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We numerically study the shear rheology of a binary mixture of soft active Brownian particles, from the
fluid to the disordered solid regime. At low shear rates, we find a Newtonian regime, where a Green-Kubo
relation with an effective temperature provides the linear viscosity. It is followed by a shear-thinning regime
at high shear rates. At high densities, solidification is signaled by the emergence of a finite yield stress. We
construct a “fluid-glass-jamming” phase diagram with activity replacing temperature. While both
parameters gauge fluctuations, activity also changes the exponent characterizing the decay of the
diffusivity close to the glass transition and the shape of the yield stress surface. The dense disordered
active solid appears to be mostly dominated by athermal jamming rather than glass rheology.
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Ensembles of repulsive particles commonly undergo a
phase transition from a fluid to a solid state upon com-
pression. If the tendency to crystallize is frustrated (e.g., by
size polydispersity), thermal systems exhibit a glass tran-
sition to a disordered solid [1,2]. Solidity can also emerge
upon compression in athermal particle systems, such as
foams or grains: the so-called jamming transition [3]. Both
transitions share the existence of a critical density beyond
which a yield stress emerges, heralded by a dramatic
slowing down of the dynamics [4,5]. Accordingly, a unified
picture in terms of a “jamming” phase diagram was
proposed [6,7]. The yield stress surface has since been
quantified with the help of idealized particle models and
rheological experiments [8–11], helping to decipher and
classify the mechanisms responsible for the emergence of
rigidity in diverse soft materials [5].
A resurgence of interest in understanding the emergence

of solidity is recently observed in an a priori completely
new context, namely, dense disordered active matter.
Indeed, assemblies of biological cells [12,13] and synthetic
active colloids [14] display a fluid to solid transition, key to
understanding tissue mechanics and morphogenesis.
Moreover, they exhibit slow, collective dynamics, reminis-
cent of supercooled liquids approaching a glass transition.
Again, this phenomenology has been rationalized in terms
of a jamming phase diagram [15–18], where temperature is
replaced by “activity,” usually in the form of motility, as in
Fig. 1(a), where the Péclet number Pe quantifies the
propulsion velocity of active Brownian particles (ABPs).
While thermal fluctuations can usually be neglected

in active systems, the effects of the (nonthermal)
active fluctuations are often subsumed into an effective

temperature. It is, however, conceptually unclear how
reliable the qualitative analogy between activity and tempe-
rature really is and whether the emergence of a disordered
solid should be attributed to a jamming or glass transition.
The question of how self-propulsion affects a glass tran-
sition has already been addressed in numerous works
using model systems [19–31]. Active fluctuations have
been found to play a crucial role in the unjamming
of epithelial tissues [32] and in gravisensing of plant cells
via granular rheology [33]. Yet, despite considerable
recent progress both for models of individual ABPs [34]
and interacting active many-body systems [35–38], the

(a) (b)

FIG. 1. Active glass-jamming rheology: (a) Yield stress surface
of harmonic ABPs at reduced temperature T ¼ 10−4. The Péclet
number Pe is a dimensionless measure of the active against the
passive (thermal) particle motility and ϕ is the volume fraction.
The dashed black line corresponds to the athermal (T ¼ 0)
passive jamming limit. The black symbols in the Pe − ϕ plane
locate the active glass transition at ϕGðPeÞ. (b) Cross section in
the xy plane of the three-dimensional simulation box, showing
the imposed shear velocity profile.
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rheology of dense active matter [39–41] remains poorly
understood, and the distinction between glassy and jam-
ming rheological regimes has not been investigated in this
context, so far. An analogy has been drawn between shear
(a global drive) and activity (a local drive) [42], and indeed,
in infinite spatial dimensions in the infinite-persistence
limit, their formal equivalence has been established [43,44].
In two dimensions, the mechanisms that govern yielding in
the respective systems were found to be different, though
[45]. Active disks under shear were reported to orienta-
tionally order in the presence of hard walls [37] and trigger
shear thickening as a result of clustering [38]. However, the
rheology of dense disordered three-dimensional ABPs with
a finite persistence has not yet been explored.
In this Letter, we investigate the shear rheology of self-

propelled soft particles by means of computer simulations.
In previous experiments with (dilute) microswimmer sus-
pensions, both hydrodynamic and particle-wall interactions
are likely to be crucial [46–50]. Here, in order to decipher
the role played by self-propulsion alone, we consider a
simplified model in which none of these two ingredients are
at play [51]. More precisely, we consider a “dry” micro-
swimmer model of harmonic ABPs in three dimensions
[52,53] with periodic boundary conditions [see Fig. 1(b)].
The restriction to dry active dynamics is quite common in
the field, as hydrodynamic effects are expected to become
negligible at large densities, as known, e.g., for colloidal
glasses [54] and confluent cell tissues [16,24], and are
absent in dry active systems [55–57]. The technical
frugality allows us to cover the dilute and dense regimes
in our numerical simulations and to explore both linear and
nonlinear response, across 8 orders of magnitude in the
shear rate. The advantages of choosing harmonic spheres
are threefold: (i) they have widely been employed as
models for foams [58] and, if endowed with activity,
provide a useful model for biological tissues [59,60]; (ii) the
rheology of passive harmonic particles has been studied in
detail [10,11,61], thus allowing for a smooth connection
with previous results to discriminate the new features
brought about by activity; (iii) a computational speedup
compared to hard spheres.
In our simulations, N soft repulsive ABPs are placed at

positions frigNi¼1 in a V ¼ L3 cubic box with periodic
boundary conditions. They self-propel along their orienta-
tions ni (with jnij ¼ 1), with a speed v0. Their otherwise
overdamped Brownian dynamics obeys

ṙi ¼ μ
X

j≠i
Fij þ v0ni þ γ̇yiex þ

ffiffiffiffiffiffiffiffi
2Dt

p
ξi;

ṅi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ni × νi: ð1Þ

The interaction forces derive from a harmonic repulsive
pair potential VðrÞ ¼ ϵð1 − r=aÞ2Θða − rÞ, where ΘðrÞ
denotes the Heaviside step function. To suppress crystal-
lization, we consider 50∶50 bidisperse mixtures of

N ¼ 103 particles with diameters a and
ffiffiffi
2

p
a, respectively

[10,62]. Both ξi and νi are Gaussian white noises of zero
mean and unit variance, Dt ¼ μkBT is the (bare) transla-
tional diffusion coefficient, and Dr is the rotational dif-
fusivity fixed to Dr ¼ 3Dt=a2. With this choice of
parametrization, the limit v0 → 0 corresponds to a passive
Brownian suspension, for which the fluctuation-dissipation
theorem is satisfied. We impose a linear velocity profile on
the particles and apply Lees-Edwards boundary conditions
[see Fig. 1(b)] [63,64]. The translational part of Eq. (1) is
integrated by an Euler-Mayurama scheme and the rota-
tional part using the algorithm described in [65] (see
Supplemental Material [66] for details).
Lengths are measured in units of the small particle

diameter a, time t in units of a2=ðμϵÞ, and temperature T in
units of ϵ=kB. In the following, all observables are given in
these units. From Eq. (1), one can identify a set of
nondimensional control parameters: the volume fraction
ϕ, the Péclet number Pe ¼ v0=aDr, quantifying activity,
and the dimensionless shear rate γ̇. We study the system at
T ¼ 10−6;…; 10−3 (most of the results presented are for
T ¼ 10−4), Pe ¼ 0, 1, 3, 10, 30, and a wide range of shear
rates γ̇ ¼ 10−7;…; 10, including both the linear and non-
linear response regimes. Note that the temperature unit
allows one to interpolate between soft and hard spheres, the
latter being realized in the T → 0 limit. With this choice of
parameters and constant Dr, the system remains homo-
geneous and avoids motility-induced phase separation,
which is known to occur for monodisperse hard ABPs
above a critical Pe ≈ 30 [52,53,68]. Also, the repulsive
force is always several orders of magnitude larger than the
self-propulsion to avoid a reentrant gas phase, as seen
in [69].
In equilibrium (Pe ¼ 0), as ϕ is increased, the system

exhibits a dramatic slowing down of the dynamics that one
identifies with a glass transition at ϕG, characterized by the
divergence of the viscosity and the emergence of a yield
stress for ϕ > ϕG. As we show below, similar behavior is
observed in the presence of activity Pe > 0, although in this
case, the location of the glass transition is shifted to higher
densities ϕGðPeÞ, as previously reported for diverse models
[20–23,30,70,71].
We start our analysis by investigating the dynamics in the

absence of shear by means of the mean-square displace-
ment (MSD), defined as Δ2ðtÞ¼N−1PN

i¼1h½riðtÞ−rið0Þ�2i.
The average is taken over different noise realizations. As
shown in Fig. 2(a), at ϕ ¼ 0.66 the passive system exhibits
caged dynamics, evidenced by the subdiffusive (plateau)
regime. For Pe ¼ 10, particles diffuse in the same time
window, showing that activity is able to fluidize the
glass. We extract the long-time diffusion coefficient Ds ≡
limt→∞Δ2ðtÞ=6t in the range of parameters for which a
diffusive regime, Δ2ðtÞ ∝ t, is observed. At high densities,
DsðϕÞ can be fitted by a power lawDs ∝ ðϕG − ϕÞα that we
use to locate the glass transition density ϕGðPeÞ reported in
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Fig. 1(a) [21]. Figure 2(b) shows Dsðϕ; PeÞ, normalized
by the (active) ideal gas diffusion coefficient Da ¼ Dt þ
Pe2Dr=6 [72], as a function of (ϕG − ϕ) for various Pe. As
activity primarily enhances diffusion, it moves the glass
transition from ϕGð0Þ ¼ 0.62 at Pe ¼ 0 to ever higher
densities, up to ϕGð30Þ ¼ 0.72 at Pe ¼ 30 [see Fig. 1(a)]. It
might be tempting to simply interpret such a shift as
resulting from an increase of the single particle effective
temperature, defined by Teff ¼ μDa, since the equilibrium
glass transition density would also be shifted upon increas-
ing T [73]. However, not only ϕG is affected by activity, but
also the exponent α. It increases from 1.79 at Pe ¼ 0 up to
4.42 at Pe ¼ 30. Since, in equilibrium, a slightly lower
value (α ¼ 1.67) is measured for the increased temperature
T ¼ 10−3, the significant increase of α with Pe shows that
activity cannot simply be reduced to an effective temper-
ature in this regime.
Applying shear provides another route to fluidize the

disordered solid state. As shown in Fig. 2(a), particles
exhibiting caged dynamics in an active system at Pe ¼ 10,
ϕ ¼ 0.72 > ϕGð10Þ, become mobile upon shearing. The
MSD displays superdiffusive, then diffusive behavior at
long times. We note that the obtained long-time diffusion is
sensitive to finite-size effects: Lees-Edwards boundary
conditions introduce a discontinuity in the shear profile,
which becomes apparent in the MSD after a sufficiently
long time (see Supplemental Material [66] for details).
To characterize the flow properties, we measure the

xy component σxyðtÞ ¼ −ð2VÞ−1 Pj≠k xijðtÞFy
ijðtÞ of the

stress tensor, using the Irving-Kirkwood expression [74],
from which we get the shear viscosity η ¼ hσxyi=γ̇. Activity
contributes to the stress tensor with a self-term
σsαβ ¼ −V−1 P

i r
α
i v0n

β
i ðtÞ. As the orientations ni are

decoupled from the shear flow, σsxy fluctuates around zero

[37]. The flow curves characterizing the rheology of the
system at T ¼ 10−4 and Pe ¼ 0, 10 are depicted in Fig. 3
(see Supplemental Material [66] for more parameter
values). For comparison with the rheology in the presence
of activity, we reproduce the flow curves reported for the
same system in the passive case, Pe ¼ 0, before [10]. In
dense two-dimensional active assemblies, shearing was
observed to lead to orientational order at large persistence
time [37]. However, we did not find orientational correla-
tions in our three-dimensional model for the parameter
range explored [66].
At densities below ϕGðPeÞ, we find σxy ∝ γ̇ for

small enough applied shear. This corresponds to the
Newtonian fluid regime, defining a linear viscosity
η0 ≡ limγ̇→0hσxyi=γ̇. In the nonlinear regime, at γ̇ ≳ 10−2,
we find shear thinning in all cases, meaning that the shear
flow reduces the system’s viscosity. In this regime, we find
a decay of the viscosity compatible with η ∼ 1=jγ̇j, as
expected from mode-coupling theory for Brownian sus-
pensions [75]. At ϕ > ϕG, a finite yield stress σY ≡
limγ̇→0 σxyðγ̇Þ appears, identified by a plateau in the stress
flow curves. This results in a divergent viscosity, signaling
the emergence of solidity. Since activity melts the solid, the
system yields at higher densities at Pe ¼ 10 compared
to Pe ¼ 0.
In the fluid regime, the linear viscosity at low shear and

Pe ¼ 0 corresponds to the one given by the Green-Kubo
(GK) relation ηGK ¼ ðV=kBTÞ

R
∞
0 dthσαβðtÞσαβð0Þi0, for

α ≠ β, where h�i0 denotes an average over the unperturbed
(γ̇ ¼ 0) equilibrium distribution. As shown in Fig. 4, the
shear viscosity η0 extracted from the low γ̇ plateau in
the flow curves in Fig. 3(c) matches ηGK, measured from

(a)
(b)

FIG. 2. Dynamic signatures of melting: (a) mean-square dis-
placement Δ2ðtÞ at fixed T ¼ 10−4, Pe ¼ 0, 10, for ϕ ¼ 0.66,
0.72, with and without shear, showing the melting of the glass by
activity (green curves) and by shear (red curves). The dashed line
indicates the initial diffusive regime, Δ2ðtÞ ¼ 6Dtt. (b) Long-
time diffusion coefficients Ds normalized by their ideal gas value
Da at T ¼ 10−4 (open green circles correspond to T ¼ 10−3 and
Pe ¼ 0), as a function of the distance to the critical density,
ϕG − ϕ. Dashed lines are power-law fits Ds ∝ ðϕG − ϕÞα.

(a) (b)

(c) (d)

FIG. 3. Flow curves for the shear stress hσxyiðγ̇Þ (a),(b) and
the viscosity ηðγ̇Þ (c),(d). Color encodes ϕ, the thick red lines
correspond to ϕGðPeÞ (as estimated via the diffusivity),
and thin lines represent fits of the Herschel-Bulkley form
σxyðγ̇Þ ¼ σY þ ðkγ̇Þn, used to extract the yield stress σY .
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the GK relation by direct integration of the equilibrium
stress correlation function. In the presence of activity, GK
relations do not need to hold anymore, although extensions
of linear response theory to active systems have recently
been proposed [76–79], providing GK relations involving
steady-state correlation functions [76,78]. Here we apply
the same procedure in the presence of activity, thus
replacing equilibrium by steady-state stress correlations,
and find a good agreement between η0 and ηGK if we
replace T in the GK expression by an effective temperature
Teff ¼ TðPeþ 1Þ, which is again different from the ideal-
gas expectation Teff ¼ μDa, see Fig. 4. In all cases, η0
increases with ϕ and eventually diverges at ϕG, providing
yet another estimate for the onset of solidity. In dilute
conditions, we find that the GK viscosity grows like ∼ϕ2

(inset of Fig. 4), as predicted for dilute Brownian suspen-
sions: η=η0 ¼ 1þ 2.5ϕþ 7.6ϕ2 [80]. We only observe the
ϕ2 contribution, as there is no solvent in our system.
Above ϕG the viscosity diverges and the system acquires

a yield stress σY that we measure by fitting the Herschel-
Bulkley relation, σxyðγ̇Þ ¼ σY þ ðkγ̇Þn [81], to the flow
curves, see Fig. 3. We report the obtained yield stress σYðϕÞ
as a function of volume fraction for different values of Pe
and T in Fig. 5. At Pe ¼ 0 and finite T, the emergence of
solidity is controlled by the glass transition at a critical
density ϕGðTÞ that increases with T. At T ¼ 0, it is instead
controlled by the jamming transition at ϕJ ≈ 0.648. Both
glass and jamming physics affect the shape of the yield
surface σYðϕ; TÞ. At T⩽10−4, for which ϕG < ϕJ, the
system displays two distinct rheological regimes associated
with glassy and jamming physics. First, σY increases gently
with ϕ and T up to ϕ ≈ ϕJ (dashed lines in Fig. 5). Above
this value, the behavior of σY changes qualitatively: it
grows faster with ϕ close to ϕJ, with little T dependence,
following σY ∼ ðϕ − ϕJÞα0 [10], see Fig. 5(a).
In the presence of activity, Pe > 0, and at finite T, σY

displays a T-sensitive glasslike branch for ϕ < ϕJ followed
by the T-insensitive jamming branch, see Fig. 5(a). The
yield stress curves do not follow the trend one would expect

if activity could be subsumed into an extra source of noise
and encoded by an increased effective temperature,
although both Pe and T shift the fluid-solid transition to
higher densities. As T increases, σY increases, shifting the
curves in Fig. 5(a) upward. In contrast, increasing Pe
slightly lowers the yield stress, shifting the curves toward
the right and quickly collapsing them into the jamming line.
For Pe > 3, ϕGðPeÞ > ϕJ, and a finite yield stress can only
emerge in the parameter regime controlled by jamming
[62], where σY ∼ ðϕ − ϕJÞα0 universally applies, indepen-
dent of Pe. The crossover between glass and jamming
rheology can thus be tuned by activity and is eventually
lost, as it pushes σY toward the athermal limit. The
separation between ϕG and ϕJ progressively vanishes as
activity increases. An overview over the impact of activity
on the yield surface at T ¼ 10−4 is represented in the fluid-
glass-jamming phase diagram in Fig. 1.
In summary, we have studied soft ABPs under shear,

from the fluid to disordered solid regime. The Newtonian
fluid viscosities in the zero-shear limit are compatible with
those obtained from the Green-Kubo relation, once the
Brownian temperature T is replaced by an effective temper-
ature Teff that depends on the active Péclet number. This
strategy follows earlier ideas to quantify the violations of
the fluctuation-dissipation theorem in active systems. In the
dilute limit, Teff ∼ Pe2. At intermediate densities, Teff
generically depends on the observables used to define it
[22,76,82]. As the packing fraction is increased toward the
fluid-solid transition, the diffusivity decays according to a
critical power law Ds ∼ ðϕG − ϕÞα, with α increasing from
α ≈ 1.8 for Pe ¼ 0 and to α ≈ 4.4 for Pe ¼ 30, a behavior
hardly interpretable on the grounds of an effective temper-
ature anymore. The glass-jamming phase diagram (Fig. 1)
reveals that ABP rheology in the solid regime is mainly
controlled by jamming. Although both T and Pe push ϕG to
higher values, activity, as opposed to temperature, eases the

FIG. 4. Density-dependent linear shear viscosity η0, extracted
from the flow curves (symbols), and ηGK=ðPeþ 1Þ, from Green-
Kubo (lines). Dashed vertical lines indicate ϕGðPeÞ. Inset: ηGK ∝
ϕ2 at low densities.

(a) (b)

FIG. 5. (a) Yield stress σY as a function of ϕ for different Pe
(color) and T (symbols): An increase in T raises σY while, on
the contrary, increasing Pe lowers it. The dashed line given by
ðϕ − ϕJÞα0 with ϕJ ¼ 0.648 and α0 ¼ 1.04, marks the athermal
jamming limit. (b) Yield stress σYðϕÞ at T ¼ 10−4 for the
parameters used to construct the yield surface in Fig. 1. Steep
lines connect to ϕGðPeÞ.
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yielding and, in this respect, could rather play a role similar
to shear, once the persistence length of the active motion
exceeds the typical cage length [43]. Our work thus calls
for further theoretical efforts to better understand the
fundamental role played by nonequilibrium fluctuations
introduced by activity in dense disordered systems, for
instance, by extending elastoplastic models of yielding to
account for self-propulsion or analyzing dynamic hetero-
geneities in active glasses [83–86]. By providing the first
quantitative jamming phase diagram of an active system, it
should serve as a helpful reference for future studies of soft
active assemblies. The fact that their rheology constitutes a
separate class from the known pressure-controlled flows of
hard spheres [87] brings us a step closer to reconciling the
latter with observations in dense assemblies of cells, for
which only qualitative phase diagrams have been sketched
so far [15–18]. It should also provide a good starting point
for future attempts to elucidate the relationship between the
glass and jamming transitions in biological systems.
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