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Tessellations of the hyperbolic spaces by regular polygons support discrete quantum and classical
models with unique spectral and topological characteristics. Resolving the true bulk spectra and the
thermodynamic response functions of these models requires converging periodic boundary conditions and
our Letter delivers a practical and rigorous solution for this open problem on generic fp; qg-tessellations.
This enables us to identify the true spectral gaps of bulk Hamiltonians and construct all but one topological
models that deliver the topological gaps predicted by the K theory of the lattices. We demonstrate the
emergence of the expected topological spectral flows whenever two such bulk models are deformed into
each other and prove the emergence of topological channels whenever a soft physical interface is created
between different topological classes of Hamiltonians.
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The investigation of synthetic materials is an active area
of research. In particular, crystals generated from tessella-
tions of hyperbolic spaces have been proposed and some
even realized with quantum, photonic, electromagnetic, and
mechanical degrees of freedom [1–6]. This is part of a new
trend in materials science where the focus is shifted from
making a material stronger, lighter, more durable, etc., to
making it different or to behave differently. The new
paradigm is geared toward creating new opportunities in
materials science, which can come in the form of unique
spectral characteristics or stabilization of fundamentally
distinct topological phases, and the hyperbolic crystals
have been a source of both [4–12]. In fact, the band
topology of the hyperbolic crystals was exhaustively
characterized quite a while ago [13–16].
In these endeavors, scientists are facing challenges that

require entirely new tools of analysis, both theoretical and
computational, and lack of such tools can hold a field
hostage for years. The lack of a systematic way to impose
periodic boundary conditions (PBC) on hyperbolic lattices
prevents us from resolving the true bulk spectra of the
Hamiltonians, computing correlations functions, bulk topo-
logical invariants, and identifying topological gaps. Since
the ratio between the numbers of boundary and bulk sites
converges to a strictly positive value for hyperbolic lattices,
suppressing the boundary states in finite-size samples is
necessary but not sufficient, because convergence with the
sample size cannot be taken for granted. Indeed, there are
many ways to fold a non-Euclidean lattice into itself and
produce PBCs, but most of them do not reproduce the
Green’s function of the infinite lattice Hamiltonian (see
Ref. [17] Sec. 5.1 and [18]).
If one is interested only in the bulk spectra, then a

universal solution could be to evaluate the local density of

states at or near the center of the finite-size crystal with
open boundary conditions [5], but, even in the Euclidean
case, this method converges only as an inverse power with
the crystal size [19] and its reliability when it comes to
computing thermodynamic coefficients or topological
invariants is yet to be demonstrated. On the other hand,
when PBCs can be systematically defined, they supply
extremely fast convergences (typically exponential) with
the size of the crystals, for both spectra and thermodynamic
coefficients [17,20]. Partial progress on resolving the bulk
characteristics of hyperbolic lattices has been achieved via
generalizations of Bloch-Floquet calculus [21,22], which is
intimately related to the problem of PBCs [23]. So far, these
techniques can resolve the bulk spectra covered by one and
two dimensional representations of the hyperbolic space
groups and sometimes this seems to be just enough [5].
In our recent work [17], however, we introduced a

general systematic method to impose PBCs on increasingly
larger finite hyperbolic and other more general Cayley
crystals, together with rigorous proofs and numerical
confirmations of fast convergences to the thermodynamic
limit. The folding of the infinite lattice into a finite regular
graph without boundary can be achieved by taking the
quotient of the hyperbolic space group with one of its finite-
index normal subgroups [23–26]. To converge to the
thermodynamic limit, one needs a whole coherent sequence
of such normal subgroups, whose total intersection reduces
to just the neutral element [24,25]. Note that, while a
generic group can have a plethora of normal subgroups,
only a coherent sequence can guarantee a systematic
improvement of the results with system size. This is a
trivial task for regular lattices in the Euclidean space,
because all Euclidean space groups contain the subgroup
Z2 of pure translations. Its normal subgroups are all
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multiples of Z2 and quotients by these subgroups produce
finite-size approximations with PBCs that all look the
same. This is not the case in the hyperbolic spaces, yet the
algorithm devised in [17] does just that. To work, it requires
at the input a faithful representation of the hyperbolic space
group as a subgroup of GLðn; RÞ [27], where R is a ring
extension of Z. Then the quotients that supply the finite-
size approximations are generated by applying ordinary
mod functions on the matrix entries. Such a faithful
representation was provided in [17] for the simplest hyper-
bolic space group. Here, we supply this input together with
computer algorithms that completely solve the problem of
converging PBCs on generic regular hyperbolic fp; qg
tessellations.
As an application, we show that a hyperbolic model

Hamiltonian that was assumed in the literature to be
spectrally gapped is actually ungapped. We also resolve
all topological bands supported by a fp; qg tessellation,
except one [28], in the sense that we build gapped model
Hamiltonians that display these bands at the bottom of the
spectrum. Given that our numerically computed spectra are
clean of boundary spectrum, we can demonstrate the main
topological feature of these models, namely, the emergence
of a topological spectral flow whenever a distinct pair of
topological Hamiltonians are continuously deformed into
each other. The topological bands are listed by theK0 group
of the space group’s C� algebra and we simply took this
information from [14,16].
Let D be the open disk model of the hyperbolic two-

dimensional space. Topologically, it is identical with the
Euclidean disk, but D carries the metric ds2 ¼ ½dzdz̄=
ð1 − jzj2Þ2�. The homeorphisms of the disk preserving this
metric form the continuous group IsoðDÞ of hyperbolic
isometries. Its discrete subgroups of orientation preserving
disk transformations with compact fundamental domains
are called Fuchsian groups of first kind. Up to isometries,
they are classified by their signatures hg; ν1;…; νri and can
be presented via 2gþ r generators and relations as

F g;ν ¼ ha1; b1;…; ag; bg; x1;…; xmj
xν11 ;…; xνmm ; x1 � � � xm½a1; b1� � � � ½ag; bg�i; ð1Þ

where ½a; b� ≔ aba−1b−1 denotes the commutator of two
elements [ [29], Ch. 2]. The tessellations of D by regular
fp; qg polygons are always possible if 1=pþ 1=q < 1=2.
We will use the f5; 4g tessellation shown in Fig. 1(a) for
our exemplifications. The full group of hyperbolic iso-
metries preserving this tilling is the triangle group Δf5;4g
generated by the three reflections x, y, z against the sides of
the triangle shown in Fig. 1(a). It has a maximal subgroup
of proper transformations, which is the Fuchsian group
Δþ

fp;qg ¼ h0;p; q; 2i with x1 ¼ xy, x2 ¼ yz, x3 ¼ zx and

the fundamental domain indicated in Fig. 1(b).
Tillings do not automatically come with vertices. The

points that are fixed by an element of Δþ
fp;qg are shown in

Fig. 1(b) and a generic symmetric lattice can be generated
by acting on any point of the disk that is distinct from those
points of high symmetry, e.g., as shown in Fig. 1(c). Such
procedure actually produces the standard Cayley diagraph
of Δþ

fp;qg, which encodes the entire group-algebraic infor-

mation in a geometric fashion [30]. Our tight-binding
Hamiltonians are defined on the lattice L from Fig. 1(c),
whose points are labeled by the elements of Δþ

fp;qg. All
symmetric Hamiltonians are generated from the group
algebra CΔþ

fp;qg [31]. Concretely, Δþ
fp;qg acts via the left-

regular representation πLðgÞjg0i ¼ jgg0i on the Hilbert
space l2ðLÞ spanned by the vectors jgi, g∈Δþ

fp;qg, while
the Hamiltonians

h¼
X
g

wg ·g∈CΔþ
fp;qg; wg¼w�

g−1∈C ð2Þ

act via the right-regular representation of CΔþ
fp;qg,

FIG. 1. (a) The f5; 4g tilling and the reflections generating the group of symmetries Δfp;qg. (b) High symmetry points of the tilling
and the fundamental domain of the proper space group Δþ

fp;qg. (c) The Cayley diagraph of Δ
þ
fp;qg, showing a generic symmetric lattice

and the flow of the points under the right action of the generators x1 (blue), x2 (orange), and x3 (red). (d) Couplings needed to
implement πR½h1ðλÞ� from Eq. (6), where blue ¼ λjg · x−11 ihgj þ λ−1jgihg · x−11 j, green ¼ λ2jg · x−21 ihgj þ λ−2jgihg · x−21 j, and
orange ¼ jg · x−12 ihgj þ jgihg · x−12 j. The latter is only needed for the structure’s integrity.
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H¼ πRðhÞ; Hjg0i ¼
X
g

wgjg0g−1i: ð3Þ

Then ½πLðgÞ; πRðhÞ� ¼ 0 can be manually checked.
We now explain Lück’s work [24,25] on formulating

PBCs in algebraic fashion. Any finite-index normal sub-
group Nk of Δþ

fp;qg sets a canonical projection onto the
finite quotient subgroup, ρk∶ Δþ

fp;qg → Gk ¼ Δþ
fp;qg=Nk,

which can be lifted to the level of group algebras:

h ↦ ρkðhÞ ¼
X
g

wg · ρkðgÞ∈CGk: ð4Þ

As before, the right-regular representation πR of CGk acts
on the Hilbert space l2ðGkÞ spanned by jgki, gk ∈Gk. This
is a finite Hilbert space of dimension jGkj (¼ the order of
Gk) and, as such, ρkðHÞ ¼ πR½ρkðhÞ� is a finite-size
approximation ofH. According to Lück [24,25], to achieve
the thermodynamic limit, one needs a whole coherent
sequence of normal subgroups Δþ

fp;qg ¼ N0⊳N1⊳N2 � � �,
such that ∩ Nk ¼ f1g, in which case the Green’s functions
can be recovered with arbitrary precision from the so-
constructed finite-size approximations

hgjðH − zÞ−1jg0i ¼ lim
k→∞

hρkðgÞjðρkðHÞ − zÞ−1jρkðg0Þi:

This in turn assures that the spectrum, thermodynamic
coefficients, correlation functions, topological invariants,
etc., can be computed with arbitrary precision from the so-
constructed finite-size approximations.
Reference [17] observed that the maps ρk can be as

straightforward as applying the modulo arithmetic operator
on certain coefficients, if Nk’s are generated in a specific
way. Following the same strategy and by referring to
Coxeter group theory [32–35], we found systematic rep-
resentations of Δþ

fp;qg in SLð3;Z½ξ�Þ, the special linear

group of 3 × 3matrices with entries from the ring extension
Z½ξ�, where ξ ¼ 2 cosðπ=pqÞ (see Eqs. (13)–(15) in [18]).

The coherent sequence of subgroups can then be simply
taken asNk ¼Δþ

fp;qg ∩SLð3;skZ½ξ�Þ, s; k∈N. The quotient

groups Gk by these Nk’s can be computed as follows. First,
ξ is a root of a minimal irreducible polynomial of degree
φð2pqÞ=2, where φ is Euler’s totient function [36,37].
Thus, every entry in the matrix representations of Δþ

fp;qg
can be written as

Pφ=2−1
r¼0 crξr, with cr ∈Z [38]. Ordinary

multiplication of such series followed by the algebraic
reduction leads to a specific multiplication of the coef-
ficients c ¼ fcrg, which we denote by c⋆c0 (see Ref. [18]
for full details). Then Gk is the image in the finite group
SLð3;Zsk ½ξ�Þ of the elements of Δþ

fp;qg under taking the

mod sk operation on the coefficients cr. Thus, every entry
of these matrices can be written as

Pφ=2−1
r¼0 c̃rξr, with

c̃r ∈Zsk . As for the multiplication in Gk ⊂ SLð3;Zsk ½ξ�Þ,
it is the usual matrix multiplication but with the multipli-
cation of the entries replaced by

� Xφ=2−1
r¼0

c̃rξr
�
·

� Xφ=2−1
r¼0

c̃0rξr
�

¼
Xφ=2−1
r¼0

ðc̃⋆c̃0Þr mod skξr:

With these in place, the ρkðgÞ’s seen in Eq. (4) are
calculated by applying mod sk on the matrix representa-
tions of g’s. The approximated Hamiltonian ρkðHÞ acts on
l2ðGkÞ via the right-regular representation, which works as
in Eq. (3) with Δþ

fp;qg replaced by Gk. Numerically, this

requires an indexing of the elements of Gk and the
computation of its multiplication table, which are both
straightforward tasks at this point.
A full working code implementing all the above can be

downloaded from [39]. It can be seen in action in Fig. 2(a),
where the bulk spectrum of the adjacency operator Δ ¼
1
4
ðx1 þ x−11 þ x2 þ x−12 Þ is resolved and the exponentially

fast convergence to the thermodynamic limit is demon-
strated. In Fig. 2(b), we show the integrated density of
states (IDS) computed with open boundary conditions for

FIG. 2. (a) Integrated density of states (IDS) of the adjacency operator Δ as function of energy and finite sizes. The inset shows the
mean squared error with the largest system as reference. (b) IDS of Δ with open boundary condition for various system sizes, compared
to periodic boundary conditions (black curve). (c) IDS of the Hamiltonian considered in Ref. [6] for different system sizes with PBCs,
showing the topological gap predicted by the Uð1Þ-hyperbolic Bloch band theory (gray zone) filling in with non-Abelian states in the
thermodynamic limit.
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increasing lattice sizes. A comparison with the “exact” IDS
from panel (a) reveals convergence to an incorrect thermo-
dynamic limit. Lastly, in Fig. 2(c), we report a computation
for the model on the f8; 8g tessellation considered in [6],
which is mapped into the strong A-class topological
insulator on Z4 lattice [40] [p. 31] by the hyperbolic
Uð1Þ-band theory (see Ref. [18] for full details). It is
tempting to infer that this hyperbolic model has a topo-
logical gap that carries a second Chern number. However,
while this model displays a gap for small lattice sizes, the
exact thermodynamic limit of the IDS is gapless. Also, the
known K-theoretic groups (see below) do not afford a
second Chern number [13–16]. As observed in [6], the
assumptions behind hyperbolic Uð1Þ-band theory are not
generally met and now we can confirm that this is the case
for the Hamiltonian simulated in Fig. 2(c).
We now resolve the topological bands supported by the

fp; qg tessellations. As we have already seen, the sym-
metric Hamiltonians live inside the C� algebra of the space
group. For a generic F g;μ as in Eq. (1), the K0 group of this

algebra is isomorphic to Z2þ
P

m
α¼1

ðνα−1Þ [41]. It is freely
generated by the identity, a projection p0 that carries the
hyperbolic 1st-Chern number [13–15] and by the spectral
projections of the cyclic elements xα,

pαðλkÞ¼
1

να

Xνα−1
j¼0

λjkx
j
α; λk ¼ e

2π{k
να ; k¼ 1;να: ð5Þ

This assures us that any band projection of a symmetric
Hamiltonian can be continuously deformed into a stacking
of these fundamental projections pn0

0 ⊕ p1ðλ1Þn1ðλ1Þ ⊕
� � � ⊕ pmðλνmÞnmðλνm Þ without closing the flanking spectral
gaps [42]. The integer numbers fn0; n1ðλ1Þ…; nmðλνmÞg
represent a complete set of independent topological invar-
iants of a band [40].
In the case of Δþ

fp;qg ¼ h0;p; q; 2i, we have a total of
eight pαðλÞ projections and, for example,

hαðλ; ϵÞ ¼ ϵ
�
1 − 2pαðλÞ

�þ ð1 − ϵÞΔ ð6Þ

are model Hamiltonians displaying topological bulk gaps
and bottom spectral bands carrying the K-theoretic labels
nαðλÞ ¼ 1 [43]. The openings of these topological spectral
gap are shown in Fig. 3 and the physical couplings needed
to implement h1ðλÞ are shown in Fig. 1(d). Figure 4(a)
demonstrates the distinct topological characters of the
models (6), by sampling the energy spectra resulted from
pairwise interpolations. The seen topological spectral
flows, which actually occur for any possible pair, demon-
strate that two such models cannot be adiabatically con-
nected. Since these topological spectral flows are stable
against turning on or off degrees of freedom, they can
be used in applications that require robust spectral

engineering. Witnessing these topological spectral flows
would have been impossible without PBCs.
Another application is engineering soft topological

interface channels, which can be achieved by rendering
the smooth interpolations from Fig. 4(a) in space. Because
of the large number of available topological phases, we can
engineer complex interfaces such as the Y junction shown
in Figs. 4(b)–4(d). There, we use the smooth partition of the
hyperbolic unit disk

P
3
i¼1 χiðzÞ ¼ 1 shown in Fig. 4(b),

and generate a Hamiltonian H with matrix elements

hzjHjz0i ¼
X3
i¼1

χiðμz;z0 ÞhzjHijz0i; z; z0 ∈L; ð7Þ

where μz;z0 is the mid geodesic point of z and z0 [44]. It
smoothly interpolates in space between the Hamiltonians
H1, H2, H3 showcased in Figs. 3(a),3(e), and 3(h),
respectively. Figure 4(c) shows renderings of the local
density of states

LDOSðE; zÞ ¼
X
n

e−jEn−Ej2=ð2ΔE2ÞjψnðzÞj2; ð8Þ

for several values of ΔE, where the sum is over the
eigenstates Hjψni ¼ Enjψni. The energy E is pinned at

(a)

(e)

(b) (c)

(f) (g)

(d)

(h)

FIG. 3. Opening available topological gaps using the model
Hamiltonians (6). The topological classes of the lower bands are
specified in each panel, where λj ¼ eð{2πj=ναÞ. The calculations are
performed with PBC generated by ðs; kÞ ¼ ð2; 3Þ.

(b)

(c)

(a)

FIG. 4. (a) Energy spectrum of the Hamiltonian λ1H1 þ
λ2H2 þ λ3H3 along the path shown in the inset, as computed
with the PBC ðs; kÞ ¼ ð2; 3Þ and with Hi as in Fig. 3 panels (a),
(e), (h), respectively, and ϵ ¼ 0.8. (b) Our smooth partition
system for the hyperbolic disk. (c) Local density of states (LDOS)
(8) of Hamiltonian (7), as computed with open boundary
conditions on a crystal with 14 255 sites.

PHYSICAL REVIEW LETTERS 131, 176603 (2023)

176603-4



E ¼ 0 in the middle of the common bulk gap of the
HamiltoniansHi’s, and where Fig. 4(a) shows a crossing of
topological modes. The plots in Fig. 4(c), generated with
the kernel polynomial method [45], confirm the expected
soft topological interface modes between the distinct
topological phase.
In conclusion, we derived an algorithmic procedure to

impose PBCs on finite hyperbolic crystals of increasing
sizes and demonstrated the exponentially fast convergence
of the bulk properties to the thermodynamic limit when
computed with our algorithms. Our Letter enables now the
identification of the gapped topological phases supported
by generic fp; qg tessellations of the hyperbolic spaces and
simulations of various topological dynamical effects. Work
is in progress on how to extend these results in the presence
of a magnetic field.

Note added.—After submission of this Letter, we became
aware of the works [46,47] on the same subject. The
method developed in [46] covers only tight-binding
Hamiltonians with uniform hopping coefficients, which
can be attacked by combinatorial methods, and has nothing
to say about the general models treated in our Letter. The
one developed in [47] seems to be inspired by the principles
stated in our Letter, but the folding of the lattices uses a
different algorithm that produces nicer supercells. Our
method is more analytical and does not require external
resources, such as the GAP package.
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