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We introduce a machine-learning-based coarse-grained molecular dynamics model that faithfully retains
the many-body nature of the intermolecular dissipative interactions. Unlike the common empirical coarse-
grained models, the present model is constructed based on the Mori-Zwanzig formalism and naturally
inherits the heterogeneous state-dependent memory term rather than matching the mean-field metrics such
as the velocity autocorrelation function. Numerical results show that preserving the many-body nature of
the memory term is crucial for predicting the collective transport and diffusion processes, where empirical
forms generally show limitations.
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Accurately predicting the collective behavior of multi-
scale physical systems is a long-standing problem that
requires the integrated modeling of the molecular-level
interactions across multiple scales [1]. However, for sys-
tems without clear scale separation, there often exists no
such a set of simple collective variables by which we can
formulate the evolution in an analytic and self-determined
way. One canonical example is coarse-grained molecular
dynamics (CGMD). While the reduced degrees of freedom
enable us to achieve a broader range of the spatiotemporal
scale, the construction of truly reliable coarse-grained (CG)
models remains highly nontrivial. A significant amount of
work [2–13] (see also review [14]), including recent
machine learning (ML)-based approaches [15–21], have
been devoted to constructing the conservative CG potential
for retaining consistent static and thermodynamic proper-
ties. However, accurate prediction of the CG dynamics
further relies on faithfully modeling a memory term that
represents the energy-dissipation processes arising from the
unresolved degrees of freedom; the governing equations
generally become non-Markovian on the CG scale.
Moreover, such non-Markovian term often depends on
the resolved variables in a complex way [22–28] where the
analytic formulation is generally unknown. In particular,
for extensive CGMD systems (i.e., the number of CG
particles can be proportionally changed according to the
simulation size), the memory term often exhibits strong
many-body effect and needs to satisfy various physical
symmetry constraints among the CG particles. Existing
approaches often rely on empirical models such as
Brownian motion [29], Langevin dynamics [30], and
dissipative particle dynamics (DPD) [31,32]. Despite their
broad applications, studies [33–35] based on direct
construction from full MD show that the empirical

(e.g., pairwise additive) forms can be insufficient to capture
the state-dependent energy-dissipation processes due to the
many-body and non-Markovian effects. Recent efforts
[36–51] model the memory term based on the generalized
Langevin equation (GLE) and its variants (see also review
[52]). The velocity autocorrelation function (VACF) is
often used as the target quantity for model parametrization.
While it may serve as an appropriate measure for certain
nonextensive systems [53,54], the VACF is essentially a
metric of the background dissipation under mean-field
approximation. For extensive CGMD systems, the homo-
geneous kernel overlooks the heterogeneity of the energy
dissipation among the CG particles stemming from the
many-body nature of the marginal probability density
function of the CG variables. This limitation imposes a
fundamental challenge for accurately modeling the local
irreversible responses as well as the transport and diffusion
processes on the collective scale.
This Letter aims to fill the gap with a new CG model that

faithfully entails the state-dependent non-Markovian
memory and the coherent noise for extensive MD systems.
The model formulation can be loosely viewed as an
extended dynamics of the CG variables joint with a set of
non-Markovian features that embodies the many-body
nature of the energy dissipation among the CG particles.
Specifically, we treat each CG particle as an agent and seek a
set of symmetry-preserving neural network (NN) represen-
tations that directly map its local environments to the non-
Markovian friction interactions, and thereby circumvent the
exhausting efforts of fitting the individual memory terms
with a unified empirical form. Different from the ML-based
potential model [21], the memory terms are represented by
NNs in form of second-order tensors that strictly preserve
the rotational symmetry and the positive-definite constraint.
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Coherent noise can be introduced satisfying the second
fluctuation-dissipation theorem and retaining consistent
invariant distribution. Rather than matching the VACF,
the model is trained based on the Mori-Zwanzig (MZ)
projection formalism such that the effects of the unresolved
interactions can be seamlessly inherited. We emphasize that
the construction is not merely for mathematical rigor.
Numerical results of a polymer molecule system show that
the CG models with empirical memory forms are generally
insufficient to capture heterogeneous intermolecular dis-
sipation that leads to inaccurate cross-correlation functions
among the particles. Fortunately, the present model can
reproduce both the auto- and cross-correlation functions.
More importantly, it accurately predicts the challenging
collective dynamics characterized by the hydrodynamic
mode correlation and the van Hove function [55]
and shows the promise to predict the mesoscale transport
and diffusion processes encoded with molecular-level
fidelity.
Let us consider a full MD system consisting of M

molecules with a total number of N atoms. The phase space
vector is denoted by z ¼ ½q;p�, where q;p∈R3N represent
the position and momentum vector, respectively. Given
zð0Þ ¼ z0, the evolution follows zðtÞ ¼ eLtz0, where L is
the Liouville operator determined by the HamiltonianHðzÞ.
The CG variables are defined by representing eachmolecule
as a CG particle, i.e.,ϕðzÞ¼ ½ϕQðzÞ;ϕPðzÞ�, whereϕQðzÞ¼
½Q1;Q2;…;QM� and ϕPðzÞ¼ ½P1;P2;…;PM� represent the
center of mass and the total momentum of individual
molecules, respectively. ZðtÞ ¼ ½QðtÞ;PðtÞ� denote the
map ϕ½zðtÞ� with zð0Þ ¼ z0. To construct the reduced
model, we define the Zwanzig projection operator as the
conditional expectation with a fixed CG vector Z, i.e.,
PZfðzÞ ≔ E½fðzÞjϕðzÞ ¼ Z� under conditional density
proportional to δðϕðzÞ − ZÞe−βHðzÞ and its orthogonal oper-
ator QZ ¼ I − PZ. Using Zwanzig’s formalism [56], the
dynamics of ZðtÞ [see Ref. [57] and Supplemental Material
(SM) [58] ] can be written as

Q̇¼M−1P;

Ṗ¼−∇UðQÞþ
Z

t

0

KðQðsÞ; t− sÞVðsÞdsþRðtÞ; ð1Þ

whereM is the mass matrix and V ¼ M−1P is the velocity.
UðQÞ is the free energy under ϕQðzÞ≡Q. KðQ; tÞ ¼
PZ½ðeQZLtQZLPÞðQZLPÞT � is the memory representing
the coupling between the CG and unresolved variables,
andRðtÞ is the fluctuation force which can be modeled as a
Gaussian random process satisfying the second fluctuation-
dissipation theorem [57].
Equation (1) provides the starting point to derive the

various CG models. Direct evaluation of KðQ; tÞ imposes
a challenge as it relies on solving the full-dimensional

orthogonal dynamics eQZLt. Further simplificationKðQ; tÞ≈
θðtÞ leads to the common GLE with a homogeneous kernel.
Alternatively, the pairwise approximation ½KðQ; tÞ�ij ≈
γðQijÞδðtÞ or γðQijÞθðtÞ leads to the standard DPD
(M-DPD) and non-Markovian variants (NM-DPD), respec-
tively. However, as shown below, such empirical forms are
limited to capturing the state dependence that turns out to be
crucial for the dynamics on the collective scale, andmotivates
the presentmodel retaining themany-bodynature ofKðQ; tÞ.
To elaborate the essential idea, let us start with the

Markovian approximation KðQ; tÞ ≈ −ΓðQÞδðtÞ, where
ΓðQÞ ¼ ΞðQÞΞðQÞT is the friction tensor preserving the
semipositive definite condition, and ΞðQÞ needs to re-
tain the translational, rotational, and permutational sym-
metry, i.e.,

ΞijðQ1 þ b;…;QM þ bÞ ¼ ΞijðQ1;…;QMÞ;
ΞijðUQ1;…;UQMÞ ¼ UΞijðQ1;…;QMÞUT;

ΞσðiÞσðjÞðQσð1Þ;…;QσðMÞÞ ¼ ΞijðQ1;…;QMÞ; ð2Þ

where Ξij ∈R3×3 represents the friction contribution of jth
particle on ith particle, b∈R3 is a translation vector, U is a
unitary matrix, and σð·Þ is a permutation function.
To inherit the many-body interactions, we map the local

environment of each CG particle into a set of generalized
coordinates, i.e., Q̂k

i ¼ Qi þ
P

l∈N i
fkðQilÞQil, where f:

R → RK is an encoder function to be learned, and N i ¼
fljQil < rcg is the neighboring index set of the ith particle
within a cutoff distance rc. Accordingly, Q̂ij ∈R3×K

represents a set of features that encode the intermolecular
configurations beyond the pairwise approximation. The kth
column Q̂k

ij ¼ Q̂k
i − Q̂k

j preserves the translational and
permutational invariance, by which we represent Ξij by

Ξij ¼
XK
k¼1

hkðQ̂T
ijQ̂ijÞQ̂k

ij ⊗ Q̂k
ij þ h0ðQ̂T

ijQ̂ijÞI; ð3Þ

where h: RK×K → RKþ1 are encoder functions which
will be represented by NNs. For i ¼ j, we have Ξii ¼
−
P

j∈N i
Ξij based on the Newton’s third law. We refer to

SM [58] for the proof of the symmetry constraint (2).
Equation (3) entails the state dependency of the memory

term KðZ; tÞ under the Markovian approximation. To
incorporate the non-Markovian effect, we embed the
memory term within an extended Markovian dynamics
[38] (see also Ref. [50]). Specifically, we seek a set of non-
Markovian features ζ ≔ ½ζ1; ζ2;…; ζn�, and construct the
joint dynamics of ½Z; ζ� by imposing the many-body form
of the friction tensor between P and ζ, i.e.,
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Q̇ ¼ M−1P;

Ṗ ¼ −∇UðQÞ þ ΞðQÞζ;
ζ̇ ¼ −ΞðQÞTV − Λζ þ ξðtÞ; ð4Þ

where Ξ ¼ ½Ξ1Ξ2 � � �Ξn� and each submatrix takes the
form (3) constructed by ffið·Þ;hið·Þgni¼1, respectively. Λ ¼
Λ̂ ⊗ I represents the coupling among n features, where
I∈R3M×3M is the identity matrix and Λ̂∈Rn×n needs to
satisfy the Lyapunov stability condition Λ̂þ Λ̂T ≥ 0.
Therefore, we write Λ̂ ¼ L̂L̂T þ L̂a, where L̂ is a lower
triangular matrix and L̂a is an antisymmetry matrix which
will be determined later. By choosing the white noise ξðtÞ
following

hξðtÞξðt0Þi ¼ β−1ðΛþ ΛTÞδðt − t0Þ; ð5Þ
Eq. (4) retains the consistent invariant distribution
ρðQ;P; ξÞ ∝ expf−β½UðQÞ þ PTM−1P=2þ ζTζ=2�g (see
proof in SM [58]).
Equation (4) departs from the common CG models by

retaining both the heterogeneity and non-Markovianity of
the energy dissipation process. Rather than matching the
mean-field metrics such as the homogeneous VACF,
we learn the embedded memory Ξ½QðtÞ�eΛðt−sÞΞ½QðsÞ�T
based on the MZ form. However, directly solving the
orthogonal dynamics eQZLt is computationally intractable.
Alternatively,we introduce the constrained dynamics z̃ðtÞ ¼
eRtzð0Þ following Ref. [34]. Based on the observation
PQ ¼ PR≡ 0, we sample the MZ form from z̃ðtÞ, i.e.,
KMZðZ; tÞ¼PZ½ðeRtQZLPÞðQZLPÞT � and the memory of
theCGmodel reduces toKCGðZ; tÞ ¼ ΞðQÞeΛtΞðQÞT . This
enables us to train the CG models in terms of the encoders
ffið·Þ;hið·Þgni¼1 and matrices L̂ and L̂a by minimizing the
empirical loss

L ¼
XNs

l¼1

XNt

j¼1

���KCGðZðlÞ; tjÞ −KMZðZðlÞ; tjÞ
���2; ð6Þ

where l represents the different CG configurations (see
SM [58] for details in training).
To demonstrate the accuracy of the present model, we

consider a full microscale model of a star-shaped polymer
melt system similar to Ref. [34], where each molecule
consists of 73 atoms. The atomistic interactions are
modeled by the Weeks-Chandler-Anderse potential and
the Hookean bond potential. The full system consists of
486 molecules in a cubic domain 90 × 90 × 90 with
periodic boundary conditions. The Nosé-Hoover thermo-
stat [63,64] is employed to equilibrate the system with
kBT ¼ 4.0 and microcanonical ensemble simulation is
conducted during the production stage (see SM [58] for
details). Below we compare different dynamic properties
predicted by the full MD and the various CG models. For
fair comparisons, we use the same CG potential UðQÞ
constructed by the DeePCG scheme [21] for all the CG

models; the differences in dynamic properties solely arise
from the different formulations of the memory term.
Let us start with the VACF which has been broadly used

in CG model parametrization and validation. As shown in
Fig. 1, the predictions from the present model (NM-MB)
show good agreement with the full MD results. In contrast,
the CG model with the memory term represented by the
pairwise decomposition and Markovian approximation
(i.e., the standard M-DPD form) yields apparent deviations.
The form of the pairwise decomposition with non-
Markovian approximation (NM-DPD) shows improvement
at a short timescale but exhibits large deviations at an
intermediate scale. Such limitations indicate pronounced
many-body effects in the energy dissipation among the CG
particles. Alternatively, if we set the VACF as the target
quantity, we can parametrize the empirical model such as
GLE by matching the VACF predicted by the full MD.
Indeed, the prediction from the constructed GLE recovers
the MD results. However, as shown below, this form
oversimplifies the heterogeneity of the memory term and
leads to inaccurate predictions on the collective scales.
Figure 2 shows the velocity cross-correlation function

(VCCF) between two CG particles, i.e., Cxxðt; r0Þ ¼
E½Við0Þ · VjðtÞjQijð0Þ ¼ r0�, where r0 represents the initial

FIG. 1. The VACF of the full MD and CG models with various
memory formulations in (a) semilog scale (b) original scale. “M”
and “NM” represent Markovian and Non-Markovian; GLE, DPD,
and MB represent state-independent, pairwise, and the present
(NM-MB) model retaining the many-body effects, respectively.
See SM [58] for the details of M-DPD, NM-GLE, and NM-DPD
models.

FIG. 2. The VCCF Cxxðt; r0Þ predicted by the full MD and
different CG models with initial distance (a) 10 < r0 < 11 and
(b) 14 < r0 < 15. Same line legend as Fig. 1.
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distance. Similar to VACF, the present model (NM-MB)
yields good agreement with the full MD results. However,
the predictions from other empirical models, including the
GLE form, show apparent deviations. Such limitations arise
from the inconsistent representation of the local energy
dissipation and can be understood as follows. The VACF
represents the energy dissipation on each particle as a
homogeneous background heat bath; it is essentially a
mean-field metric and cannot characterize the dissipative
interactions among the particles. Hence, the reduced
models that only recover the VACF could be insufficient
to retain the consistent local momentum transport and the
correlations among the particles.
Furthermore, the various empirical models for local

energy dissipations can lead to fundamentally different
transport processes on the collective scale. Figure 3 shows
the normalized correlations of the longitudinal and trans-
verse hydrodynamic modes [65], i.e., CLðtÞ¼ hũ1ðtÞũ1ð0Þi
and CTðtÞ ¼ hũ2ðtÞũ2ð0Þi, where ũ ¼ 1=M

P
M
j¼1 Vjeik·Qj ,

k is the wave vector, and the subscripts 1 and 2 represent
the direction parallel and perpendicular to k, respectively.
Similar to the VCCF, the prediction from the present model
(NM-MB) agrees well with the MD results while other
models show apparent deviations. In particular, the pre-
diction from the GLE model shows strong over-damping
due to the ignorance of the intermolecule dissipations.
Finally, we examine the diffusion process on the col-

lective scale. Figure 4 shows the van Hove function that
characterizes the evolution of the interparticle structural
correlation defined by Gðr; tÞ ∝ ð1=M2ÞPM

j≠i δðkQiðtÞ−
Qjð0Þk − rÞ. At t ¼ 0, Gðr; tÞ reduces to the standard
radial distribution function where all the CG models can
recover such initial conditions. However, for t > 0, pre-
dictions from the models with the pairwise decomposition
(NM-DPD) and the GLE form show apparent deviations.
Specifically, at an early stage near t ¼ 50, the neighboring
particles begin to artificially jump into the region near the
reference particle, violating the fluid structure thereafter. In
contrast, the present model (NM-MB) shows consistent
predictions of the structure evolution over a long period

until t ¼ 1000, when the initial fluid structure ultimately
diffuses into a homogeneous state.
To conclude, this Letter reports a caveat in constructing

reliable CGMD models that retain consistent collective
dynamics. Unlike the empirical forms, we developed a
CG model that faithfully accounts for the broadly over-
looked many-body nature of the non-Markovian memory
term for extensive MD systems. While the significance of
preserving the many-body nature of the conservative force
field on static properties has been gradually recognized, the
caveat on thememory term seems to remain under-explored.
We show that retaining the heterogeneity and the strong
correlation of the local energy dissipation is crucial for
accurately predicting the cross-correlation among the CG
particles, which, however, cannot be fully characterized by
the mean-field metrics such as VACF.More importantly, the
memory form representing the intermolecule energy dis-
sipations may play a profound role in the transport and
diffusion processes on the collective scale. In particular, the
present model accurately predicts the hydrodynamic mode
correlation and the van Hove function where empirical
forms show limitations, and therefore, shows the promise to
accurately predict the emergent phenomena relevant to
hydrodynamic transport and diffusive processes on the
collective scale.

The work is supported by the National Science
Foundation under Grant No. DMS-2110981 and the
ACCESS program through allocation MTH210005. H. L.
acknowledges partial support from the Department of
Energy Center for Hieratical and Robust Modeling of
Non-Equilibrium Transport under Grant No. DOE-DE-
SC0023164.

FIG. 3. (a) Longitudinal and (b) transverse hydrodynamic
modes predicted by MD and different CG models. Same line
legend as Fig. 1.

FIG. 4. The van Hove functionGðr; tÞ predicted by (a) full MD,
(b) the present NM-MBmodel, (c) NM-DPD model, and (d) GLE
model. It depicts the diffusive process of the radius distribution
function (x axis) over time (y axis).
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