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We show that out-of-time-order correlators (OTOCs) constitute a probe for local-operator entanglement
(LOE). There is strong evidence that a volumetric growth of LOE is a faithful dynamical indicator of
quantum chaos, while OTOC decay corresponds to operator scrambling, often conflated with chaos. We
show that rapid OTOC decay is a necessary but not sufficient condition for linear (chaotic) growth of the
LOE entropy. We analytically support our results through wide classes of local-circuit models of many-
body dynamics, including both integrable and nonintegrable dual-unitary circuits. We show sufficient
conditions under which local dynamics leads to an equivalence of scrambling and chaos.
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Introduction.—The question of quantum chaos is a long-
standing issue. In recent years, a wide plethora of appa-
rently inequivalent notions of quantum chaos have
appeared [1–17]. Among them, the most well-known
defining features of quantum chaotic models are universal
spectral fluctuations, which match those of random matrix
theory. They were shown to arise for systems with chaotic
semiclassical limits [1,2]. In the absence of this limit,
universal fluctuations were subsequently used as a defi-
nition of chaos and were recently extensively investigated
in many-body settings [3–5,18–29].
Nevertheless, the spectral definition of quantum chaos

comes with a few limitations. First, taking the thermody-
namic limit is nontrivial, as the discrete spectrum becomes
hard to treat and is hard to access experimentally and
analytically. The spectrum might not even be defined, for
instance, in time-dependent evolution. Therefore, a
dynamical indicator of chaos, which is well defined for
infinite systems and finite times, is clearly an attractive
prospect. A popular candidate is the out-of-time-ordered
correlator (OTOC), which measures a notion of scrambling
in many-body systems [30–38]. But its definition of
“chaos” does not agree with the spectral one [39–44].
On the other hand, a less studied signature of chaos which,
in all known examples, agrees with the spectral definition is
local-operator entanglement (LOE). It is a well-justified
measure of dynamical complexity and quantum chaos [7,8].
In this Letter, we give a novel interpretation for the

OTOC by showing that it serves as a probe of LOE. In
doing so, we will uncover simple cases where a dynamics is
scrambling as signified by an exponential OTOC scaling,
yet is not chaotic as demonstrated by the absence of linear
LOE entropy growth. Along the way, we derive exact
analytical results for a class of many-body local circuits
[45,46], including a novel exact computation of the OTOC

which is of independent interest. Our results show that
scrambling is necessary but not sufficient for quantum chaos.
The LOE is a measure of the complexity scaling of a

Heisenberg evolved operator Vt ≔ U†
t ðV ⊗ 1B̄ÞUt for a

local operator V [7]. We consider an arbitrary isolated
system with finite local Hilbert space dimension. V acts
locally on a spaceHB, whereas Vt generally has support on
the full system HS ¼ HB ⊗ HB̄. Above, Ut is an arbitrary
time evolution operator.
Specifically, the LOE is the entanglement of the Choi

state of an initially local, unitary, and traceless Heisenberg
operator Vt,

jVti ≔ ðVt ⊗ 1Þjϕþi; ð1Þ

where jϕþi is the maximally entangled state over a doubled
space. As this is a pure quantum state, we can analyze its
static quantum mechanical properties such as its entangle-
ment (LOE). This entanglement can be computed
across any bipartition and for any appropriate metric, such
as k-Rényi entanglement entropy.
Despite not being as popular as notions of chaos based on

Hamiltonian or Floquet spectra [1,2], LOE is an attractive
candidate for a dynamical signature of quantum chaos in the
context many-body systems. In particular (i) it classifies the
hardness of simulating the operator Heisenberg dynamics
with tensor networks [8], (ii) a wide range of studies into
physical models support that volume-law LOE signifies
nonintegrability, with it scaling at most logarithmically with
time for (interacting) integrable systems [8,11,47–51], and
(iii) it can be understood as a sensitivity to perturbation,
analogous to the classical butterfly effect [17]. Note that the
entanglement of states in a quantum many-body system is
not a signature of chaos, with even free models generally
exhibiting a linear growth [52,53]. Further, the LOE should
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not be confused with the related quantity of the “operator
entanglement,” which is the entanglement of the full, global
unitary evolution operator [54,55]. This quantity generally
scales linearly with t irrespective of integrability [48], unless
the Hamiltonian is in a localized phase [56].
In comparison, OTOC scaling generally indicates oper-

ator scrambling, and is defined as a four-point correlator
with atypical time ordering [30–33],

FðW;VtÞ ¼
1

d
tr½W†V†

t WVt�; ð2Þ

where we compute this expectation value over the max-
imally mixed state ρ∞ ¼ 1=d. We take V andW to be local
unitaries, which wlog are traceless [57]. In this case, the
OTOC quantifies how much Vt andW do not commute as a
function of time, Re½FðW;VtÞ� ¼ 1 − 1

2
h½W;Vt�2i. The

appeal for OTOC stems from a semiclassical argument
connecting this equation to classical Poisson brackets,
which are in turn related to Lyapunov exponents of a
classical process.
Yet, it remains unclear the precise connection of the

OTOC with integrability. In fact, there is controversy in
when the OTOC detects chaos in a range of quantum
systems without a classical analogue [39,40,43,44] or even
with [41,42]. In this work we clarify this confusion,
showing that the OTOC probes dynamical chaos, including
how it can fail in this purpose, and identifying sufficient
conditions when scrambling is equivalent to chaos.
OTOC in terms of local operator Choi state.—We takeW

in Eq. (2) to be on acting on some potentially large subspace
HA and V on a local space HB, with complement spaces
defined such that the whole isolated system is HS ¼
HA ⊗ HĀ ¼ HB ⊗ HB̄. These spaces are most clearly
expressed via a graphical representation of FðW;VtÞ:

We will use a bracket-prime notation to indicate a doubled
space, e.g., prime HA0 represents a copy of the space HA,
while bracketed primes represent a combined double space,
HAð0Þ ≔ HA ⊗ HA0 . For clarity, we rewrite the definition of
the Choi state jVti [Eq. (1)],

ð3Þ

In this setup, Vt can be interpreted as the operator we are
interested in, andW as the probe to the entanglement of the

Choi state of this operator. The first hint of this relation can
be seen by rewriting the OTOC in the following.
Observation 1.—The OTOC can be expressed in terms

of the expectation value of a local unitary, W ≔ W ⊗ W�,
with respect to the Choi state of a time evolved Heisenberg
operator, jVti,

FðW;VtÞ ¼ hVtjð1Āð0Þ ⊗ WÞjVti: ð4Þ

The proof for this and all following results can be found
in [57].
Examining the relation Eq. (4), if jVti is maximally

entangled in the splitting Að0Þ∶ Āð0Þ, then the OTOC is equal
to zero. Recalling that any maximally entangled state jψi
corresponds to the Choi state of a unitary matrixUψ , one can
prove this from Eq. (4) using standard graphical notation:

ð5Þ
For example, a global Haar random time evolution, Ut ∈H,
with a large total dimension d, will approximately give a
maximally entangled jVti on average [57].
Alternatively, if jVti is not maximally entangled,

FðW;VtÞ will generally be nonzero, suggesting that this
quantity probes the LOE of Vt, through W. We will now
quantify this relationship, showing the necessity of OTOC
decay for chaotic LOE behavior.
Chaos implies scrambling.—To investigate the general

behavior of the OTOC, we will now compute its average
value when a random traceless operator W is sampled, and
show that this sampling is typical. To uniformly sample a
random matrix with the traceless property, a natural choice
is choosing any traceless unitary W and then applying a
Haar random unitary channel to it, WR ¼ R†WR, where
R∈H, the Haar measure. We define the averaged OTOC
with respect to this traceless probe,

GðVtÞ ≔
1

d

Z
H
dR tr½W†

RV
†
t WRVt�: ð6Þ

Let us stress that we are not averaging over the dynamics,
and allow the time-evolution operator Ut to be completely
arbitrary. Hinting at a relation between the OTOC and LOE,
our results will be framed in terms of νAðtÞ, the (normal-
ized) reduced density matrix of the Choi state jVti on (the
doubled space) HAð0Þ ¼ HA ⊗ HA0 ,

νAðtÞ ≔ trĀð0Þ ½jVtihVtj�: ð7Þ

We can then use standard techniques adapted from the
Weingarten Calculus to arrive at our first main result.
Theorem 2.—The averaged OTOC over Haar random,

traceless unitaries WR [as in Eq. (6)] is equal to
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GðVtÞ ¼
1

d2A − 1
ðd2AhϕþjνAðtÞjϕþi − 1Þ; ð8Þ

where jϕþi is the maximally entangled state across the
doubled space HAð0Þ . Further, this average is typical, with a
single shot FðWR;VtÞ exponentially likely in ðdAϵ=8Þ2 to
be ϵ–close to GðVtÞ.
This result presents both an explicit expression for the

average OTOC, and that a random OTOC FðWR; VtÞ rarely
varies from the average. This is important as the OTOC
average GðVtÞ features in the rest of this work, and we can
be assured that the average case is representative of the
typical one.
Notice that the first term in Eq. (8) is proportional to the

fidelity between νAðtÞ and the identity matrix Choi state
jϕþihϕþj. In words, this theorem states that the average
OTOC is proportional to the distance between the actual
reduced state of jVti on HAð0Þ and the state of the identity
channel. Interestingly, considering Vt as a unitary channel,
this fidelity is exactly equal to the entanglement fidelity of
the reduced channel onHA, which in turn is proportional to
the (efficiently computable) average gate fidelity [63].
Reference [55] reports similar results to Theorem 2.

However, there the Haar average is taken for the “bipartite
OTOC” over both V and W, whose support bipartition the
whole system. Our results are distinct, and less restrictive,
in allowing the operators to have arbitrary locality, averag-
ing over only one of the unitaries, and most importantly
connecting this to LOE (chaos).
To pick apart Theorem 2, consider the example of

dynamics consisting of a circuit of swaps Ut ∈S. Then,
if the operator V is swapped onto a site within the space
HA, the OTOC takes a minimum value,

GðVtÞjUt ∈S ¼
(

−1
d2A−1

; if Vt ∈BðHAÞ
1; otherwise;

ð9Þ

given that V is taken to be traceless. Similarly, one would
(approximately) get this result for νAðtÞ being (close to) any
pure state which is orthogonal to jϕþihϕþj. This is an
example of scrambling without chaos: a minimal OTOC is
achieved for an integrable dynamics. In fact, it is a simple
example of a wide class of local circuit models, which we
will analyze later in results 5–7. Alternatively, we saw
earlier in Eq. (5) that a maximally entangled jVti leads to a
small OTOC. This begs the question of what the OTOC
tells us if jVti is partially entangled? Can we further
understand this OTOC average as a quantitative probe to
the timescaling of the LOE?
We answer this with the following two bounds, in terms

of two different entanglement measures.
Theorem 3.—(Scrambling is necessary for chaos). The

OTOC, averaged over traceless unitary operators W ∈
BðHAÞ, is bounded by the entanglement on HAð0Þ of the
time-evolved local operatorVt: (A)Forgeometricmeasure of

entanglement, EGðjϕiÞ≔ 1−maxjψ
Að0Þψ Āð0Þ ijhψAð0Þψ Āð0Þ jϕij2,

where the maximum is over all product states jψAð0Þψ Āð0Þ i,
GðVtÞ satisfies

GðVtÞ ≤ 1 −
d2A

d2A − 1
EGðjVtiÞ: ð10Þ

(B) For the 2-Rényi entropy Sð2ÞðνÞ ≔ − logðtr½ν2�Þ, GðVtÞ
satisfies

GðVtÞ ≤
1

d2A − 1
ðd2Ae−

1
2
Sð2Þ½νAðtÞ� − 1Þ: ð11Þ

Note that we only used the inequality DðνAðtÞ;
jϕþihϕþjÞ ≤ maxjψi½DðνAðtÞ; jψihψ jÞ� for some distance
metric D, to arrive at Eq. (10). Therefore it is likely
relatively tight for a generic evolution, where Vt does
not recohere into a local, pure unitary channel. Indeed, from
numerics we notice that Eq. (10) seems to be tighter than
Eq. (11). However, in general geometric measures are not
practically accessible due to the required optimization over
all separable states. On the other hand, the Rényi 2-entropy
is. We note that a similar result is derived in Ref. [37],
where they lower bound LOE by an extensive sum of
OTOCs, in contrast to our bound in terms of a single,
average OTOC. The bound (11) is our main result, and will
be investigated in the remainder of this work.
The LOE entropy grows at fastest linearly, with strong

evidence that this maximal scaling is saturated if and only if
the dynamics are chaotic [11,49], compared to logarithmic
growth for integrable systems [8,47,48,50,51,64].
Therefore, Eq. (11) gives us a bound on scrambling

GðVtÞ≲
�
B expð−αtÞ; if Ut chaotic;

Ct−α; if Ut regular:
ð12Þ

This should not be confused with the lower bounds on
thermally regulated OTOCs from Refs. [31,65], valid for
fast-scrambling systems.
Theorem 3 therefore states that fast decay of the OTOC is

necessary for chaos. However, the counterargument is not
necessarily true, i.e., the bounds in Eq. (12) are not
necessarily tight. We will now examine our results through
classes of local circuit models, to uncover: (i) When
Eq. (11) is saturated, and (ii) when the OTOC decays fast
for slowly decaying LOE; i.e., scrambling without chaos.
Application to local circuit models.—“Brickwork”

circuits consist of layers of two-body unitary gates
which are applied to next-neighbor sites on a lattice (see
Fig. 1) [4,53,66–69],

U∶ Hi1 ⊗ Hi2 → Ho1 ⊗ Ho2 : ð13Þ

It is necessary to introduce some notation. We take the
initial operator V to have support on a single site which we
specify wlog to be at y ¼ 0, where both the sites and time
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steps are labeled with half integers as in Fig. 1. Then the
disjoint spacesHA andHĀ are labeled by the list of integers
of the spins they contain, lA and lĀ, respectively. The
following results will cover two exclusive cases: whenHA is
connected and contains the left light cone edge (t∈lA), or
the right edge (t∈lĀ). This is a technical restraint, related to
what is analytically computable for dynamics D [46].
Finally, we define convenient coordinates x� ≔ t� a, with
a the edge of region HAð0Þ within the lightcone, such that

In completely general brickwork unitary circuits, both
the OTOC and the LOE entropy scale in terms of the same
matrix GðVtÞ ∼ ðT xþ½U�Þx− ∼ e−

1
2
Sð2Þ½νAðtÞ�. Informally,

T xþ½U� is a spacetime transfer matrix, representing the
contraction of the dual unitary circuit along the light cone
direction. This is a well-studied object [11,58,70], and we
define it in detail in [57]. This leads to our first result on
local circuit OTOC behavior [71].
Observation 4.—When the term −½1=ðd2A − 1Þ� from

Eq. (8) can be neglected, both sides of the inequality
Eq. (11) have generically the same leading order scaling for
large x−, but constant xþ.
Further supporting this result, numerical examples of

Haar random unitary bricks show similar scaling for both
sides of Eq. (11) [57]. In contrast, we will now delve into a
specific model where the scaling does not match, in order to
highlight that scrambling is distinct from chaos.
Consider the Floquet interacting XXZ model on qubits,

consisting of a brickwork dynamics (see Fig. 1) with two-
site unitary

UXXZ ¼ exp

�
−i
�
π

4
σx ⊗ σx þ

π

4
σy ⊗ σy þ Jσz ⊗ σz

��
;

ð14Þ
where J is a free parameter. We have set the parameter
in front of σx ⊗ σx and σy ⊗ σy to π=4 to impose

dual-unitarity [46,72,73], which we later discuss.
Moreover, we additionally specify that J ≠ π=4, as J ¼
π=4 yields the SWAP circuit as in Eq. (9). This dynamics is
not chaotic. In particular, the LOE scales logarithmically
with time [51,64]. However, we will see that the OTOC
decays exponentially for all times (or is constantly mini-
mal), indicative of strong scrambling.
Theorem 5.—(Scrambling without chaos.) The Floquet

dual-unitary XXZ model (14) produces an exponentially
decaying OTOC. Concretely, for a single site operator V,
Eq. (16) reduces to

GðVtÞjXXZ ¼
( −1

d2A−1
; if t∈lA

βe−αðx−Þ þ ð1 − βÞ; if t∈lĀ:
ð15Þ

with positive constants α and β reported in [57]. For any V
orthogonal to σz, the constants are such that GðVtÞ decays
to a minimal (negative) value.
The fact that the OTOC exhibits (maximal) exponential

decay for this clearly integrablemodel is stark evidence of the
distinction between scrambling and chaos. This lays bare the
main thesis of this Letter: while the OTOC will always bear
witness to chaos, there exists a wide variety of dynamics that
are scrambling but not chaotic. In other words, the decay of
the OTOC is necessary but not sufficient for chaos.
Equation (14) is a particular example of a dual-unitary

model [46] (denoted by D), which spread information with
maximal velocity [58,74–76]. Using Eq. (8), we can
actually compute the average OTOC for this entire class
of dynamics. In these local circuits, each brick is unitary in
both the space and time direction, which enables analytic
computations. Far beyond the trivial swap circuit (9), these
models are generically chaotic [5] and include, for exam-
ple, the (chaotic) self-dual kicked Ising model [20,45,74]
and the (integrable) Floquet Heisenberg XXZ model
[72,73], as in Eq. (14).
In terms of the (doubled) local, bipartite Hilbert spaces as

in Eq. (13), we define the CPTP maps Mþ ≔ h1j
ið0Þ
1

U� ⊗
Uj1i

oð0Þ
2

and M− ≔ h1j
ið0Þ
2

U� ⊗ Uj1i
oð0Þ
1

. These local maps

govern the decay of two-point correlations inD [46]. We can
exactly express the OTOC average in terms of these maps.
Theorem 6.—(OTOC in dual unitary circuits) For

evolution according to dual unitary circuits D, the average
OTOC is exactly

GðVtÞjD ¼
8<
:

− 1
d2A−1

; t∈lA

1
d2A−1

ðd2AhVjMxþþ Mxþ− jVi − 1Þ; t∈lĀ:

ð16Þ
We stress that our result for GðtÞ in Eq. (16) relies only

on the dual unitarity property, both in the chaotic and
nonchaotic cases. This is in contrast to previous work
computing OTOCs in D, which require the “completely

FIG. 1. Brickwork circuit models of dynamics consist of
repeated two-site unitaries on a one-dimensional lattice. Time
goes from top to bottom, and the light cone for a single-site
operator V is shown in green.
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chaotic” assumption [58,75]. Theorem 4 is valid for arbitrary
t without additional averaging or conditions, and W may
have arbitrarily large support in contrast to the exclusively
single site operators considered in Refs. [58,75].
We can further specify the dual unitary dynamics to be

completely chaotic [11] (“maximally chaotic” in Ref. [58]),
defined by the property that the eigenvectors with eigen-
value one of the transfer matrix T discussed around
Observation 4 are limited to a minimal set [57]. This
property generically holds, but is violated if there are
additional symmetries (e.g., kicked Ising model) or addi-
tional local conservation laws (e.g., trotterized XXZ
model). This property leads to a precise equivalence
between the LOE and OTOC.
Corollary 7.—For x− kept fixed, Eq. (16) can be

expressed using the known inequalities of Rényi-2 LOE
entropy, [57]

GðVtÞjUt ∈D ≤ exp

�
lim

x−→∞

−1
2
Sð2ÞðνAðtÞÞ

�
; ð17Þ

where equality holds exactly for completely chaotic dual
unitary circuits for jλj ≥ d−1=2 and xþ large. Here, jλj is the
largest nontrivial eigenvalue of M− [11].
Notice here that Eq. (17) is exactly equivalent to Eq. (11)

for dA ≫ 1.
Conclusions and discussion.—In this Letter, we have

demonstrated that the out-of-time-ordered correlator probes
of the local operator entanglement of the time-evolving
operator Vt (results 1–3). This means that formally,
scrambling is strictly necessary for chaos. To explore this
relationship, we examined OTOCs in dual-unitary circuits
(Theorem 6), including an explicit example of an integrable
dynamics where the OTOC exponentially decays for all
times; maximal scrambling without chaos (Theorem 5).
Finally, we also determined generic dual-unitary conditions
that defines when LOE and OTOC scaling coincides—
including requiring the completely chaotic property
(Corollary 7). It would be interesting extend this and
determine the class of models which saturate the bound
(11). We suspect that the members of this class share other
interesting properties.
In our results, the (ultra-)local unitary operator V was left

unspecified, but its exact choice may influence computa-
tions (cf. Theorem 5). Often, V is averaged over [10,59],
but one can take a more subtle approach and define a
density operator that encodes all possible OTOCs or local
Heisenberg operators [17,60]. We extend our main results
to this operator-free setting in [57].
Finally, recently there has been interest in higher point

OTOC generalizations, which are thought to probe finer
structure of randomness [12,13,59,77]. We can extend
present results to connect these to a novel generalization
of LOE, but leave this to a future work.
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