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Qubits built out of Majorana zero modes constitute the primary path toward topologically protected
quantum computing. Simulating the braiding process of multiple Majorana zero modes corresponds to the
quantum dynamics of a superconducting many-body system. It is crucial to study the Majorana dynamics
both in the presence of all other quasiparticles and for reasonably large system sizes. We present a method
to calculate arbitrary many-body wave functions as well as their expectation values, correlators, and
overlaps from time evolved single-particle states of a superconductor, allowing for significantly larger
system sizes. We calculate the fidelity, transition probabilities, and joint parities of Majorana pairs to track
the quality of the braiding process. We show how the braiding success depends on the speed of the braid.
Moreover, we demonstrate the topological CNOT two-qubit gate as an example of two-qubit entanglement.
Our Letter opens the path to test and analyze the many theoretical implementations of Majorana qubits.
Moreover, this method can be used to study the dynamics of any noninteracting superconductor.
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Introduction.—With the advent of commercially avail-
able noisy intermediate-scale quantum computers, the
research focus has drifted toward “fault-tolerant” quantum
computing concepts. Topological quantum computing
might be the most exciting and fascinating strategy to
accomplish fault tolerance [1]. In a nutshell, exotic particles
that obey non-Abelian braiding statistics are used to
construct quantum bits (qubits). Unitary operations are
realized by the braiding of these anyons, and measurement
is accomplished by analyzing the multianyon states. In the
past decade topological superconductivity has proven to be
a suitable platform for non-Abelian anyons [2,3] due to the
ability to artificially engineer such systems as nanostruc-
tures [4,5]. Topological superconductors may host local-
ized zero-energy subgap states, referred to as “Majorana
zero modes” (MZMs), which are for practical purposes
equivalent to Ising anyons [6,7]. Today, MZMs are the most
promising building blocks for future fault-tolerant quantum
computers [8–10].
While the mathematical framework for topological

quantum computing is well-established [11–14], it remains
unclear what challenges and obstacles to expect when
embedding this framework into a physical system. Realistic
simulations are necessary to address these challenges and
so we must contend with the fact that already one
topological qubit consisting of four MZMs constitutes a
superconducting quantum many-body system. Exact diag-
onalization [15–17] is most useful but limited to small
system sizes. Many important contributions focus on
single-particle states [18,19] or study low-energy effective
theories [20–23], while ignoring bulk states and their
potential effects on the MZMs. A promising approach is

to time-evolve the quasiparticles [24–26], although simu-
lation of key observables in a full many-body manner, such
as transition amplitudes and parity measurements, has yet
to be demonstrated. Majorana qubit errors have been
studied using the Onishi formula [27], but this is subject
to the sign problem [28,29] for general use. The covariance
matrix of Refs. [30–33] seems to have the potential to
overcome most obstacles, although non-Abelian braiding
has not yet been demonstrated.
In this Letter, we present a method for the efficient

construction of superconducting ground and excited states
from the single-particle basis. Time-evolving single-
particle states and constructing many-body states, as known
for Slater determinants, seem to be straightforward.
However, this task turns out to be significantly more
challenging for a superconductor: (i) Time-evolving the
many-body vacuum is nontrivial because this generates
new quasiparticles, in contrast to the electronic case. That
is, the vacuum state at different times is no longer propor-
tional to itself. (ii) Overlaps of many-body states lead to a
Pfaffian with several anomalous blocks rather than a
determinant with only one. (iii) The biggest challenge is
due to overlaps or expectation values at different times;
because of (i) we end up with expressions where Wick’s
theorem cannot be applied. Our method resolves all these
issues and thus avoids the exponentially large Hilbert
space; that allows us to reach system sizes with more than
a thousand lattice sites. We dynamically perform Pauli Z
and X gate operations via braiding and show how the
transition probabilities depend on the speed of the braid.
We also present two-qubit entanglement by performing the
topologically protected CNOT gate. Most notably, our
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method is applicable to the quantum dynamics of any
superconducting many-body system.
Method.—We consider a general time-dependent

Hamiltonian in the Bogoliubov–de Gennes (BdG) form,

HðtÞ ¼ 1

2

X

i;j
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c†i ci
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where c†i creates an electron with index i, which can
include site, momentum, orbital, and spin. HðtÞ is the
normal-state Hamiltonian matrix and ΔðtÞ the pairing
matrix. The former is Hermitian, H ¼ H†, while the latter
is antisymmetric, Δ ¼ −ΔT . We diagonalize the
Hamiltonian at time t ¼ 0 with the Bogoliubov trans-
formation,
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We choose the energies, En, to be non-negative so that the
quasiparticles, dn, are excitations. With this choice, it is
clear that the ground state is the vacuum of quasiparticles,
which we denote j0di, where dnj0di ¼ 0 for all n. Such
vacua are called Bogoliubov vacua.
One method to construct the Bogoliubov vacuum state is

called the Thouless state, where j0di ∝ e
P

i;j
Zijc

†
i c

†
j j0ci and

Z ¼ ðVU−1Þ� [34], which requires U to be invertible.
Another method is called the product state [34], where
all quasiparticle operators are applied on the true vacuum,
j0di ∝

Q
n dnj0ci. This can, however, completely annihilate

the vacuum, which occurs when V is singular. To isolate the
modes that annihilate the vacuum, we use the Bloch-
Messiah decomposition [35–37]. The Bogoliubov matrix
is decomposed as U ¼ CŪD† and V ¼ C�V̄D† where C
and D are unitary and

Ū¼

0
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with uk, vk positive and u2k þ v2k ¼ 1. The three blocks are
called fully empty, paired, and fully occupied, correspond-
ing to the zero, middle, and identity blocks of V̄, respec-
tively. We define new operators

ci ¼
X

j

Cijc̄j; di ¼
X

j

Dijd̄j: ð5Þ

The d and d̄ quasiparticles share the same vacuum, which
follows directly from Eq. (5). We construct the product
state using the d̄ quasiparticles, truncating the fully empty
modes:

j0di ¼
1ffiffiffiffiffi
N

p
Y
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O denotes the fully occupied modes and P denotes the
paired modes. The index, k∈P, iterates over paired
indices, ðk; k̄Þ, corresponding to the 2 × 2 blocks of V̄.
The normalization is N ¼Qk∈P v

2
k.

To construct excited states, we add excitations to the
vacuum,

jndi ¼
Y

k

�
d†k
�nk j0di; ð8Þ

where nk ∈ f0; 1g is the occupation of the kth mode. We
then evolve the state with the time-evolution operator,

SðtÞ ¼ T exp

�
−
i
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Z
t

0

dt0Hðt0Þ
�
; ð9Þ

where T time-orders the exponential. The time-evolved
state is given by

jndðtÞi ¼
Y

k

ðd†kðtÞÞnk j0dðtÞi; ð10Þ

where d†kðtÞ ¼ SðtÞd†kS−1ðtÞ and j0dðtÞi is the vacuum of
time-evolved quasiparticles, dkðtÞ.
Time-evolving the operators is done using the time-

dependent BdG equations [18,24,26,27],
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where HBdGðtÞ is the matrix in Eq. (1) and the initial
conditions are given by the Bogoliubov transformation in
Eq. (2). The time-evolved quasiparticles are given by
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The time-evolved Bogoliubov vacuum is then given by

j0dðtÞi ¼
eiφðtÞffiffiffiffiffiffiffiffiffiffi
N ðtÞp
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where diðtÞ ¼
P

j DijðtÞd̄jðtÞ and N ðtÞ ¼Qk∈P v
2
kðtÞ,

using the time-dependent Bloch-Messiah decomposition
UðtÞ ¼ CðtÞŪðtÞD†ðtÞ and VðtÞ ¼ C�ðtÞV̄ðtÞD†ðtÞ. φðtÞ is
the phase difference between directly time-evolving the
Bogoliubov vacuum and constructing the vacuum from
time-evolved quasiparticles [38].
Consider the quantity hndðtÞjAjn0dðt0Þi where A is an

arbitrary product of creation and annihilation operators.
For example, to calculate overlaps between states, we set
A ¼ 1, or to calculate expectation values, we set
jn0dðt0Þi ¼ jndðtÞi. By adapting a formula by Bertsch and
Robledo [37,47,48] and extending it to the time-dependent
case, this quantity becomes a Pfaffian:

ð14Þ

The lower triangle is obtained by antisymmetry. The sign is
derived from reversing the order of operators in hndðtÞj and
is given by � ¼ ð−1Þnd̄ðnd̄−1Þ=2þndðnd−1Þ=2, where nd̄ (nd) is
the number of d̄†ðtÞ (dðtÞ) operators in hndðtÞj. denotes

the matrix of contractions such that .

This matrix only includes occupied modes and rows or
columns of unoccupied modes are truncated. We list useful
contraction matrices in Table I. In the following, we will
refer to the methodology used in this Letter simply as the
time-dependent Pfaffian (TDP) method.
Results.—For the remainder of the Letter, we use the

Kitaev chain [3] as the standard model of a topological
superconductor hosting MZMs. It is given by Eq. (1)
with Hij ¼ −μiðtÞδij − t̃ðδi;jþ1 þ δiþ1;jÞ and Δij ¼
eiϕjΔpjðδijþ1 − δjþ1;iÞ, where μ, t̃, Δp, and ϕ correspond
to the chemical potential, tunneling strength, p-wave

pairing strength, and superconducting phase, respectively.
Throughout the Letter we set t̃ ¼ Δp, for details, see the
Supplemental Material [38]. The topological phase with
MZMs at chain ends is realized for −2t̃ < μtopo < 2t̃ [3].
Benchmarking: Time-dependent Pfaffian method vs

exact diagonalization.—Our first result is the demonstra-
tion of a Pauli Z gate on a T junction. The Kitaev chain
model is modified straightforwardly to fit onto the T
junction so that all pairing phases on the horizontal
(vertical) legs are ϕ ¼ 0 (ϕ ¼ π=2), corresponding to a
px þ ipy superconductor [38]. To allow comparison
between the TDP method and the full many-body states,
we have chosen a leg length L ¼ 5, i.e., total number of
sites N ¼ 16. Time evolution is approximated using the
Krylov subspace method [49,50] for both exact diagonal-
ization and TDP method. In subsequent sections, we use a
fourth order implicit Runge-Kutta method [38].
The Z gate on the T junction is realized by moving the

Majorana modes via dynamical manipulation of the local
chemical potential μiðtÞ, as schematically illustrated in
Fig. 1(a) [51]. The total braiding time is denoted as T, and
the delay coefficient α is the relative time between ramping
the chemical potential of two neighboring sites. That is,
α ¼ 0 means that μiðtÞ of all sites on a given leg are
changed simultaneously, while α ¼ 1 means that μiðtÞ of
only a single site is changed at a time. For details on the
ramping protocol [15], see the Supplemental Material [38].
To guarantee the adiabaticity of the dynamics we consider
the fidelities [52] of the two degenerate many-body ground
states j0iphys and j1iphys. The former (latter) corresponds to
the even (odd) parity sector (i.e., j0iphys ¼ j0di), and they
share the relationship j1iphys ¼ d†j0iphys, where for μ ¼ 0

we simply have d† ¼ 1
2
ðγ1 þ iγ2NÞ. The subscript “phys”

refers to the physical Fock basis.
Figure 1(b) shows the squared fidelity or probability,

jh1j1ðtÞiphysj2, which is here identical to jh0j0ðtÞiphysj2 (not
shown). Midway through the braid the fidelity returns to 1
even though the MZMs have been exchanged. That the
states j1iphys and j1ðT=2Þiphys are nevertheless different is
revealed through the braiding phase—the difference
between the geometric phases [15,53] of the odd and even
parity states—shown in Fig. 1(c). The geometric phase
in its gauge- and parameterization-invariant form is ϕgðtÞ¼
arghψ jψðtÞi− Im

R
t
0hψðt0Þjψ̇ðt0Þidt0. After exchanging the

TABLE I. Contraction matrices, Mij ¼ h0cjaibjj0ci, between a (row) and b (column).

d†ðt0Þ dðt0Þ d̄†ðt0Þ d̄ðt0Þ
dðtÞ U†ðtÞUðt0Þ U†ðtÞV�ðt0Þ U†ðtÞCðt0ÞŪðt0Þ U†ðtÞCðt0ÞV̄ðt0Þ
d†ðtÞ VTðtÞUðt0Þ VTðtÞV�ðt0Þ VTðtÞCðt0ÞŪðt0Þ VTðtÞCðt0ÞV̄ðt0Þ
d̄ðtÞ ŪðtÞC†ðtÞUðt0Þ ŪðtÞC†ðtÞV�ðt0Þ ŪðtÞC†ðtÞCðt0ÞŪðt0Þ ŪðtÞC†ðtÞCðt0ÞV̄ðt0Þ
d̄†ðtÞ V̄TðtÞC†ðtÞUðt0Þ V̄TðtÞC†ðtÞV�ðt0Þ V̄TðtÞC†ðtÞCðt0ÞŪðt0Þ V̄TðtÞC†ðtÞCðt0ÞV̄ðt0Þ
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MZMs once, a phase π=2 is accumulated, demonstrating the
anyonic character of theMZMsand their fractional statistics,
while realizing a

ffiffiffi
Z

p
gate. After exchanging theMZMs once

more, theMZMs return to their original position and the total
braiding phase π is reached, concluding the Z gate.
Moreover, the fidelities have returned to 1, ruling out any
transitions into excited states. Themany-body calculation of
a Z gate can be found in the literature [15]; here, we only
show it to highlight the agreement between exact diagona-
lization (solid lines) and the TDP method (dashed lines) in
Figs. 1(b) and 1(c).
The X gate and non-Abelian braiding.—In the following

we focus on a single qubit (i.e., four MZMs) and perform a
Pauli X gate. Figure 2(a) illustrates the setup of two
topological Kitaev chains on the T junction; the X gate
corresponds to exchanging the two inner MZMs twice. In
Fig. 2(b) we show the transition probabilities from one
ground state jni into the other one jmi, jhnjmðtÞij2, and the
ground state parities in Fig. 2(c). These ground states are
either j00iphys and j11iphys (total parity ¼ even) or j10iphys
and j01iphys (total parity ¼ odd) [38], and simply corre-
spond to the logical states j0ilog and j1ilog for either parity
sector. At t ¼ 0, same-state probabilities are at unity and
transition probabilities at zero. Midway through the braid,
all transition probabilities reach 1=2 signifying that each
initial state has transitioned to an equal superposition with
the other initial state (corresponding to a

ffiffiffiffi
X

p
gate), e.g.,

j00iphys→ ðj00iphys− ij11iphysÞ=
ffiffiffi
2

p
. Their total probability

adds up to 1 indicating adiabaticity. Upon completion of the
braid, the transition probability reaches 1 while the same-
state probability goes to 0. We have successfully switched
the Majorana qubit.

Our formalism allows to compute another useful quan-
tity: the time-dependent parities of the original pairs of
MZMs, i.e., of the two topological Kitaev chains, P1 and
P2 with Pi ¼ 1–2d†i di and hPiðtÞi ¼ hnðtÞjPijnðtÞi. The
total parity Ptot ¼ hP1ðtÞihP2ðtÞi remains unchanged after
the braid, but hP1ðtÞi and hP2ðtÞi will have swapped their
initial values at the end of the braid. All eight combinations
out of the two parity operators and the four ground states
fj00iphys; j11iphys; j10iphys; j01iphysg are shown in Fig. 2(c).
At the end of the braid, all parities are opposite to their
initial values. The results confirm the transition probabil-
ities of Fig. 2(b). More broadly, we are able to compute
arbitrary expectation values and correlation functions, as
shown in the Supplemental Material [38].
Figure 2(b) also shows the total probabilities, e.g.,

jh00j00ðtÞiphysj2 þ jh11j00ðtÞiphysj2 in case of the even
parity sector; at t ¼ 0; T=2; T they reach unity, indicating
the absence of transitions into excited states. That raises the

FIG. 2. X gate on a T junction (L ¼ 20). (a) Steps to perform
braid. (b) Transition probabilities. Green corresponds to same
state transitions, with purple corresponding to different state
transitions within a parity subspace. (c) Parities of the left
MZM, hP1ðtÞi, and right MZM, hP2ðtÞi, for all four ground
states. (d) Transition probability jh10j01ðTÞiphysj2 as a function
of braid time T and delay coefficient α. Parameters:
ðμtopo; μtriv; α; TÞ ¼ ð0.05t̃; 10t̃; 0.025; 15072ℏ=t̃Þ.

FIG. 1. Z gate on a T junction (L ¼ 5). (a) Steps to perform
braid. (b) Probability jh1j1ðtÞiphysj2 using both exact diagona-
lization and TDP method. (c) Braiding phase using both methods.
Parameters: ðμtopo; μtriv; α; TÞ ¼ ð−0.05t̃;−4t̃; 0.025; 960ℏ=t̃Þ.
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question about robustness of such a braid upon varying
braid time T and delay coefficient α. In Fig. 2(d) we present
jh10j01ðtÞiphysj2 as a function of T and α. In the colorful
regions, adiabaticity is violated and transitions out of the
Majorana sector into excited states occur, spoiling the
braid. Somewhat surprisingly, for rather short braid times of
T ¼ 1000ℏ=t̃ or 2000ℏ=t̃, the probability reaches already
unity. Most remarkably, even at zero delay (α ¼ 0), i.e.,
when the μiðtÞ are changed simultaneously for the entire
leg, by slightly increasing T, even in this extreme case we
find perfect transition probabilities. Assuming a hopping
amplitude of the order of 0.1 eV, we obtain, e.g., a braid
time T ¼ 1000ℏ=t̃ ≈ 6.6 ps.
We have also repeated the X gate simulations on a T

junction embedded into a 2D substrate. By reaching system
sizes as large as N ¼ 1125, we find that the results of Fig. 2
remain unchanged [38].
The CNOT gate.—One of the most important gates for

quantum computing is the controlled X (CX) gate (also
known as CNOT gate). As a two-qubit gate, it entangles
neighboring qubits and is key to generating entangled
many-qubit states. It flips the first (target) qubit if and
only if the second (control) qubit is in state j1ilog:
CXj00ilog ¼ j00ilog, CXj01ilog ¼ j11ilog, etc. We define
three Kitaev chains with six MZMs at its ends on a multi-T
junction in order to prepare two qubits for performing the
CNOT gate; see Fig. 3(a). The CNOT gate is realizable
using the identity CX ¼ H1CZH1, where CZ is the con-
trolled Z gate [shown in orange in Fig. 3(a)] and H1 is the

Hadamard gate on the target qubit [shown in yellow in
Fig. 3(a)]. Details of the multi-T junction and braiding
protocol along with the mapping from physical to logical
qubit states can be found in the Supplemental Material [38].
As expected for the CNOT gate, we find no flip at
the end of the braid when the control qubit is off,
jh00j00ðTÞilogj2 ¼ 1 [see Fig. 3(b)]; in contrast, the target
qubit flips when the control qubit is on, jh11j01ðTÞilogj2 ¼ 1

[see Fig. 3(c)]. This constitutes the explicit demonstration of
two-qubit entanglement via braiding [54,55].
Discussion and outlook.—All results have been derived

by using “beneficial” parameters to eliminate braiding
errors. After having established that the general ideas of
anyon braiding are indeed working in a dynamical many-
body simulation, in the future one can focus on more
realistic parameters and models and explore the role of
disorder and electrostatic noise or low-lying subgap states
(“quasiparticle poisoning”), and test the limitations of a
topological quantum computer. The method reported in this
Letter should help to answer many of these important
questions; more broadly, it allows one to study the
dynamics of an arbitrary superconducting many-body
system. Real-world problems of multi-Majorana systems
under nonequilibrium conditions can be analyzed, as
demonstrated here for Pauli Z and X gates as well as for
the two-qubit CNOT gate.
By choosing a Majorana platform, one can obtain

specific results, such as the braiding dynamics in mag-
net-superconductor hybrid systems [56]. This method
represents a powerful tool to perform numerical experi-
ments long before the real experiments are in reach.

The data and code for this Letter are openly available in
Zenodo [57].
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