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The rainbow trapping phenomenon of graded metamaterials can be combined with the fractal spectra of
quasiperiodic waveguides to give a metamaterial that performs fractal rainbow trapping. This is achieved
through a graded cut-and-project algorithm that yields a geometry for which the effective projection angle
is graded along its length. As a result, the fractal structure of local band gaps varies with position, leading to
broadband “fractal” rainbow trapping. We demonstrate this principle by designing an acoustic waveguide,
which is characterised using theory, simulation and experiments.
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Introduction.—Graded metamaterials have become
popular for several significant applications, such as wave
energy harvesting [1,2] and machine hearing [3–5]. They
have heterogeneous microstructures that are slowly varied
(or “graded”) to yield different effective properties in
different spatial regions. Graded metamaterials were first
developed in optics, to realize so-called “rainbow trapping”
[6]. This is the phenomenon of different frequencies being
reflected at different positions, due to a local effective band
gap that is slowly shifted by a monotonic gradient function.
This principle has since been applied in many other
physical settings, such as plasmonics [7], acoustics [8],
elasticity [9,10], seismology [11] and water waves [12].
Another exciting but as-yet-unrelated direction for meta-

material physics is the move beyond periodic microstruc-
tures into the realm of quasiperiodic metamaterials.
Quasicrystals are structures that are ordered and determin-
istic but nonperiodic. While predicting the transmission
spectra of quasiperiodic systems is a notoriously challeng-
ing and long-standing problem [13–15], they have some
very appealing properties. In particular, quasiperiodic
metamaterials often have a fractal structure of many large
spectral gaps [16–19]. This work designs graded metama-
terials that exploit these large gaps.
Quasicrystals may also have some beneficial robustness

properties. Their large spectral gaps are retained under
periodic approximations [20,21], for example. Similarly,

localized modes (such as edge modes) in quasiperiodic
waveguides may benefit from innate robustness with
respect to imperfections [22–24]. However, it is not
generally clear if this is linked to underlying topological
properties [13,25,26] or even if any robustness benefits
exist when the system is appropriately normalized [27].
In this Letter, we take advantage of the complex,

“fractal” structure of many spectral gaps that is typical
of a quasicrystal to produce an acoustic metamaterial that
performs broadband fractal rainbow trapping. The quasi-
crystal literature contains many variants of the famous
“Hofstadter butterfly” [28]. These are plots that show how
the spectrum varies when a parameter is modulated
[22,27,29,30]. They typically show a self-similar and
fractal collection of spectral gaps that shift up or down
and open or close as the parameter is varied (sometimes
resembling a butterfly). Given that such a complex collec-
tion of (sometimes large) band gaps is an appealing
prospect for broadband wave control, the aim of this work
is to design a graded quasiperiodic metamaterial that
leverages this to perform fractal rainbow trapping. Note
that the metamaterials developed here are not fractal
metamaterials, as studied by, e.g., [31,32], since the
geometry is not fractal. Instead, it is the spectrum that is
fractal.
There have been a variety of attempts to optimize the

performance of graded metamaterials [33–35]. This is
typically achieved by modifying the gradient function
applied to a conventional periodic metamaterial, however,
this is a challenging problem [36]. Other approaches have
included using arrays with topologically protected edge
modes [37] and creating symmetry-broken systems which
have zero group velocity modes inside the Brillouin zone
(which was shown to lead to longer interaction times and an
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increase in the harvested energy) [38]. While notions of
topology have been developed for quasicrystals and can be
applied to the setting considered in this work [13,25,26], it
is unclear how they relate to rainbow effects. Instead, the
main opportunity arising from graded quasicrystals is the
ability to perform rainbow effects over a broadband
frequency range. For conventional graded periodic meta-
materials, typically just one or two band gaps are modu-
lated within the operating frequency range and the
bandwidth can be increased either by widening the band
gap or extending the array. Conversely, quasicrystals are
well known to have fractal collections of many large band
gaps, leading to broadband effects with relatively short
arrays [22,24,39].
A crucial feature of quasicrystals, which is central to our

work, is that they can be obtained by taking incommensu-
rate projections of higher-dimensional periodic structures
[40]; the angle of this projection often serves as the
canonical spectrum-modulating parameter. We will grade
the quasicrystal by grading the projection angle, achieved
by projecting onto a curved line (see Fig. 1). This is used to
design our acoustic metamaterial, which has scatterers
placed at the points specified by the curved cut-and-project
algorithm. A wave traveling through this system experi-
ences the fractal sequence of effective band gaps shown in
Fig. 2—a typical butterfly-type plot. The tendency of these
gaps to shift upward as the angle increases leads to a fractal
rainbow trapping effect.
While some rainbow-trapping-type effects have been

observed in nonperiodic optical materials previously [42], it
is unclear what mechanism was responsible for this or how
these effects could be controlled. Our graded cut-and-
project algorithm overcomes this, giving a fractal rainbow
trapping effect that can be understood easily by studying
the modulated spectral bands.
Graded cut and project.—The quasicrystals considered

in this work are one-dimensional lattices that are obtained

by projecting a two-dimensional square lattice. Suppose we
have a periodic lattice Λ ⊂ R2 and a curve Γ ⊂ R2. If a
point in Λ is within a distance w > 0 of the curve Γ, we
project it onto Γ at the closest point (if this is not unique, we
take all equidistant points) to give the projected lattice

PðΛÞ ¼
�
z∈Γ

����
∃ y∈Λ such that kz − yk2 < w

and kz − yk2 ¼ min
ζ∈Γ

kζ − yk2
�
: ð1Þ

The setPðΛÞ is a set of points in Γ ⊂ R2 that are distributed
along the curve Γ, meaning it is fundamentally a one-
dimensional set embedded in R2. There are many ways to
project PðΛÞ into one dimension; for this work we choose
to do so by just retaining the first coordinate of each point.
Predicting the transmission spectra of quasiperiodic

systems is notoriously challenging and has been a long-
standing problem for spectral theorists [13–15]. Taking
advantage of the cut-and-project operator is a promising

FIG. 1. Experimental schematic and cut-and-project algorithm: (a) 127 acoustically rigid rods (of diameter 4 mm) are placed at
positions determined by the graded cut-and-project algorithm, forming an array of length L ¼ 1.5 m, shown without the enclosing
waveguide. (b),(c) End views of source (loudspeaker) and receiver (microphone) positions, respectively, with enclosing waveguide
shown with a square-cross section of width w ¼ 2 cm. (d) Schematic of the graded cut-and-project algorithm, which projects a square
lattice Λ onto a quadratic curve. The rod positions and sample geometry are further detailed in Supplemental Material [41].

FIG. 2. The spectral “butterfly.” Varying the cut-and-project
angle θ of a square lattice causes the band gaps to shift and open
or close. Any points in the square periodic lattice Λ that are within
a distance w of the straight line Γ are projected onto the line,
yielding the quasicrystal PðΛÞ.
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strategy [43,44], however, approximating the quasicrystal
by a periodic material (often known as a supercell) remains
the most prevalent approach [20,21].
We use a projected quasicrystal PðΛÞ to place scatterers

within an acoustic waveguide (see Fig. 1). If two points are
close enough that the scatterers would touch or overlap, we
remove the second one. A simple theoretical one-dimen-
sional model can be used to obtain an initial characteriza-
tion of this system. For a frequency ω, this model is given
by u00ðxÞ þ ω2cðxÞ−2uðxÞ ¼ 0. We assume the wave speed
cðxÞ varies between two piecewise constant values along
the array, such that it takes a larger value in a neighborhood
of each of the scatterers (due to the local increase in
impedance). See Supplemental Material [41] for more
details.
The obvious choice for the curve Γ is a straight line, i.e.,

Γ ≔ fy ¼ cosðθÞxg. In Fig. 2 we show the spectra of the
projected quasicrystal as the angle θ varies, computed using
the theoretical 1D model. These are Bloch spectra, as the
200 values of θ are all chosen such that tan θ ¼ m=100 is
rational. We observe a complex pattern of band gaps, that
displays exotic properties reminiscent of the spectral
“butterflies” associated with quasiperiodic systems. The
fractality of this set is due to fact that as tan θ∈Q
approaches an irrational number (and the irrationals are
dense in the rationals) the corresponding unit cell becomes
arbitrarily large, leading to a countable collection of gaps.
We have estimated the box-counting dimension of this
fractal as approximately 2.12. More details are given in
Supplemental Material [41].
The propensity for gaps to sweep upward in Fig. 2 as

tan θ increases is reminiscent of the mechanism that leads to
rainbow trapping in conventional graded metamaterials. If
we design a graded quasicrystal for which the effective
projection angle gradually increases along its length, then
the local effective band gaps will shift upward. This means
that, at least above 12 kHz, the higher a frequency is, the
further it will be able to travel before it experiences a given
band gap. We achieve this grading of the projection angle
by projecting onto a quadratic curve Γ, as depicted in
Fig. 1(d). The choice of a quadratic means that the angle
varies in direct proportion to the position in the array.
In Fig. 2, gaps appear around 8, 16, and 24 kHz for many

different projection angles. This has been inherited from the
original periodic lattice, which has band gaps at these
frequencies. Since our projection algorithm (1) preserves
the average separation distances when the angle is small,
the first part of the array has strong effective gaps at these
frequencies. We detail this through additional experi-
ments on separate parts of the array in Supplemental
Material [41].
The discontinuities that are visible in Fig. 2 are due to

discontinuities in the number of points in PðΛÞ that lie
within a given interval. This is due to points in the square
lattice Λ leaving or entering the 2w-wide projection strip as

the angle θ varies as well as our decision to remove points
that are too close to each other. This is particularly visible at
tan θ ¼ 1 (θ ¼ π=4), where the projected crystal is very
different from nearby angles (but turns out to be the same as
at θ ¼ 0).
Experimental and numerical results.—We experimen-

tally verify the fractal rainbow effect using two experi-
mental procedures, performed using the experimental setup
shown in Fig. 1. We form an acoustic waveguide in air,
using aluminum plates to ensure sound hard boundaries,
with square a cross-section of width w ¼ 2 cm and length
L ¼ 1.5 m. The waveguide consists of a bottom plate and a
surrounding “hood” that encases the bottom plate (split into
three sections—see Supplemental Material [41]), that can
be made into two configurations: “free” (no scatterers) or
“scattering” (scatterers present). In the latter configuration
127 aluminum rods, of diameter 4 mm, are placed into
holes machine drilled into the bottom plate at positions
dictated by the graded cut-and-project algorithm. The holes
are milled to 20 μm positional precision and are of length
wþ h, where h is the thickness of the bottom plate, such
that there is a tight fit within the waveguide.
A transmission experiment first confirms the expected

band gap that originates at 8 kHz; a loudspeaker (Visaton
SC 8 N) is fixed at a distance of 175 mm from the end of the
sample and emits a single-cycle Gaussian pulse, centerd at
15 kHz. A microphone (Brüel and Kjær type 4966 1=2-in
free-field, with preconditioning amplifier) is placed at the
exit of the waveguide, with the signal received recorded on
an oscilloscope (Siglent SDS2352X-E). Acoustic data were
recorded with a sampling frequency of 5 MSa s−1, with
50 averages taken. The experiment was conducted in both
the free and scattering configurations and the spectra
obtained by means of the fast Fourier transform. A ratio
of the Fourier amplitudes with and without the scatterers
then gives us a measurement of the transmission t. The
commercial finite element method (FEM) solver COMSOL

Multiphysics [45] is used to simulate the experiment, with the
problem being reduced to two dimensions. As such, the

FIG. 3. Comparison of the transmission spectra: (a) the 1D
model and lossless FEM simulations; (b) lossy FEM simulation
(thermoviscous physics) and experimental results.
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computational domain is now a rectangular waveguide
(L × w) with the rods being approximated by voids with
sound hard boundaries. Both lossless and lossy simulations
are performed, with thermoviscous physics driving the loss
mechanism. Comparisons between theory and lossless
simulations, and lossy simulations and experiment can
be seen in Fig. 3. It is clear thermoviscous losses play a role
within the waveguide, and are thus adopted in all sub-
sequent numerical models.
A second experiment was conducted to confirm the

fractal rainbow effect: four small holes, of diameter 1.3 mm
were drilled into one side of the hood at positions x ¼ 0.41,
0.58, 0.76 0.94 m (schematic shown in Supplemental
Material [41]). A needle microphone (Brüel and Kjær type
4182 probe microphone) was inserted into the holes,
halfway between the outer walls of the waveguide and
the center lines of the rods. A repeat of the above
methodology was conducted, with the ratio of the
Fourier amplitude at these four positions confirming the
localization of acoustic energy as per the theoretical and
numerical predictions, shown in Fig. 4. Since t is propor-
tional to the ratio of pressure amplitudes, with and without
the quasicrystal, its magnitude may exceed unity when the
pressure field undergoes localization by the scatterers
within the waveguide. It is clear that, within the 12–
18 kHz range, there is a linear relationship between the
frequency and the position of reflection, demonstrating the
occurrence of fractal rainbow trapping.
Conclusions.—This work shows that it is possible to

combine the fields of graded metamaterials and quasicrys-
tals to create devices that perform fractal rainbow trapping.
This greatly enlarges the graded metamaterial design space
and takes advantage of quasicrystals’ exceptional proper-
ties. In particular, the dense, Cantor-set-like patterns of

many nearby spectral gaps typical of quasicrystals can be
exploited to increase the operating bandwidth in graded
metamaterial applications, such as energy harvesting. Since
the one-dimensional model used here is also a toy problem
for other wave regimes (such as photonics, linear elasticity,
and water waves, under suitable assumptions), fractal
rainbow trapping could also be performed in other settings,
based on the same projected geometry.
Our results pose several open questions. In this work, we

projected a square lattice onto a quadratic curve, giving a
linear relationship between effective projection angle and
position. Can the performance be optimized by tuning this
relationship? How does their performance compare with
conventional periodic graded metamaterials? Given the
subtleties of drawing calibrated comparisons between
graded metamaterials [36], this requires a careful system-
atic study. Additionally, it remains to be seen if the
topologically protected edge modes that have been
observed in Harper-type quasicrystals [24,29,30] can be
exploited to perform topological rainbow trapping [37] in
quasicrystals. By leveraging the quasicrystals whose spec-
tra are already well understood, we can unlock many new
graded metamaterials very quickly.
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FIG. 4. Demonstration of the fractal rainbow effect. FEM simulations showing frequency spectra as a function of position. The
numbered lines show the measurement positions (see Supplemental Material [41] for details), with the corresponding experimental
comparisons shown in the numbered plots (same frequency axis).
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