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Spiroplasma is a unique, helical bacterium that lacks a cell wall and swims using propagating helix hand
inversions. These deformations are likely driven by a set of cytoskeletal filaments, but how remains
perplexing. Here, we probe the underlying mechanism using a model where either twist or bend drive
spiroplasma’s chirality inversions. We show that Spiroplasma should wrap into plectonemes at different
values of the length and external viscosity, depending on the mechanism. Then, by experimentally
measuring the bending modulus of Spiroplasma and if and when plectonemes form, we show that
Spiroplasma’s helix hand inversions are likely driven by bending.
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A static helix is defined by two parameters: the radius of
curvature R and pitch P, or the curvature κ0 ¼ R=

�
R2þ

ðP=2πÞ2� and torsion τ0 ¼ ðP=2πÞ=�R2 þ ðP=2πÞ2�. The
local shape of a rodlike object (i.e., an object that is long in
one dimension and thin in the other two) is described by a
strain vector Ω, which has three independent components
defining two perpendicular bends (or curvatures) and the
twist per length about the long axis. Consequently, a helical
rod of length L can be described in two different ways, one
involving twist and bend with Ω1 ¼ κ0, Ω2 ¼ 0, and Ω3 ¼
τ0 [Fig. 1(a)], and the other that only uses bending, with
Ω1 ¼ κ0 cosð2πs=τ0Þ, Ω2 ¼ κ0 sinð2πs=τ0Þ, Ω3 ¼ 0, and s
the length measured along the rod’s centerline [Fig. 1(b)].
While both of these helices look the same, it may not

take the same amount of work to form them. For a linearly
elastic rod of circular cross section and equilibrium
curvatures κ1 and κ2 and torsion τ, the moment required
to deform the rod away from this shape is

M ¼ A½ðΩ1 − κ1Þe1 þ ðΩ2 − κ2Þe2� þ CðΩ3 − τÞe3; ð1Þ

where the filament’s centerline is parametrized using a
vector rðsÞ, and we have defined an orthonormal triad at
each point ðe1; e2; e3Þ, such that e3 ¼ ∂r=∂s is the tangent
vector, and e1 and e2 lie in the plane perpendicular to the
tangent. The bending modulus A defines the moment
required to impose a given curvature, while the twisting
modulus C is the material stiffness with respect to twisting
motions. In general, C ≠ A [6], and twist enters the
dynamic equations for the centerline in a different way
than preferred curvature (e.g., see Ref. [7]). Therefore, we
expect twist-driven dynamics to differ from those driven by
bend. In this Letter, we use this distinction to probe the

FIG. 1. (a) To create a helix by twisting, a straight rod can first
be bent into a planar curve with constant radius κ−10 and then
twisted about its length with twist density τ0. (b) To create one by
bending, first bend the rod into a planar, sinusoidal wave, and
then bend it along the perpendicular direction into another
sinusoidal wave, 90° out of phase from the first wave. In (a)
and (b) the red arrows show the bend and twist directions, and the
blue lines point along e2. Note that the resulting e2 vectors do not
point in the same direction in (a) and (b). (c) Cross section of
Spiroplasma showing the internal cytoskeletal ribbon with (red)
Fibril protein filaments and (blue) SpMreB filaments, as de-
scribed in [1]. (d) Experiment (top) and bend-model simulation
(bottom) of a swimming Spiroplasma at low viscosity (see
Supplemental Material movie S1 [2]). The solid arrow indicates
swimming direction, the � represents the junction (“kink”)
between RH and LH chirality, and time progresses left to right
in the figure. The preferred torsion, τ, and curvatures, κ1;2 as a
function of arclength for a Spiroplasma with a chirality inversion
versus length for the torsion-based (e) and curvature-based
(f) models where � indicates the location of the kink.
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perplexing motility mechanism of the unique bacterium
Spiroplasma.
While many bacteria swim by rotating external helical

flagella [8], Spiroplasma swims by propagating periodic
inversions of its chirality [9–11]. Spiroplasma are pre-
dominantly seen in electron microscopy as right-handed
(RH) helices [11,12]. To swim, the handedness of the cell
body switches to left handed (LH) starting at one end [11].
This helix hand inversion grows from that end, propagating
down to the opposite end at speed vk ∼ 10 μm=s [Fig. 1(d),
[11] ] The location of the chirality change is identifiable as
a translating kink in the cell body [10]. After a time tk, the
first end reverts to its original RH conformation, and this
change in helicity propagates to the far end with the same
velocity as the first kink.
Not only is the swimming mechanism of Spiroplasma

unique, so is its structure. The cells are wall-less, lacking
the elastic peptidoglycan layer that defines the shape of
most bacteria [13,14]. Spiroplasma, instead, only has a
liquidlike lipid membrane separating the inside of the cell
from the outside. The helical shape and dynamic change in
chirality is attributed to an internal set of cytoskeletal
filaments [1,13,15,16] [Fig. 1(c)]. Although recent work
has shed light on the interaction between Spiroplasma’s
cytoskeleton and membrane, how the cytoskeletal filaments
drive the periodic helix hand inversions has only been
conjectured, with little evidence to support any given idea
[10,17–19].
Here we ask the simple question: Do these cytoskeletal

filaments induce helicity flipping through a bend or twist
mechanism? While previous researchers have successfully
used torsion-based models to reproduce the kinematics of
Spiroplasma’s motility in low viscosity fluids [20–22], it is
unclear whether these models are a faithful representation
of the actual mechanics.
To investigate the mechanics of Spiroplasma, we treat

the bacterium as an elastic filamentary object with circular
cross section of radius a. At low Reynolds number, a
filament’s elastic restoring forces F are balanced by the
viscous drag per length from the fluid, fd ¼ ∂F=∂s [23],
where the drag force is approximately proportional to the
local velocity of the filament and also linearly dependent on
the fluid viscosity η. Moment balance along the filament
defines the restoring forces [24],

∂M
∂s

¼ −e3 × Fþ ζrω3ee; ð2Þ

with ζr ¼ 4πηa2 the rotational drag coefficient and the
moment as given in Eq. (1). These equations give dynamics
where the local velocity of the filament is related to second
derivatives of the curvatures but only first derivatives of the
twist. We hypothesize that these differences in dynamics
will lead to different behaviors depending on the external
viscosity.

To model the case where chirality flipping is induced by
a twisting mechanism, we define the preferred curvatures
for Spiroplasma to be κ1 ¼ κ0 ¼ 5.0 μm−1 and κ2 ¼ 0
[11]. We then drive the helicity dynamics using

τðs; tÞ ¼ τ0F ðs; tÞ; ð3Þ

where τ0 ¼ 6.8 μm−1 and the function F is defined as

F ðs; tÞ ¼ 1þ tanh ðβ½sþ vkðt1 − tÞ�Þ
− tanh ðβ½sþ vkðt1 þ tk − tÞ�Þ: ð4Þ

This definition flips the torsion between �τ0, with β
controlling the slope of the hyperbolic tangent transition
and t1 the time at which the first helicity change occurs
[Fig. 1(e)]. We also use tk ¼ 0.25 s, and β ¼ 70 to match
experimental values observed for Spiroplasma melliferum
[11]. This model for the dynamics is similar to what
previous groups have used [20–22].
On the other hand, Spiroplasma’s shape could be

generated by bending. For this case, we set τ ¼ 0 and
use sinusoidally varying preferred curvatures [Fig. 1(f)],

κ1ðs; tÞ ¼ κ0 sin

�Z
s

0

ds0τ0F ðs0; tÞ
�
;

κ2ðs; tÞ ¼ κ0 cos

�Z
s

0

ds0τ0F ðs0; tÞ
�
; ð5Þ

where κ0 ¼ 5.0 and F is defined the same as in Eq. (4).
From a purely kinematic viewpoint, these two mecha-

nisms are indistinguishable. To determine whether chang-
ing the external viscosity leads to different dynamical
behaviors, we simulated the dynamics of Spiroplasma
using the regularized Stokeslet approach first published
in [25,26], combined with a finite volume approach for
computing the elastic restoring forces [2,27]. Briefly, we
define the moment as in Eq. (1) and use the finite volume
approach to compute the force per length from Eq. (2). If
we apply these forces and moments at the centerline using
delta functions, the Stokes equation for the fluid is
−∇pþ η∇2uþ ½Fþ 1

2
∇ ×M�δðx − x0Þ ¼ 0, where p is

pressure, x is a point in the fluid, and x0 is a centerline
location where the forces are applied. To solve this equation
computationally, we regularize (spread) the delta function
in the same fashion as [25,26] using a spherically sym-
metric cutoff function, ϕϵðrÞ, where

ϕϵðrÞ ¼
15ϵ4

8πðr2 þ ϵ2Þ7=2 ; ð6Þ

with r ¼ jx − x0j and ϵ controlling the degree to which this
function is spread. Note that ϕϵðxÞ becomes a delta
function as ϵ → 0. This method does not explicitly define
the cell’s width. Therefore, to determine the effective cell
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body radius produced by a given ϵ, we simulated an
initially straight filament with zero twist. One end of the
filament was then clamped and rotated parallel to the long
axis at a rate ω3 that is below the critical buckling
frequency, as in [28,29]. We then measure the torque
CΩ3 that is necessary to achieve a specific rotational
frequency. The effective radius ae is then determined as
CΩ3 ¼ ζrω3L ¼ 4πηa2eω3L, from which we find that
ae ≈ 0.710ϵ.
To complete the mechanical description of Spiroplasma,

we also need to define the bending and twisting moduli in
Eq. (1), which have not been previously measured. To do
this, we used an optical trapping system to pull on S.
melliferum wild type A77 and measured the force required
to stretch the cell body a distance Δx. A schematic of our
optical trapping system is shown in Fig. 2(a), with further
details on our experimental procedure given in the
Supplemental Material [2]. Our experimental protocol
included forces that both extended and compressed the
helical cell body along its axis. However, we found that
fitting the data to extract the value of the bending modulus
was most sensitive to the extensional region of the data.
Therefore, we fit the experimental data to the force
extension curve for a pure axial stretching force generated
using a range of values for the ratio C=A (see the
Supplemental Material for details [2]). We found that the
data were well fit for values of 0.5A ≤ C ≤ A, while when
C < 0.5A the fits were less good, did not always converge,
and gave unreasonable values for the cell length (see the
Supplemental Material and Fig. S3). This result suggests
that 0.5 ≤ C=A ≤ 1, since most materials cannot have a
value greater than 1 [30]. Fitting the data then gave a range
A ¼ 0.14� 0.03 pN μm2 for C=A ¼ 1, and A ¼ 0.17�
0.02 pN μm2 for C=A ¼ 0.5. Combining these results, we
find A ¼ 0.15� 0.04 pN μm2.
Using the measured bending modulus, we ran simula-

tions of the bend- and torsion-based models over a range of

viscosities from 1.0 to 20.0 cP. The length of Spiroplasma
was discretized using a grid spacing Δs ¼ 0.075 μm, and
we set ϵ ¼ 1.68Δs in order to ensure that the effective
radius was within 5% of 0.09 μm, the value determined by
electron microscopy studies [31]. For low viscosities
(∼1 cP) and lengths of less than 7 μm, the bend- and
torsion-based models were nearly identical and accurately
reproduced the swimming dynamics of Spiroplasma, as
shown in Fig. 1(d). However, at larger viscosities and/or
longer lengths, the two models deviate. The agreement
between the two mechanisms at low viscosity and/or short
lengths is due to the fact that both mechanisms drive the
motion by equivalent preferred kinematics. We can define
an elastic relaxation time Tel ∝ ηL4=A. When this time is
fast compared with the forcing timescale (∼L=vk), both
mechanisms closely follow the preferred kinematics.
However, when the elastic timescale is comparable to or
slower than the forcing timescale, the two mechanisms will
deviate from the defined kinematics and potentially from
each other. We find that for a given length L and kink speed
vk, there is a viscosity above which the simulations predict
that a swimming Spiroplasma folds over onto itself and
wraps into a plectoneme, as shown in Fig. 3. In our
simulations, we define a plectoneme when any node at
arclength s along the cell body comes into contact with
another node between the arclengths 2πP ≤ s0 ≤ L − 2πP.
This definition excludes self-contact with the edge nodes,
which we do in order to compare to the experiments
described later, where contact involving the cell extrema
will not alter the bacterium’s motion enough to be observ-
able in one 10 ms frame. This viscosity at which a
plectoneme is observed is lower for the torsion-based
model than for the bend-based model. We speculate that
plectoneme formation is due to a buildup in twist as the
kink propagates down the length of the cell, since the cell
has to rotate about its helical axes in order to alternate
handedness. If this hypothesis is correct, we expect from
dimensional analysis and by analogy with the dynamics for
twirling a straight filament [28] that the critical rotational
frequency at which the cell buckles and potentially wraps
around itself is given by ωc ∝ A=ζrL2, where the constant
of proportionality can be different for the two mechanisms.
This frequency should also be related to the rate that twist is
injected into the cell by the traveling kink, which should be
proportional to 2τ0vk, since the traveling kink flips the
torsion between �τ0. Therefore, we expect the onset of
plectoneme formation to scale like L2 ∝ 1=ηvk. This result
implies there is a critical length at which plectonemes begin
to form that is inversely proportional to ηvk. Indeed, we
find that the bend-based model begins to form plectonemes
at longer lengths than what is predicted by the torsion-
based model (Fig. 4).
To determine whether these results were informative

about the mechanism of Spiroplasma motility, we used
differential interference contrast microscopy to observe

FIG. 2. (a) Schematic of the optical trapping setup. A Spiro-
plasma (green) is immobilized at one end by attachment to a glass
cover slip (slide). A spherical bead (blue) trapped in an infrared
laser (red) is attached to the Spiroplasma’s free end. The stage is
then moved slowly so that the bacterium is stretched. The distance
between laser axis and bead center, Δx, is measured to find the
force. (b) Representative force vs extension curves with the best fit
to the curve predicted for stretching an elastic helix, fromwhichwe
find an average bending modulus A ¼ 0.15� 0.04 pN μm2.
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Spiroplasma swimming as a function of viscosity. We
cultured S. melliferum and performed motility assays,
following the procedure described in [11]. We varied the
viscosity between 4 and 12 cP, in increments of∼2 cP, using
Ficoll®, which maintains the Newtonian fluid character-
istics of the medium [32]. The viscosities of the media were
measured directly from the mean squared displacement

(MSD) of suspended polystyrene beads, using custom
written MATLAB code to compute the MSD in two dimen-
sions (see the SupplementalMaterial).At lowviscosities, we
observed motility like what has been described previously
[9–11] [Fig. 1(d)]. At higher viscosities, though, we
observed many Spiroplasma undergoing altered motility
in which the cell body formed plectonemes (Fig. 3). As
shown in Fig. 3, we found parameters where the torsion-
based model would predict plectonemes which were not
observed for cells with similar parameters in experiments
and in the bend-based model. Furthermore, in a parameter
region where plectonemes were observed experimentally,
the torsion-based model sometimes predicted persistent
plectonemes that were not observed experimentally (see
Fig. 3, right panels).
To compare to our modeling, we measured the length,

kink speed, and viscosity on a total of 1100 individual
propagating kinks across 104 individual Spiroplasma and
recorded whether or not the bacterium formed a plecto-
neme. In these experiments, we found that the average kink
velocities across all Spiroplasma were 11.65� 1.86 μm=s
with no significant variation between viscosities, similar to
what has been reported previously [11,33]. The results for
the length as a function of 1=ηvk were then plotted on top of
the predicted behavior from the two models, as shown in
Fig. 4. The parameter region for where plectonemes were
observed agrees surprisingly well with the predictions from
the bend-based model, while the torsion-based model
incorrectly predicts that plectonemes should form at signi-
ficantly shorter lengths or lower viscosities than what is
experimentally observed.
Here, we have leveraged a potentially underappreciated

aspect of filament physics, that helices created by bend are
not dynamically equivalent to those created by twist, in
order to examine the biomechanics and motility of
Spiroplasma. To begin to elucidate the mysterious motility

FIG. 3. Upper left: a Spiroplasma cell of length L ¼ 5.56 μm swims through fluid with viscosity η ¼ 5.9 cP exhibiting a measured
kink speed, vk ¼ 10.0 μm=s [movies S2(a), S2(b), and S2(c) in the Supplemental Material [2] ]. This bacterium never forms a
plectoneme. Using the same parameters, the bend-based model’s dynamics (middle left panels) agree well with experiment, while the
torsion-based model (lower left panels) forms a plectoneme. Upper right: Spiroplasma length L ¼ 4.76 μm swimming in fluid with
η ¼ 10 cP [movies S3(a), S3(b), and S3(c) [2] ]. As a kink propagates along the cell (vk ¼ 11.5 μm=s), a plectoneme forms. Results of
the bend (middle right panels) and torsion (lower left panels) model simulations with the same parameters. Plectonemic regions in the
simulations are highlighted in red whereas the circled area is a plectoneme incorrectly predicted by the torsion-based model.

FIG. 4. Plectoneme formation as a function of length, viscosity,
and kink speed. While the bend- and torsion-based models both
predict that the length when plectonemes form depends on 1=ηvk,
the torsion-based model (black triangles) predicts plectonemes at
shorter lengths than the bend-based model (black squares).
Experimental observations found where in the L2 vs 1=ηvk
phase-space plectonemes occurred (green triangles) or did not
occur (red circles). This experimentally determined plectoneme-
forming region agrees well with that predicted by the bend-based
model (blue-colored region), while the torsion-based model
substantially overestimates the area of this region, with the gray
coloring denoting where only the torsion-based model predicted
plectonemes. The dashed blue (gray) lines indicate the variability
in the onset of plectonemes when varying the bend modulus from
A ¼ 0.14–0.20 pN μm2 for the bend (torsion) modalities while
keeping the bend and twist moduli equal. The “*” indicates the
experimental data points shown in Fig. 3.
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mechanism of this unique bacterium, we probed this
dynamic difference in the context of helix hand inversions
at low Reynolds number. Our results provided two n
ew pieces of information about the biomechanics of
Spiroplasma. First, we measured the bending modulus of
the cell and found A ¼ 0.15� 0.04 pN μm2, about 3 times
stiffer than actin [34], and also put limits on the value of the
twist modulus that C > 0.5A. Second, we showed that for
the basic kinematic behavior of Spiroplasma swimming, the
bend-based mechanism better predicts when Spiroplasma
forms plectonemes as the viscosity is increased, thereby
suggesting that this mechanism dominates over a twist-
based one. While the specific details for how the spiroplas-
mal cytoskeleton produces motility remain elusive, our
findings limit the possible underlying molecular mechanics
and provide clues as to how Spiroplasma’s cytoskeletal
filaments drive swimming. Indeed, our results may be
consistent with a recent study that hypothesized a potential
mechanism where SpMreB attaching and detaching from
the membrane drives local curvature in the membrane and
cell body [19].Our resultsmay also help explain other recent
studies where reconstitution of the Spiroplasma cytoskele-
ton in a nonmotile bacterium confers motility to an other-
wise inert cell [16,35].
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