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Population heterogeneity is ubiquitous among active living systems, but little is known about its role in

determining their spatial organization and large-scale dynamics. Combining evidence from synthetic active
fluids assembled from self-propelled colloidal particles along with theoretical predictions at the continuum
scale, we demonstrate the spontaneous demixing of binary polar liquids within circular confinement. Our

analysis reveals how both active speed heterogeneity and nonreciprocal repulsive interactions lead to self-

sorting behavior. By establishing general principles for the self-organization of binary polar liquids, our

findings highlight the specificity of multicomponent active systems.
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Introduction.—In the savanna, zebras often herd
together with giraffes to benefit from their vigilance [1].
The formation of such heterogeneous group is not the
exception. Often in living systems, diverse groups gather
and move collectively: from human crowds, to bird flocks,
to bacterial colonies [2—6]. In stark contrast, our current
account of motile active matter is mostly restricted to
single-component systems [7-9]: focusing on homo-
geneous populations, physicists have captured the emer-
gence of a variety of active phases, such as the flocking in
polar liquids [10-12], the turbulence in active nematics
[13-15], and the motility-induced phase separation of
active Brownian particles [16—19]. Elucidating the impact
of population heterogeneity on these collective behaviors
represents a formidable yet necessary challenge. It calls
for thorough experimental investigations [20] to take
further strides following recent numerical and theoretical
insights [21-31]: Are active phases robust to such hetero-
geneities? Do they benefit from them? Do novel phases
emerge? In this Letter, we combine experiments and
theory to investigate the flocking behavior of binary polar
liquids and unveil an active phase whose components
spontaneously demix.

Heterogeneity of active components can influence differ-
ent aspects of their dynamics. It can affect their individual
motion, such as their self-propulsion speed [21-24] or their
intrinsic fluctuations [25,32,33], or it can alter their inter-
actions. In particular, the out-of-equilibrium nature of active
systems allows for nonreciprocal interactions resulting in
asymmetric interactions between species with major

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

0031-9007/23/131(17)/178304(6)

178304-1

consequences on their self-organization [20,29,30,34-39].
Here, we consider mixtures of active colloids that are
bidispersed in size and demonstrate the ensuing hetero-
geneities of both their individual activity and interactions
rules. By assembling colloidal flocks [12] from such binary
mixtures, we uncover their spontaneous demixing, see
Fig. 1(b). We explain this behavior by developing a hydro-
dynamic theory for binary polar liquids that captures our
experimental observations without any free parameter, see
Fig. 1(c). Our analysis eventually unveils two generic
mechanisms for the spontaneous demixing in polar liquid
vortices based on self-propulsion speed differences and
nonreciprocal repulsive interactions.

Demixing in binary colloidal flocks.—Figure 1(a) illus-
trates a typical experiment where binary colloidal flocks
self-assemble from colloidal rollers confined within circu-
lar microfluidic wells [12,40]. The initially homogeneously
distributed mixture (i) quickly self-organizes into a
dynamical vortex (ii),(iii) upon activation of the particles
at t = 0. A few seconds later, a striking feature appears
within the binary flock (iv): its constituents have sponta-
neously demixed. This spatial organization, which corre-
sponds to the system steady state, consists of the
accumulation of the larger particles toward the edge, while
the smaller ones populate the core. As shown in the
Supplemental Material [41], this partial demixing persists
through variations in the confinement size, the mixture
ratio, and the particle material.

To understand the origin of this behavior, let us first
delve into the activation mechanism and the emergence
of the polar liquid vortex. We focus here on some key
elements and provide additional details in the Supplemental
Material [41]. To investigate the influence of heterogeneity
on their collective dynamics, binary flocks are obtained
by combining polystyrene colloidal particles of two differ-
ent sizes: a, = 10 and @, = 7 pm in diameter, of uniform-
ity below 5%, see Supplemental Material, Sec. A. The
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FIG. 1. Spontaneous demixing in binary colloidal flocks.
(a) A bidispersed mixture of colloidal rollers, activated at
t =0, forms a flock and eventually demixes. (b) The binary
colloidal flock moves clockwise at steady state. It is assembled
from N, = 690 10 pm diameter fluorescent particles (bright) and
N, =10507 pm diameter nonfluorescent particles (dark) and
confined in a circular well of 600 pm diameter. Colloidal
particles are activated through the Quincke mechanism by
application of the dc electric field E. (c) Radial density profiles
of both species for a 52:48 binary mixture with N, = 1360 (red)
and N, = 1260 (violet). The density of 10 pm particles increases
from the core to the edge, while the density of 7 pm particles
displays nonmonotonous behavior. Scale bars, 200 pm.

subscripts y and v each refer to the respective species
throughout this Letter. The activation of the particles is
achieved by means of the Quincke electrohydrodynamic
instability, which causes the particles to rotate at a constant
rate independent of their size [44,45]. This steady rotation is
converted into translation via friction with the substrate,
resulting in their self-propulsion at fixed speed [12].
This activation mechanism gives rise to the so-called
“colloidal rollers” that perform persistent random walks
when isolated [12]. Important for the study of binary flocks,
differences in particle size yield differences in the self-
propulsion speed v and the rotational diffusivity D of each
species. Under typical experimental conditions, we measure
v, =09 mms™, D,=19s" and v, =0.7 mms™,
D, = 3.4 s7!, see Supplemental Material, Sec. A. We note
that a,/a, # v,/v,, which reveals subtle effects of the
substrate on their individual dynamics [46,47].

At high density, an initially homogeneous binary mixture
eventually forms a polar liquid vortex with radially increas-
ing density, similar to single-species flocks [40]. Figure 1(b)
shows such a colloidal vortex for a 40 : 60 mixture consisting
of N, = 690 large and N, = 1050 small particles, see also
the video in the Supplemental Material [41]. In populations
of colloidal rollers, collective motion can be traced back to

alignment interactions between rollers mediated by the
solvent (see [12] and below). Upon increase in the roller
density, alignment interactions eventually overcome rota-
tional diffusion and the population undergoes a Vicsek-like
transition [10]. In circular confinement, collective motion
takes the form of a vortex that rotates with equal probability
in the clockwise or counterclockwise direction, breaking the
initial symmetry of the system [40,48-50]. In this context,
the formation of a polar liquid vortex by the binary mixture
echoes the single-component case: 50:50 mixtures form a
gas at low density and a polar vortex at high density, see
Supplemental Material, Sec. A [41]. In this Letter, we focus
on densities above the flocking threshold and, particularly,
on the spontaneous demixing taking place within the binary
flocks.

What is the origin of this spontaneous demixing? Not
only does size heterogeneity cause differences in the
intrinsic properties of active particles v and D, but it also
results in a unique set of pairwise interactions. In particular,
repulsive interactions can be expected to play a major role:
in single-component polar liquid vortices, self-propulsion
and repulsion compete and their balance sets the radial
increase of the density profile [40]. In binary flocks, distinct
density profiles suggest that each species achieves this
balance in its own way. Unraveling what determines the
spatial structure of binary flocks therefore requires estab-
lishing the interactions rules intra- and interspecies to
identify the consequence of size heterogeneity. Beyond
colloidal flocks, sourcing what factor drives the spatial
structuring of binary flocks would unveil universal features
yielding spontaneous demixing.

Nonreciprocal interactions.—Interacting colloidal roll-
ers are well described by a generic active XY model with
alignment and repulsive couplings [12,51], as illustrated in
Fig. 2. These interactions take their roots in the propulsion
mechanism of Quincke rollers and originate, respectively,
from hydrodynamic and electrical interactions. Keeping the
dominating contributions only, binary interactions lead to
the relaxation of the particle velocity orientation V; =
(cos 0;,sin0;) in a characteristic time 7 in a potential that
is a function of the orientations of both particles V; and ¥;
and their interparticle distance r; —r; = rt:

d@,- 10 &8 V. - T
dt :?a_@[Aij(r)Vi'Vj+Bij(’)Vi 1], (1)

where A;;(r) and B;;(r) are the alignment and repulsion
strengths caused by particle j on particle i, respectively.
Alignment and repulsion need not be reciprocal when
considering interactions between heterospecifics as a con-
sequence of the nonequilibrium nature of the system.
Indeed, their expressions, derived from first principles in
the Supplemental Material, Sec. B [41], are asymmetrical
under i <> j inversion which reveals such nonreciprocity,
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Ay(r) = A e(r), @

ala;
o). ()

Bj(r) =B

Here, A and B are constants and ©(r) is a screening
function indicating that interactions are short ranged. While
we keep the details of the derivation in the Supplemental
Material, Egs. (2) and (3) are worth a few comments. First,
the hydrodynamic interaction shows no dependency on the
size of particle i. This feature originates from the fact that
colloidal rollers respond identically to the shear of hydro-
dynamic flows [52] irrespective of their size. Second, the
repulsive torques originating from electrical interactions are
also nonreciprocal. This feature may seem even more
surprising than for viscous hydrodynamic interactions. In
fact, colloidal rollers are constantly powered by the
application of a dc electric field that builds dipolar charge
distributions around the particles. Continuous charge trans-
fer with the surrounding liquid breaks force parity. Finally,
within binary mixtures, the above pairwise interactions
imply that only two distinct coefficients describe alignment
interactions, while four different coefficients are necessary
to capture repulsive interactions. Figure 2 summarizes the
interactions between conspecific and heterospecific colloi-
dal rollers.

Overall, size differences of colloidal rollers give rise to
rich microscopic dynamics where particles self-propel at
different speeds and interact according to complex rules.
Therefore, spontaneous demixing of binary flocks result
a priori from both intrinsic characteristics and interaction
parameters.

Hydrodynamics of binary polar liquids.—In order to
capture the structuring of binary flocks at the macroscopic
level, we employ a hydrodynamic description of binary
polar liquids. By coarse graining the microscopic equations
of motions of particles of species u and v, we establish the
evolution equations for the density fields p,, p,, and the
polarization fields II,, II,, akin to the Toner-Tu equations
for single-component polar liquids [53], see Supplemental
Material, Sec. C [41]. The density and momentum dynam-
ics of species u read, respectively,

01,0,4 +V- (pyHﬂ) =0, (4)
Pu
al(pﬂnﬂ) + UMV ’ (pry + ? I>
= _Dﬂpﬂnﬂ + /)ﬂ(l - zQu) : [aﬂﬂp/«lnﬂ + apupvnv]
_pu(l - 2Q/4) ! [ﬁ/mvpu +ﬁ/vab]v (5)

and the ones of species v follow from y <> v inversion. In
Eq. (5), Q is the nematic order parameter. The coefficients
a and f express alignment and repulsion couplings at the

FIG. 2. Nonreciprocal interactions between colloidal rollers.
Pairwise interactions consist of two torques acting on the direction
of self-propulsion (black arrows). The alignment torque A orig-
inates from hydrodynamic coupling and favors self-propulsion in a
common direction. The repulsive torque B originates from
electrical coupling and favors self-propulsion away from the
center-to-center segment. The thickness of the colored arrows
materializes the nonreciprocity of the interactions, A,, =A,, >

A, =A4A, and B, >B,, > B, > B, see Egs. (2) and (3).

hydrodynamic level and are obtained from their micro-
scopic counterparts. Interactions between conspecifics
correspond to the a,, and f,, terms, while interactions
between heterospecifics correspond to the @, and 3, ones.
We performed several experiments dedicated to measuring
these coefficients, which we report in the Supplemental
Material, Sec. D [41]. Our experiments corroborate that the
alignment coefficients contain two distinct values, reflect-
ing the theoretical description, Eq. (2). Experimentally, we
could not differentiate 3, and f,,, nor f,, and f3,,. As a
consequence, the alignment and repulsion coefficients read

- <1 0.53> s (1 0.58) .
E=%\ 1 053) E7Pm\q 0s8)

where @, = 5.5 x 10* pm?/s and §,,, = 2.7 x 10° pm?/s.

To describe flocks confined within circular boundaries,
we now look for axisymmetric stationary solutions by
projecting the momentum equations onto the azimuthal
€, and radial €, directions. The projections on the
azimuthal direction highlight that alignment coupling
and rotational noise compete to set the local polarizations
(see Supplemental Material, Sec. C [41]). It turns out that
the two species show only minute differences in their
polarization profiles, see Supplemental Material, Fig. 6.
This allows us to make an important simplification and
consider IL,(r) =II,(r), D, = D,, and Q,(r) = Q,(r),
which follows from the closure relation Q(r) =
I1%(r)/2(é,8, — €.&,).

The projections on the radial direction encode sponta-
neous demixing. As anticipated, we observe that the
density profiles are set by the competition between
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repulsion and an effective centrifuge force originating from
the particle self-propulsion within the vortex, in line with
[40]. This is most easily seen in the case where non-
reciprocity is neglected. In this case, the alignment and
repulsion matrices reduce to single coefficients a and /3, and
the total density field p,,(r) = p,(r) 4 p,(r) satisfies

1 \o(r) _ 9P
<1+H2> r =/ or ' (7)

where v(r) is the local net activity [21], defined here as
v = (x,/v, +x,/v,)”", where we introduce the local
density fractions y,(r) = p,/pu+n and x,(r) = p,/pyss-
The left-hand side being always positive, Eq. (7) predicts
the monotonous radial increase of the total density, as soon
as the system is in its ordered state (IT > 0). The demixing
of the binary flock is in turn captured by the evolution of
the density fractions, which relate to the total density
variation via

1 A, v, — v 0P,
g v u 1./’ 8
xu(1=x,) or < v,0, )p”+” or (8)

where K = 2af(1 + I1%)/ D is always positive. Equation (8)
predicts that the density fractions evolve monotonously
according to the self-propulsion speed difference between
the two species, in agreement with our experimental
observations. Figure 3 shows the experimental profiles of
X, and y, together with the theoretical predictions obtained
by solving numerically Eqgs. (7) and (8) with no fitting
parameter (dashed line): the fraction of the large, faster
species radially increases, and the fraction of the small,
slower species decreases.

This good qualitative agreement underscores the essen-
tial role of speed differences in the demixing of binary
colloidal flocks. To capture even more finely the structure
of the binary flock, however, the nonreciprocity of inter-
actions must be taken into account. Factoring the non-
reciprocities of Eq. (6) in the theory yields expressions
resembling Eqs. (7) and (8), which can be similarly
integrated, see Supplemental Material, Sec. C [41].
Doing so eventually leads to an excellent match between
experiments and theory, as shown in Fig. 3 (solid lines). We
stress that this quantitative agreement relies solely on
hydrodynamic coefficients inferred experimentally and is
obtained without any fitting parameter. Altogether, the
hydrodynamic description reveals that active speed
differences and nonreciprocal interactions are the necessary
and sufficient ingredients to capture the spatial structuring
of binary colloidal flocks.

Spontaneous demixing routes.—The amount of demix-
ing achieved in colloidal flocks is directly linked to the
difference in self-propulsion speed between species [see
Supplemental Material [41], Eq. (C26)] and can be quan-
tified by the order parameter,

1.0 T T T T T

"0 100 200 300 400 500 600
r(um)

FIG. 3. Radial profiles of the density fractions y, (red) and y,
(violet). The hydrodynamic theory (solid line) perfectly captures
the monotonous radial evolutions of the experimental (markers)
small (violet) and large (red) particle density fractions. The
dashed line and the dotted lines indicate the theoretical predic-
tions for reciprocal heterospecific interactions and for common
self-propulsion speed, respectively.

). ©)

-

-

where p; (r) = p,(r)/{(p,(r)),. @ vanishes when both
species occupy space homogeneously and takes the value
1 when they are perfectly sorted. Figure 4(a) shows that @ is
predicted to increase from 0 to 0.7 when the speed ratio
v,/v, decreases from 1 to 0.75, in a 50:50 mixture at
Putv = 2.3 x 107> pm=2. Strong demixing can be obtained
for relatively small speed disparities, and the greater the
speed disparity, the stronger the demixing.

We confirm this prediction by studying binary colloidal
flocks of varying mixture ratios. In these additional experi-
ments, we observe slight differences of the mean particle
speeds (see Supplemental Material, Sec. C [41]). While we
do not explain these variations, we turn them into our
advantage to test the effect of speed disparity on demixing.
As shown in Fig. 4(a), the demixing in all flocks is in good
agreement with the theory, confirming the accuracy of their
hydrodynamic description.

Since self-propulsion speed differences induce the dem-
ixing of binary colloidal flocks, a natural question arises:
Could nonreciprocal interactions alone drive the demixing
of binary polar liquids? The inspection of the structure of
Eq. (6) helps answer this question. In the case of colloidal
rollers, nonreciprocity is reduced to two equal sets of
actions: (i) the ones caused by species y on both species y
and v, and (ii) the ones caused by species v on both species
u and v. As a consequence, the total alignment and the total
repulsion acting upon both species are identical. The
microscopic nonreciprocity hence fades at the macroscopic
scale, in a way similar to what has recently been reported
for scalar active matter mixtures [30].

We close this Letter by going beyond the current material
constraints and envision a generic polar liquid that does not
adhere to the structure denoted in Eq. (6), which opens a
new route to achieve demixing. To this end, we consider a

pu(r) = py(r)
Pu(r) +pu(r)
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FIG. 4. Demixing routes. (a) Self-propulsion speed difference.
Variation of the demixing order parameter ¢ with the speed ratio
v,/v,. The total density is p,,, = 2.3 x 10~ pm~2. The color
codes are for the density ratio of the mixtures. (b) Nonreciprocal
repulsive interactions. Variations of ¢ with the ratio of the
repulsion strength f3,,/f,,,.

limiting case where the species u experiences only homo-
specific interactions: a,, = f8,, = 0. Species u therefore
flocks as in a single-species system, forming a vortex of
radially increasing density. We further specify the behavior
of species v such that it evolves in this polar liquid
background while only exhibiting heterospecific inter-
actions (a,, =0, f,, = 0). These interactions rules are
summarized by

aau(y o) b, o) (O
= Hu 10 = Hi ﬁl/ﬂ / /}/m 0

The main control parameter in this simplified dynamics is
Puu/ Buy» Which expresses the relative strength of repulsive
interactions on species v and p. Simplifying Egs. (4) and (5)
with the relations of Eq. (10) allows us to obtain the particle
density profiles varying fp,,/f,,, see Supplemental
Material, Sec. C [41]. We find that such binary mixtures
do spontaneously demix for identical active speeds
v, = v,, see Fig. 4(b). For p,/p, =1, no demixing
occurs and ¢ = 0. When $,,/f,, < 1, species v tends to
accumulate outward, as its particles experience less repul-
sion at any given location than particles of species u.
Conversely, species v accumulates inward when
Puu/ By > 1. This behavior demonstrates how nonrecipro-
cal interactions can exclusively lead to the demixing of
binary polar liquids. In general, both active speed
differences and nonreciprocity will therefore contribute
to setting the inner structure of binary polar liquids.
Conclusion.—In this Letter, we have uncovered two
mechanisms leading to the spontaneous demixing of active
polar liquid vortices. Both self-propulsion heterogeneity and
nonreciprocity of binary interactions can drive the partial
segregation of binary flocks. The former is the principal
driver of the demixing of binary colloidal flocks assembled
from Quincke rollers of different sizes. Accounting for
nonreciprocal pairwise interactions between colloidal rollers

allows for quantitatively capturing the binary flocks’ spatial
structuring. Beyond its fundamental significance, our work
could inspire the design of active sorting platforms that rely
on active constituents’ mobility and interactions rather than
global mechanical motion.

We thank M. Le Blay for insightful discussions and
M. Lettinga and V. Krabbenborg for their contributions at
an early stage of this research.
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