean symmetric
functions [19], and has been mentioned in the context of
quantum circuits [30]. We apply the ideas outlined in
separator theorems to derive analytical upper bounds on
the classical simulation times of quantum circuits taking
into account the explicit layout of each of the quantum
circuits. Recently, the authors of Ref. [31] argued that
(assuming the strong exponential time hypothesis)
strongly simulating certain polyðnÞ depth quantum cir-
cuits on n qubits requires a 2n−oðnÞ time using tensor
network methods. Our work rigorously demonstrates how
one can derive a constructive tensor-contraction method
with subexponential upper bounds on its runtime if we
take advantage of extra information about the structure of
the circuit.
This Letter is structured as follows: We first give a very

brief introduction to the types of tensor network contrac-
tions that appear in the range of practical above applica-
tions, emphasizing their “metadata” which will be
incorporated in our algorithm. Thereafter, we recall the
sphere separator theorem [28] and use it to prove a rigorous
upper bound on the classical contraction time of d ≥ 2-
dimensional tensor networks. Then, we demonstrate the
power of this result for quantum circuit simulations,
obtaining analytical guarantees on their classical simulation
times. Finally, we consider several examples, for which we
numerically demonstrate the advantage provided by our
method over naive contraction schemes and in certain cases
over a state-of-the-art approach (i.e., Cotengra [19]).
Tensor network contractions.—Below, we provide a

short overview of the conventional graphical representation
of tensor networks and propose an alternative one, useful
for our purposes. Based on the latter, we then employ the
sphere separator theorem to prove an upper bound on the
classical contraction time of finite-ranged tensor networks
in d ≥ 2 dimensions to a scalar:
Sphere separator theorem (SST) [28]: For a set of n

spheres in d dimensions such that each point is contained in
at most k spheres, the following holds: There exists a sphere
S such that removing the set ΓOðSÞ of spheres which S
intersects with gives rise to two mutually non-intersecting
sets of spheres ΓEðSÞ and ΓIðSÞ with

jΓOðSÞj ≤ cdk1=dn1−1=d; ð1Þ

jΓEðSÞj; jΓIðSÞj ≤
dþ 1

dþ 2
n: ð2Þ

The coefficients are c1 ¼ 1, c2 ¼ 2, c3 < 2.135,
c4 < 2.280, c5 < 2.421, and in general cd <

ffiffiffiffiffiffiffiffiffiffiffi
2d=π

p f1þ
O½1= logðdÞ�g for d > 1 [32].

Notably, the proof of the SST is constructive and there
exists a randomized algorithm to calculate the above sepa-
rator in polynomial time, which we call the sphere separator
algorithm (SSA) [28] detailed below in Algorithm 1.
In applications of tensor networks, their graphical short-

hand notation has become indispensable. Conventionally, a
rank-m tensor is represented by a box or a sphere (or, as in our
work, by a dot) with m emanating lines. Each line corre-
sponds to one tensor index and a line connecting two tensors
to a contraction (i.e., a summation) of the corresponding
index, see Figs. 1(a) and 1(b). In order to take advantage of
the SST, we convert the conventional graphical representa-
tion using the following steps: (i) Find an embedding of the

Algorithm 1. Sphere Separator Algorithm [28].

Input: Positions P¼fp1;p2;…;psg∈Rd of centers of spheres,
representing s tensors, and the corresponding radii
R ¼ fr1; r2;…; rsg.

1: Compute ΠðPÞ ¼ fΠðp1Þ;Πðp2Þ;…;ΠðpsÞg, where Π
denotes the stereographic projection from Rd to the
unit sphere Sd ⊂ Rdþ1.

2: Compute a center point [33] c∈Rdþ1 of ΠðPÞ, i.e., all
hyperplanes containing c divide the set of points
fΠðp1Þ;Πðp2Þ;…;ΠðpsÞg in a ratio (dþ 1):1 or
less. c is calculated efficiently by randomly
selecting subsets S ⊂ ΠðPÞ of size jSj ¼ a and
calculating their center points cS using Linear
Programming on Oðadþ1Þ linear inequalities of dþ1
variables. (For any δ > 0 this approach produces a
(dþ 1þ δ):1 center point with high probability if
a > gðδ; dþ 1Þ, where g is an s-independent function
[34–36], making the approach scalable.)

3: Compute an orthogonal matrix R∈Rðdþ1Þ×ðdþ1Þ such
that Rc ¼ ð0; 0;…; 0; kckÞ.

4: Define the dilatation mapDα ¼ Π̊ ðα1Þ̊ Π−1, where α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − kckÞ=ð1þ kckÞp
.

5: Choose a random great circle C on Sd. The center of Sd

can be shown to be a center point of Dα ̊ R̊ ΠðPÞ [28],
i.e., C divides these points in a ratio 1∶ðdþ1þδÞ or
better. C gives rise to a sphere S ⊂ Rd after
transforming back to the original Rd space, which
(generically) satisfies Eq. (2).

6: Calculate the sphere S ¼ Π−1
̊ R

⊤
̊ D

−1
α ðCÞ. It can be

proven that S also satisfies Eq. (1) with probability at
least 1=2 [28] for sufficiently small δ > 0.

7: Check, taking account of the radii R, if Eqs. (1) and (2)
are satisfied. If not, choose another great circle C0 ∈ Sd

and repeat steps 5 and 6 until successful. [In general, if
any of the above approaches is successful with
probability ρ ¼ Oð1Þ, it has to be carried out 1=ρ
times on average.]

Output: Sphere S, ΓOðSÞ, ΓEðSÞ, ΓIðSÞ.

PHYSICAL REVIEW LETTERS 131, 180601 (2023)

180601-2



tensor network graph intoRd such that connected tensors are
close. (ii) Represent each tensor by a sphere of radius large
enough such that if two tensors are connected, their spheres
intersect (though intersecting spheres do not have to corre-
spond to a bond), see Fig. 1(c). Crucially, by choosing the
radii of the spheres large enough, one can always ensure that
all connected tensors correspond to intersecting spheres.
Theorem 1.—We consider the full contraction of a

tensor network embedded into Rd (d ≥ 2) of n tensors
of at most M entries each. We assume that there exists a
graphical representation of the tensors as spheres of radii
such that the spheres of tensors with a contracted index
intersect and the maximum number k of spheres over-
lapping at any point is n independent (finite-ranged tensor
network). Then, for sufficiently large n, the number of
scalar operations to (classically) contract the tensor net-
work is upper bounded by 2n1=log2½ðdþ2Þ=ðdþ1Þ�Madk1=dn1−1=d,

where ad ¼ cd=
n
2 − 2½ðdþ 1Þ=ðdþ 2Þ�1−1=d

o
.

Proof.—We use the SST to split the tensor network into
two disconnected tensor networks of at most nðdþ 1Þ=
ðdþ 2Þ tensors each [corresponding to ΓE;IðSÞ] and the
tensors sitting at the interface ΓOðSÞ. Each of these tensors
is then included into the one of the earlier two tensor
networks with whom it shares indices of higher overall
bond dimension. (The choice is arbitrary if the overall
connecting bond dimensions are equal for both.) This
ensures that each of the assigned tensors shares only indices
of overall bond dimension≤ M1=2 with the tensor network it
has not been assigned to. Thus, the resulting two parts are
connected by bonds of overall dimension ≤ MjΓOðSÞj=2. We
recursively apply this procedure to split the tensor networks

further until all tensor networks are of sizeOð1Þ. LetTðlÞ
i1i2…il

be the corresponding tensor networks, wherel is the level of
the resulting separator hierarchy and the indices ij ¼ 0, 1
indicate the path taken through the separator hierarchy, see
Fig. 2. The number of scalar operations (multiplications,

additions) needed to create TðlÞ
i1i2…il

is bounded by

tðlÞi1…il
≤ tðlþ1Þ

i1…il0
þ tðlþ1Þ

i1…il1
þ 2Mðlþ1Þ

i1…il
; ð3Þ

whereMðlþ1Þ
i1…il

denotes the product of the dimensions of all of

the indices of the tensors Tðlþ1Þ
i1…il0

and Tðlþ1Þ
i1…il1

, counting
shared indices once. This product equals the total number of
scalar multiplications required to contract the two tensors.
Since the corresponding products have to be added up, the

number of required additions is upper bounded by Mðlþ1Þ
i1…il

,
hence the prefactor of 2 in Eq. (3). By the SST,

Mðlþ1Þ
i1…il

≤M
1
2

P
lþ1

j¼1
cdk1=dfn½ðdþ1Þ=ðdþ2Þ�j−1g1−1=d , where the sum

in the exponent is the maximum number of constituting
tensors which can sit at the combined surface of the tensor

networks Tðlþ1Þ
i1…il0

and Tðlþ1Þ
i1…il1

(counting the surface separat-

ing them once), andM1=2 is the maximum bond dimension
per tensor. Repeatedly inserting Eq. (3) into itself yields the
closed form

tð0Þ ≤
Xz−1
l¼0

2lþ1M
1
2

P
lþ1

j¼1
cdk

1
d½nðdþ1

dþ2
Þj−1�1−1d þ 2zMOð1Þ; ð4Þ

where z ≤ 1þ log2ðnÞ=log2½ðdþ 2Þ=ðdþ 1Þ�. After upper
bounding the sum in the exponent by a geometric sum, we
obtain

tð0Þ < 2n1=log2ð
dþ2
dþ1

ÞM
cdk

1=d

2−2ðdþ1
dþ2

Þ1−1=d
n1−1=d ð5Þ

for sufficiently large n. ▪
When the underlying connectivity graph is planar, a

more appropriate tool is an analog of the SST—the planar
separator theorem [27]:
Planar separator theorem (PST) [27]: A planar graph,

i.e., a two-dimensional graph of nonintersecting lines and n
vertices, can be separated into two disconnected graphs of
at most 2n=3 vertices each by removing cPST

ffiffiffi
n

p þOð1Þ
vertices with cPST < 1.971 [37].
We note that in Refs. [19,29] the overall exponent of M

was not calculated; in particular, it was not clear if it is
still of order Oð ffiffiffi

n
p Þ when one takes the entire separator

hierarchy into account. After evaluating the expression
corresponding to Eq. (4) for the PST, we obtain an

(a) (b) (c)

FIG. 1. (a) Conventional graphical representation of a tensor and
(b) a contraction of two tensors. (c) New graphical representation,
where each tensor is endowed with a sphere, and only intersecting
spheres can correspond to tensors with a contracted index. In the
shown example, up to k ¼ 3 spheres overlap at any point.

FIG. 2. Separator hierarchy: The original tensor network Tð0Þ

gets successively split into smaller tensor networks TðlÞ
i1…il

indicated by squares.
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improved upper bound of tð0Þ < 2n1=log2ð3=2ÞMa0
2

ffiffi
n

p
with

a02¼ cPST=ð2−2
ffiffiffiffiffiffiffiffi
2=3

p Þ<a2 ¼ c2=ð2−2
ffiffiffiffiffiffiffiffi
3=4

p Þ for d ¼ 2.
Classical simulation of quantum circuits.—The SST and

PST can be used to obtain analytical guarantees on the
classical simulation time of quantum circuits, taking into
account the explicit layout of each of them. Consider a
quantum circuit U of single-qubit and finite-ranged two-
qubit gates acting on N qubits over T time steps. For
simplicity, we assume that the system is initialized in the
j00…0i ≔ j0i state. We represent the expectation value c
of the measurement P ¼⊗i Pi, where Pi is a projector on
qubit i, as a tensor network, c ¼ h0jU† ⊗i PiUj0i. Two-
qubit gates correspond to rank-4 tensors and single-qubit
gates to rank-2 tensors (unitary matrices). The latter as
well as the Pi can be absorbed into the former, such that
only the two-qubit gates affect the scaling of computational
complexity. This is expressed in the following abridged
Theorem, which we fully state and prove, using Theorem 1,
in the Supplemental Material [38]:
Theorem 2.—The number of scalar operations to

classically simulate a (dþ 1)-dimensional quantum
circuit, with d ≥ 2, of single- and two-qubit gates of
maximum range l, acting on a set of N qubits of
minimal distance r apart, is upper bounded by

polyðFNÞ28adð1þl=rÞF1=d½
P

N
i¼1

fðxiÞ�1−1=d . fðxiÞ denotes the
number of two-qubit gates acting on qubit i at position
xi ∈Rd and F ¼ maxi fðxiÞ.
Numerical implementation.—The proof of the SST is

constructive [28], and there also exists an algorithm to
efficiently calculate the corresponding sphere separator,
the SSA. We detail it below in Algorithm 1. Here, we show
how this algorithm can be used to compute a separator
hierarchy satisfying the bounds of Theorems 1 and 2. As
illustrated with examples below, the separator hierarchies
obtained in practice correspond to much lower classical
runtimes. Concretely, the SSA (summarized below) has to
be applied OðnÞ times, where n is the number of tensors.
The separator hierarchy also allows us to provide a
numerical upper bound on the classical simulation time
of the specific tensor network the SSA is applied to (beside
the general bound from Theorem 2): At the lowest level
of the separator hierarchy are clusters of few tensors. The
contraction of each of these clusters contributesOð1Þ to the
overall contraction time. For a given tensor network and
computed separator hierarchy, we use a greedy algorithm to
upper bound the contraction time of the small clusters to
individual tensors at the bottom of the separator hierarchy.
At all higher levels, the separator hierarchy uniquely
specifies in which order the corresponding tensors have
to be pairwise contracted, such that the corresponding
computational times can be calculated explicitly. The
obtained numerical upper bound for the overall contraction
time is at least as good as the analytical one of Theorem 2,
but, in general, many orders of magnitude better.

Examples.—We now consider several quantum circuits
acting on L × L qubits, for which we showcase the
strengths of our approach. Specifically, we demonstrate
that for short-range instantaneous quantum polynomial-
time (IQP) quantum circuits [39] the SSA repeatedly
applied to sets of spheres centered at the gate positions
(with a collapsed time dimension) gives rise to massively
faster contraction orders than suggested by Theorem 2. As
a result, the SSA approach outperforms naive contraction
schemes and a state-of-the-art method already for small
system sizes. Afterwards, we simulate Google Sycamore-
type [17] quantum circuits, where the SSA outperforms
naive contraction schemes again already for small system
sizes. Finally, we consider (2þ 1)-dimensional random
quantum circuits with Poisson-distributed cavities.
1. IQP quantum circuits:Here, we apply the procedure to

IQP quantum circuits [39] with single- and two-qubit gates:
In each of the T time steps, a single-qubit gate is acted on a
qubit with probability 7=8 [corresponding to a randomly
chosen phase gate diagð1;eiπm=4Þ, m∈f0;1;…;7g], and
afterwards two-qubit gates act on all nearest-neighbor pairs
of qubits which have not yet been acted on in this time step
with probability p ¼ 3=4 · γ lnðNÞ=N. The prefactor of 3=4
corresponds to randomly chosen gates diagð1; 1; 1; imÞ,
m∈ f0; 1; 2; 3g. The results forT ¼ L2 and γ ¼ 3 are shown
in Fig. 3. While the bound from Theorem 2 is large, the one
from the SSA performs many orders of magnitude better,
also beating naive contraction schemes and the state-of-the-
art method Cotengra [19] for most (some) quantum circuit
realizations for L ≤ 8 (L ≤ 12).
2. Google Sycamore-type quantum circuits:We consider a

quantum circuit of the type of Ref. [17], where each qubit

FIG. 3. Mean logarithms of the bounds on the required number
of scalar operations based on explicit time evolution, side-wise
contraction, Theorem 2, the SSA, and Cotengra [19], averaged
over 100 realizations of IQP quantum circuits. Top inset:
Percentage of realizations for which the SSA (without any
additional optimizations) outperforms Cotengra. Bottom inset:
Enlargement of the main figure for small system sizes. Error bars
denote the standard error of the mean of the logarithms.
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(apart from the edgeones) is acted onby one single-qubit gate
and one two-qubit gate coupling it to a nearest neighbor per
“cycle.” There are eight cycles of such couplings, which are
repeated periodically (i.e., with two two-qubit gates acting on
the same nearest neighbor). We assume that there are q such
periods of eight cycles and that in each period a given qubit is
inaccessible with probability p, i.e., no single- or two-qubit
gate acts on it for the entire period. We calculated the
corresponding bounds for q¼ 5 and p¼ 0.88 (which is
below the percolation threshold [40]) and averaged over
100 quantum circuit realizations for each L. The results,
detailed in the Supplemental Material [38], indicate that the
SSA outperforms naive contraction schemes already for
small system sizes, while the same is true for the bound of
Theorem 2 only for large systems.
3. (2þ 1)-dimensional random quantum circuits: We

consider a quantum circuit of T ¼ αL time steps. At each
time step, nearest-neighbor gates are densely placed with a
random orientation unless there is a cavity in the quantum
circuit. These cavities have size S × S × S in space-time.
Their maximum number v is chosen randomly according to
a Poisson distribution with parameter λ corresponding to a
probability pvðλÞ. The up to v cavities are placed randomly
in the quantum circuit [coordinates ðx; y; tÞ]; each one
appears with probability pðx; y; tÞ ¼ exp ½−ðx2=L2 þ y2=
L2 þ t2=T2Þ=σ2�. The results for S ¼ 5, α ¼ 0.1, σ ¼ 10,
and λ ¼ 5 × 104ðL=200Þ3.5 are similar to the ones of the
previous example, but with a more pronounced improve-
ment of the bound of Theorem 2 over naive contraction
schemes for large system sizes (see Ref. [38]).
Conclusion.—We have used the SST to derive analytical

upper bounds on the classical contraction runtime of finite-
ranged higher-dimensional tensor networks. We proved
similar upper bounds on the classical simulation time of
arbitrary higher-dimensional quantum circuits with single-
and finite-ranged two-qubit gates. While these bounds
improve over naive contraction schemes only for relatively
large system sizes, we showed that, in practice, far better
upper bounds are obtained with the SSA, which also
outperform a state-of-the-art method for certain quantum
circuits of relevant sizes. Our approach will find important
applications in the context of classical benchmarks for
quantum simulations and help to determine the regime
where they do not meet the criterion of quantum
supremacy. We envision particularly powerful classical
tensor network contraction schemes as a result of combin-
ing our algorithm with heuristic methods, such as the stem
optimization technique of Ref. [20], or the index slicing
approach of Ref. [12].
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