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We explore theoretically how the topological properties of 2D materials can be manipulated by cavity
quantum electromagnetic fields for both resonant and off-resonant electron-photon coupling, with a focus
on van der Waals moiré superlattices. We investigate an electron-photon topological Chern number for the
cavity-dressed energy minibands that is well defined for any degree of hybridization and entanglement of
the electron and photon states. While an off-resonant cavity mode can renormalize electronic topological
phases that exist without cavity coupling, we show that when the cavity mode is resonant to electronic
miniband transitions, new and higher electron-photon Chern numbers can emerge.
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Introduction.—In recent years van der Waals heterostruc-
tures combining atomic-thin layers of 2D materials such as
graphene or transition metal dichalcogenides (TMD) have
attracted a great deal of interest [1–6]. Indeed, these systems
present rich and controllable physical properties already at
the single-particle level due to multiple quantum degrees of
freedom, namely the electron spin, the valley, and layer
pseudospins. This class of 2D materials exhibits a wide
variety of interesting electronic properties including semi-
metallic, semiconducting, superconducting, and magnetic
phases. One prominent example is magic angle twisted
bilayer graphene, exhibiting quasiflat electronic bands [7]
and remarkable superconducting properties [8]. Another
notable class of moiré heterostructures is based on TMD
materials, which, thanks to their semiconductor properties,
have particularly interesting optical properties [9–11].
A growing interest is emerging for the manipulation of

materials with cavity vacuum fields [12–15]. In particular,
metallic split-ring terahertz electromagnetic resonators are
remarkable for their deeply subwavelength photon mode
confinement [16–18] with mode volumes that can be as
small as 10−10λ30, λ0 being the free-space electromagnetic
wavelength corresponding to the resonator frequency.
Studies on GaAs 2D electron gases have shown that
electronic transport in mesoscopic quantum Hall bars
can be greatly modified by the coupling to electromagnetic
resonators even without illumination [19], as a result of
cavity-mediated electron hopping [20,21], which results in
a breakdown of the Hall resistance quantization associated
to the topological properties of the electronic Landau states.
Recent theoretical works have investigated how to

exploit cavity QED to control topological properties of
systems, such as 1D tight-binding chains described by the
Su-Schrieffer-Heeger model [22]. Concerning 2D systems,
a recent work has studied 2D bulk materials [23,24] where

the standard electron Chern number is computed by
considering an effective electronic Hamiltonian obtained
by adiabatic elimination of the photon degrees of freedom.
A Letter exploring single-sheet graphene ribbons [25] has
studied electron Chern numbers computed once the cavity
field is approximated in a classical coherent state. Another
investigation has explored a generic single-electron prob-
lem in the ultrastrong light-matter coupling regime [26] and
focused on the topological control in the configuration
where the cavity photon mode frequency is much larger
than the relevant electronic transition frequencies. A key
point that has not been addressed is the behavior of genuine
electron-photon topological invariants that are associated to
the interacting quantum electron-photon system when the
photon mode is resonant to electronic transitions. In the
past, this has been done only for classical exciton-polariton
normal modes where a bosonic exciton field is strongly
coupled to a cavity photon field [27,28] (the bare cavity
photon and exciton bands are topologically trivial, but the
hybrid light-matter polariton bands are not). However, for
a fermionic particle coupled to a quantized cavity field, to
the best of our knowledge, the study of electron-photon
topological invariants for the resonant light-matter coupling
has been overlooked.
In this Letter, we explore the properties of electron-

photon Chern numbers, focusing on cavity-embedded 2D
moiré materials. We investigate different regimes of cou-
pling (off-resonant versus resonant cavity mode), for
different cavity geometries (mode with in-plane or out-
of-plane polarization) and explore the topological transi-
tions characterized by such an electron-photon Chern
number with realistic values for state-of-the-art split-ring
resonators and TMD materials. We show that in the case of
resonant electron-photon coupling, new topological phases
and high Chern numbers can emerge.
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Cavity QED Hamiltonian.—Let us consider a bilayer
moiré system consisting of two twisted TMD layers
embedded in a single-mode resonator (see the sketch in
Fig. 1). Each of them is a honeycomb lattice defined by two
primitive translation vectors a1 ¼ a0

ffiffiffi
3

p
=2ð1; ffiffiffi

3
p

; 0Þ and
a2 ¼ a0

ffiffiffi
3

p
=2ð−1; ffiffiffi

3
p

; 0Þ, where a0 is the monolayer TMD
lattice constant. We consider in-plane parallel stacking
(R stacking) with the layer on top rotated by a small angle θ
in order to create a long wavelength moiré pattern. The
distance between two layers is d. The moiré unit cell is
defined by Li¼1;2 ¼ ½1 − RðθÞ−1�−1ai, where 1 and RðθÞ
are respectively the identity and the rotation matrix corre-
sponding to the rotation angle θ about the z axis. We
denote the moiré lattice constant jLij as aM, where for
small angles aM ≃ a0=θ. In the following, for numerical
applications we will use parameters of the MoTe2
system [29]. For the photonic part, thanks to the approx-
imately flat mode inside the capacitive gap of comple-
mentary split-ring resonators [19], we will consider a
single-mode cavity with a spatially homogeneous field
described by the vector potential Â ¼ A0uðâþ â†Þ with â†

(â) the photonic creation (annihilation) operator. The
vacuum field amplitude is A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2ωcϵ0Vmode

p Þ with
ωc the mode frequency, Vmode ¼ ηλ3c the effective mode
volume related to the compression factor η, and λc the
wavelength in free space that corresponds to ωc. The
orientation of the cavity mode polarization is described
by the unit vector u ¼ ðux; uy; uzÞ.
Our treatment is based on the four-band continuum

model for small angle twisted bilayer TMD [29,30]. The
cavity QED Hamiltonian can be written as

Ĥ ¼ ℏωcâ†âþ
�
Ĥt 0

0 Ĥb

�
þ
�
V̂t Û

Û† V̂b

�
; ð1Þ

where the 2 × 2 operator matrix Ĥt (Ĥb) corresponds to the
conduction and valence bands of the top (bottom) layer.
The moiré potentials are given by the last term. The light-
matter coupling is introduced via Peierls factors [31] in the
intralayer (Ĥt, Ĥb) and interlayer (Û) hopping terms. We
quantify the interaction strength by the dimensionless
constant g ¼ eA0a0=ℏ. For g ≪ 1 and in the low-energy
sector, each diagonal block matrix ν ¼ t, b and interlayer
coupling Û can be approximated as follows:

Ĥν ¼ Δσz þ vFσxy
h
p̂ − ℏKν þ eAðxyÞðâþ â†Þ

i
;

Û ¼ e−i
eAðzÞd

ℏ ðâþâ†ÞÛ0; ð2Þ

with Kt ¼ κ−, Kb ¼ κþ shown in Fig. 1, σxy ¼ ðσx; σy; 0Þ
a vector of Pauli matrices, AðxyÞ is the in-plane projection
of A0u, and AðzÞ is its z component. Note that the inter-
layer distance d is much larger than the in-plane lattice
constant a0. Hence, the argument of the Peierl’s exponen-
tial for the U term is much larger than its t counterpart
(in-plane coupling). We will consider a regime of realistic
parameters, where it turns out that the exponential of the t
term can be linearized, while the out-of-plane Peierls term
must be kept in exponential form. The moiré potentials V̂ν

and Û0 are the same as the ones in [29,30]. Because of the
large energy gap between the conduction and valence band
in the TMD material, we can restrict our description to the
latter, for which nontrivial topological properties were
studied [29,32] in the absence of a cavity field. Finally,
we represent the Hamiltonian in the hole picture. The
corresponding Hamiltonian reads

Ĥ¼ ℏωcâ†âþ
1

2m⋆

�ðp̂þℏκ− − eAðxyÞðâþ â†ÞÞ2 0

0 ðp̂þℏκþ− eAðxyÞðâþ â†ÞÞ2
�
−
�
V̂v
t Ûv†

0

Ûv
0 V̂v

b

�
− i

ωceAðzÞd
2

ðâ− â†Þτz

ð3Þ

FIG. 1. Top: sketch of a twisted bilayer system with its moiré
pattern inside the gap region of a split-ring resonator. Bottom: on
the left, the first Brillouin zone with Dirac points of the bottom
layer and corresponding wave vectors; on the right, the Brillouin
zones of both the bottom and rotated top layer together with the
moiré mini Brillouin zone (shown in red) for the corresponding
moiré superlattice.
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where m⋆ ¼ Δ=v2F is the effective mass of the valence
band, and τz is the z axis Pauli matrix with respect to the
layer pseudospin. We have considered minimal coupling
in the Coulomb gauge for the in-plane motion, while the
dipole gauge resulting from a Power-Zienau-Woolley
(PZW) transformation is used for the out-of-plane part.
The expression for the moiré potentials V̂v

t , V̂
v
b, Û

v
0 is the

same as in [29,30] and is reported in the Supplemental
Material [31]. To account for the interlayer bias Vz (that
breaks the symmetry between κþ and κ− [29]), the term
−Vz=2 × τz has to be added to the Hamiltonian in Eq. (3).
As the moiré potential is periodic with respect to Li¼1;2

translations, the electronic part can be block-diagonalized
in momentum space (Bloch theorem). Each block k
belongs to the moiré mini Brillouin zone (mBZ) shown
in Fig. 1, spanned by moiré reciprocal vectors G1 and G2

satisfying Gi ·Lj ¼ 2πδij.
Definition of the electron-photon Chern number.—Let

us consider a single fermion interacting with a cavity
quantized field. This is equivalent to injecting a fermion
into empty minibands. If the fermion wave vector k is a
good quantum number, then we can diagonalize the
Hamiltonian Ĥk ¼ e−ik·r̂Ĥeik·r̂ and obtain electron-photon

eigenstates of the form jΨðe−pÞ
nk i with corresponding

electron-photon energy bands Eðe−pÞ
nk . Given the form of

the system eigenstates, we can introduce the following
electron-photon Chern number:

Cðe−pÞn ¼
Z

d2k
2π

i
X
μ;ν

ϵμν
D
∂kμΨ

ðe−pÞ
nk j∂kνΨðe−pÞ

nk

E
; ð4Þ

where ϵμν is the two-dimensional Levi-Civita tensor.
Importantly, the electron-photon Chern number in Eq. (4)
is well defined for any arbitrary hybridization between the
single electron and the cavity quantum field. If we work in
the hole picture, the particle-hole transformation results in a
simple change of sign of such Chern number. Numerically
the Chern number in Eq. (4) has been calculated by
numerical diagonalization of the Hamiltonian (3) and using
the technique reported in Ref. [33].
Results and discussions.—In what follows, we use the

electron-photon Chern number to investigate topological
properties of cavity-embedded moiré systems, focusing on
twisted MoTe2 bilayers. We first consider the scenario of
high photon frequency, where the photon is off-resonant
with respect to the relevant miniband electronic transitions.
In Fig. 2, we report the electron-photon topological Chern
numbers associated with the first three moiré minibands of
the twisted bilayer TMD system. Here, we consider a cavity
mode with in-plane polarization u ¼ ð1; 0; 0Þ. For g ¼ 0
(no cavity coupling), the system is known to exhibit a
topological transition as a function of the twisting angle θ
(top panel) and as a function of the interlayer bias Vz
(bottom panel). In the top panel we consider the case with

no bias (Vz ¼ 0) for which a topological transition occurs
by increasing the twisting angle θ above a critical value
(≈1.75° at zero g), with Chern numbers changing from
ðþ1;−1; 0Þ to ðþ1;þ1;−2Þ. The bottom panel corre-
sponds to a situation with a fixed angle θ ¼ 1.2° for which
a transition from topologically nontrivial Chern numbers
ðþ1;−1; 0Þ to the trivial (0,0,0) is achieved when Vz is
increased above a critical value (≈0.63 meV at zero g). In
both situations considered in Fig. 2, a finite cavity coupling
modifies the transition boundary significantly for a range of
dimensionless coupling g, which is accessible with deeply
subwavelength resonators. The energy-momentum disper-
sions with and without the cavity are compared for Vz ¼
0.5 meV in Fig. 3 for a ribbon geometry (periodic
boundary conditions along the long direction). The left
panel shows the presence of topological edge states that
cross in energy for g ¼ 0, while the right panel shows the
opening of an edge gap in the presence of a cavity with
g ¼ 0.05. In other words, Fig. 3 shows the consequence of

FIG. 2. Electron-photon Chern numbers of the first three (top)
and two (bottom) moiré minibands of the twisted TMD bilayer
system (MoTe2 parameters). The dashed lines depict the phase
boundary predicted by an effective electronic Hamiltonian
obtained by adiabatically eliminating the photonic degrees of
freedom [21] and calculating the electron Chern number. Top:
Chern numbers versus the twisting angle θ and the dimensionless
cavity coupling g (see definition in the text), with no interlayer
bias (Vz ¼ 0). Bottom: Chern numbers versus Vz and the
dimensionless cavity coupling g for a fixed angle θ ¼ 1.2°.
Parameters: cavity photon energy ℏωc ¼ 20 meV (top) and
6 meV (bottom), cavity mode polarization vector u ¼ ð1; 0; 0Þ.
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the topological transition with increasing cavity coupling g
depicted in the diagram of the bottom panel in Fig. 2.
Note that by tracing out the photonic degrees of freedom,

we can obtain an electronic reduced density matrix, namely

ρ̂nk ¼ TrphotðjΨðe−pÞ
nk ihΨðe−pÞ

nk jÞ. The electronic purity of
such reduced density matrix is defined as Pnk ¼
Trelðρ̂2nkÞ [34] and is equal to 1 when the electron-photon
eigenstate is separable and the electronic reduced density
matrix is pure (not mixed). Note that decreasing purity
corresponds to increasing electron-photon entanglement.
For g ¼ 0.1, the minimum of the electronic purity (the
purity depends on k) is about 75% for the top panel of
Fig. 3 and 88% for the bottom one. In such configuration,
one might describe the system with an effective electronic
Hamiltonian [21–25]. Indeed, as shown in Fig. 2 the
diagrams are qualitatively reproduced by an effective
electronic Hamiltonian approach (see Supplemental
Material [31]). However our electron-photon Chern num-
ber introduced in Eq. (4) and based on the exact light-

matter energies Eðe−pÞ
nk is defined also for low electronic

purity, i.e., for any arbitrary light-matter hybridization.
Let us now consider the situation where the cavity mode

has a relatively low frequency and is resonant with
electronic miniband transitions. Note that we consider here
out-of-plane cavity polarization u ¼ ð0; 0; 1Þ and the cor-
responding dimensionless coupling constant is defined as
g⊥ ¼ eA0d=ℏ. The corresponding results are depicted in
Figs. 4 and 5. In the noninteracting case (g⊥ ¼ 0), the
photon energy creates replicas of the electronic minibands
with nonzero photon numbers, as shown in Fig. 5. The bare
electron-photon spectrum becomes degenerate when a
photon replica crosses the original electronic miniband
with zero photons. However, a finite coupling lifts such
degeneracies, leading to new electron-photon energy mini-
bands for which we can compute the electron-photon
Chern number. Figure 4 shows the topological diagram

FIG. 3. Electron-photon energy-momentum dispersions Eðe−pÞ
nk

for g ¼ 0.0 (left) and 0.05 (right) for a ribbon geometry (periodic
boundary conditions along the long direction). Parameters: cavity
photon energy ℏωc ¼ 6 meV, Vz ¼ 0.5 meV, θ ¼ 1.2°, ribbon
width D1=aM ¼ 10, and cavity mode polarization vector
u ¼ ð1; 0; 0Þ. Here, the photonic component of the electron-
photon eigenstates is small (see text).

FIG. 4. Electron-photon Chern numbers of the first four moiré
minibands for the considered cavity-embedded twisted TMD
bilayer system. Note that this topological diagram cannot be
predicted by the effective electronic model used in Fig. 2. Other
parameters: cavity photon energy ℏωc ¼ 10 meV, Vz ¼ 0 meV,
and cavity mode polarization u ¼ ð0; 0; 1Þ.

FIG. 5. Top panels: electron-photon miniband dispersions

Eðe−pÞ
nk for g⊥ ¼ 0 (left panel) and 0.35 (right panel), where three

edge states emerge (thicker red lines). Bottom panels: electronic
purity (left panel) and electronic spectral function (right panel,
normalized by its maximum value) for g⊥ ¼ 0.35. We have
considered a ribbon geometry with width D1=aM ¼ 10 and
periodic boundary conditions along the long direction. Other
parameters: cavity photon energy ℏωc ¼ 10 meV, Vz ¼ 0 meV,
θ ¼ 1.8°, cavity mode polarization u ¼ ð0; 0; 1Þ.
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characterized by such electron-photon Chern numbers for
the first four minibands. The cavity photon energy is
resonant to the transition between the first and third
electronic minibands, depicted in Fig. 5. The bulk-edge
correspondence for the electron-photon Chern number is
satisfied: indeed, we observe three edge states shown by the
thicker red line in Fig. 5. These states have low electronic
purity (as low as 50%) and cannot be captured by an
effective electronic Hamiltonian where the photon degrees
of freedom are eliminated. Moreover, such high Chern
numbers, created by the hybridization with the cavity
photon replicas, are absent in the bare electronic system.
These multiple new edge states corresponding to high
Chern numbers, can be observed by measuring the elec-
tronic spectral function via angle-resolved photoemission
spectroscopy [35], scanning tunneling microscopy [36], or
microwave impedance microscopy [37].
Conclusions.—In this Letter, we explored the new

topological phases characterized by the electron-photon
Chern number, a topological invariant defined in terms of
the exact eigenstates for the Hamiltonian describing a
fermionic particle coupled to a quantized electromagnetic
field. This is a topological invariant for any arbitrary
hybridization of the electron-photon eigenstates. Note that
electron-photon Chern numbers can also be defined for
disordered and nonhomogeneous systems [38–41], so the
present topological approach can also be generalized to
situations where the cavity mode is not spatially homo-
geneous or in the presence of electronic disorder. The
results of this Letter are exact when a single fermion is
injected in empty minibands. A future and intriguing
problem to explore is how these topological states evolve
when such electron-photon states are partially filled.
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