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Non-Hermiticity significantly enriches the concepts of symmetry and topology in physics. Particularly,
non-Hermiticity gives rise to the ramified symmetries, where the non-Hermitian Hamiltonian H is
transformed toH†. For time-reversal (T) and sublattice symmetries, there are six ramified symmetry classes
leading to novel topological classifications with various non-Hermitian skin effects. As artificial crystals
are the main experimental platforms for non-Hermitian physics, there exists the symmetry barrier for
realizing topological physics in the six ramified symmetry classes: while artificial crystals are in spinless
classes with T2 ¼ 1, nontrivial classifications dominantly appear in spinful classes with T2 ¼ −1. Here, we
present a general mechanism to cross the symmetry barrier. With an internal parity symmetry P, the square
of the combination T̃ ¼ PT can be modified by appropriate gauge fluxes. Using the general mechanism,
we systematically construct spinless models for all non-Hermitian spinful topological phases in one and
two dimensions, which are experimentally realizable. Our Letter suggests that gauge structures may
significantly enrich non-Hermitian physics at the fundamental level.
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Introduction.—Recently, non-Hermitian topology has
attracted great interest [1–20], ranging from fundamental
concepts to fascinating phenomena such as complex-energy
gaps [21,22], non-Bloch band theory [23–26], exceptional
degeneracies [27–32], and non-Hermitian skin effects
[23,33–37]. Analogous to theHermitian topology, symmetry
remains to be foundational for non-Hermitian topology, as
it provides the framework for topological classifications
[22,38]. But for a non-Hermitian Hamiltonian H, the
Hermitian conjugate H† is not equal to H. This gives rise
to a new possibility for symmetry. A symmetry may trans-
formH toH†, rather than leaveH invariant. Such a symmetry
is referred to as ramified symmetry [22,38–40]. As a
prominent example, the ten Altland-Zirnbauer (AZ) sym-
metry classes have been extended into 38 symmetry classes
with eight additional ramified AZ† symmetry classes [41].
Topological classifications have been worked out for the
ramified symmetry classes; nontrivial topology can lead to
the non-Hermitian skin effect, featuring the breakdown of
conventional bulk-boundary correspondence.
Here, among the eight ramified AZ† symmetry classes,

we focus on the six ones with time-reversal (T) symmetry.
Note that the other two contain particle-hole symmetry for
superconductors, and therefore are not considered here. We
further categorize the six classes with T symmetry into
three spinless and three spinful classes with T2 ¼ 1 and
T2 ¼ −1, respectively. The topological classification table
for point-gap systems [42] in one and two dimensions is
given by Fig. 1(a) [43], as the skin effect is mainly
investigated in the low dimensions. From Fig. 1(a), it is

exciting to observe various nontrivial topological classi-
fications, which dominantly belong to the spinful classes.
The situation is unfortunate for experimental realization
because non-Hermitian topology is mainly realized by
artificial crystals, e.g., photonic and acoustic crystals and
electric-circuit arrays. All these artificial crystals satisfy
T2 ¼ 1, and therefore belong to spinless classes. Hence, we
see that there is the symmetry barrier preventing broad
realizations of non-Hermitian topological phases by artifi-
cial crystals.
In this Letter, we provide general mechanisms by which

the symmetry barrier can be crossed. The key observation is
that for 1D and 2D systems, we can consider two
antiunitary symmetries, T and T̃ ¼ PT, with P a twofold
internal symmetry. For both 1D and 2D systems, P can be
the mirror reflectionMz inversing the z axis, presuming that
the system is placed on the x-y plane. For a 1D system,
we may choose P as the twofold rotation C through the
direction of the 1D system.
Ordinarily, T̃2 ¼ T2, but by turning on in-plane or in-line

gauge fluxes, we may have

T̃ 2 ¼ −T2: ð1Þ

Here, the font is changed with gauge fluxes, noting that the
intrinsic T cannot be changed by gauge fluxes. This is
because the symmetry group is projectively represented in
the presence of gauge fluxes, i.e., gauge fluxes can induce
additional phase factors into the symmetry multiplications,
resembling the Aharonov-Bohm effect. Particularly, for
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P ¼ C or Mz the additional minus sign in (1) shall be
realized with appropriate gauge fluxes. Then, for spinless
systems, we can realize T̃ 2 ¼ −T2 ¼ −1 according to (1).
Thus, T̃ becomes the fundamental symmetry for us. To
realize spinful non-Hermitian topologies by spinless sys-
tems, we can preserve T̃ while allowing T to be broken.
This is illustrated in Fig. 2(b); with the insertion of gauge
fluxes, the spinful skin states rise on a previously trivial
spinless chain.
We thoroughly implement the mechanism for all non-

trivial cases in the classification table of Fig. 1(a). That is,
we systematically construct spinless models that can
realize all spinful non-Hermitian topological phases.
All the spinless models for spinful non-Hermitian topo-
logical phases can be realized by artificial crystals.
For demonstration, we explicitly design the electric-circuit
realization of a representative phase. Besides the immediate
experimental interest, our Letter evidences that modulating
gauge degrees of freedom may lead to unprecedented
mechanisms and phenomena in non-Hermitian physics,
which is a promising direction to explore.
Breaking symmetry restrictions by Z2 gauge fields.—

The modification of symmetry algebras with additional
phase factors resembles the Aharonov-Bohm effect. Hence,
to facilitate the minus sign in (1), it is sufficient to consider
π fluxes with gauge connections valued in Z2 ¼ f�1g, i.e.,
each hopping amplitude takes phases 0 or π and therefore is
a positive or negative real number.
Then, for a plaquette with flux π, there are odd negative

ones among the hopping amplitudes surrounding it.
However, as illustrated in Figs. 1(b) and 1(c), although the
π-flux preserves P ¼ C or Mz, the gauge-connection
configuration A does not in general. P transforms it to
another configuration A0 that equally describes the π-flux

configuration. Hence, the two gauge-connection configura-
tionsA andA0 are related by a gauge transformationG, i.e., to
restore the original A, a gauge transformation G should
be imposed. Then, the parity operator that operates on the
Hamiltonian should be the combination

P ¼ GP: ð2Þ

Since ½T;G� ¼ ½T; P� ¼ 0, to realize (1) we require
P2 ¼ −1. This in turn requires the anticommutation relation
fG; Pg ¼ 0, noting that P2 ¼ G2 ¼ 1. It is noteworthy that
G is just a diagonal matrix with diagonal entries �1, where
the matrix indexes are just the lattice sites. Thus, G can be
visualized on the lattice by assigning each lattice site the
corresponding sign (see Fig. 1). Then, fG; Pg ¼ 0 impliesP
reverses the signs of all lattice sites.
Particularly, let us consider the lattice blocks for P ¼ C

and Mz, respectively, illustrated in Figs. 1(b) and 1(c). For
P ¼ C illustrated in Fig. 1(b), we see that C ¼ τ1 ⊗ σ1 and
G ¼ τ3 ⊗ σ0, and clearly C reverses signs of G. Here, τ
and σ are two sets of the standard Pauli matrices operating
on the row and column indexes, respectively. Hence,
fC;Gg ¼ 0, and

C ¼ GC ¼ iτ2 ⊗ σ1 ð3Þ

with C2 ¼ −1. For the mirror reflection, namely P ¼ Mz,
the operators are read off from Fig. 1(c) as G ¼ τ3 ⊗ σ0
and Mz ¼ τ1 ⊗ σ0. Accordingly, we have

Mz ¼ iτ2 ⊗ σ0 ð4Þ

with M2
z ¼ −1.

FIG. 1. (a) Classification of spinless (upper table) and spinful (lower table) classes with ramified time-reversal and sublattice
symmetries for point-gap topological phases [22,42]. See Ref. [43] for the connection of our convention to the previous convention of
the symmetry classes. The symmetry barrier between spinless and spinful classes can be crossed by gauge field. (b) Rectangle with π
gauge flux, invariant under the projective twofold rotation. (c) Twisted rectangle with π gauge flux, invariant under the projective mirror
reflection. Blue and red denote the þ and − hopping amplitudes, respectively. The gauge transformations (G) are specified by the signs
in the two middle panels.
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Then, the gauge-field enriched time-reversal symmetry is
given by T̃ ¼ PT with P ¼ C orMz. In momentum space,
T ¼ UTKI with I the inversion of momenta and K the
complex conjugation. The non-Hermitian Hamiltonian
HðkÞ in the ramified symmetry classes is constrained by
T̃ ¼ ŨTKI as

ŨTHðkÞ�Ũ†
T ¼ Hð−kÞ†: ð5Þ

Here, ŨT ¼ PUT . In addition to the ramified time reversal,
we also consider the ramified sublattice symmetry S, which
exerts the following constraint on the Hamiltonian:

SH†ðkÞS ¼ −HðkÞ: ð6Þ

Here, S is a unitary operator with S2 ¼ 1. Hence, S is
Hermitian unitary with S† ¼ S.
1D spinful non-Hermitian topological phase andZ2 skin

effect in spinless chains.—Let us first consider 1D systems.
According to the classification table of Fig. 1(a), the
emergence of any nontrivial topological phase is forbidden
in 1D spinless systems with T2 ¼ þ1. Thus, it was
previously concluded that the non-Hermitian skin effect,
which manifests as the non-Hermitian bulk-boundary
correspondence, is not allowed in these systems [44,45].
On the contrary, nontrivial spinful topology is permitted in
1D. Here, we show that nontrivial topology in both of the
two 1D spinful classes (AII† and DIII†) in Fig. 1(a) can be
constructed using the rectangle with π flux of Fig. 1(b).
We focus on the topological phase in AII† class, which

possesses a spinful Z2 non-Hermitian skin effect, and leave
the DIII† class in the Supplemental Material (SM) [46]. We
can build the 1D lattice model as shown in Fig. 2(a). The
momentum-space Hamiltonian reads,

HðkÞ ¼ JRτ0 ⊗ σ1 − JIτ1 ⊗ σ3 þ t cos kτ0 ⊗ σ1

þ t sin kτ0 ⊗ σ3 þ μτ0 ⊗ σ2 þ iγτ0 ⊗ σ1; ð7Þ

where JR and JI are hoppings inside unit cells, t denotes the
hopping between unit cells, μ is a constant potential, and
iγτ0 ⊗ σ1 is responsible for non-Hermiticity. We plot the
energy spectra of the system under open boundary con-
dition (OBC) and periodic boundary condition (PBC) in
Fig. 2(c).
Figure 2(b) shows the wave function profile of the

system under OBC. Evidently, a spinfulZ2 non-Hermitian
skin effect emerges in this spinless chain, indicating
the breakdown of symmetry restrictions on this 1D
spinless system. As previously explained, this is achieved
by the gauge-field enriched time-reversal symmetry in
Eq. (5) as

T̃ ¼ CT ¼ iτ2 ⊗ σ1KI; T̃ 2 ¼ −1; ð8Þ

which leads to a Z2 topological invariant νðEÞ∈ f0; 1g in
1D [33],

ð−1ÞνðEÞ ¼ sgn

�
Pf½ðHðπÞ − EÞŨT �
Pf½ðHð0Þ − EÞŨT �

× exp

�
−
1

2

Z
k¼π

k¼0

d log det½ðHðkÞ − EÞŨT �
��

:

ð9Þ

Here, ŨT ¼ iτ2 ⊗ σ1, Pf denotes the Pfaffian of skew
symmetric matrices [50], and E is a reference energy. We
find the nontrivial νðEÞ ¼ 1 for E inside the closed curve
of PBC spectrum. This topological invariant dictates the
emergence of Z2 non-Hermitian skin effect localized at
both ends of the OBC systems as shown in Fig. 2(b).
The spinfulZ2 skin effect can be understood by using the

generalized Brillouin zone (GBZ) [23–25], which is a
generalization of the Bloch Hamiltonian by the substitution
of eik → β in HðkÞ to describe non-Hermitian OBC
systems. The non-Hermitian skin effect emerges when
jβj ≠ jeikj ¼ 1. Note that skin modes with jβj > 1 and
those with jβj < 1 are localized at opposite ends. Under the

FIG. 2. (a) Schematic picture for the 1D spinless chain. The unit cell is constructed by the rectangle in Fig. 1(b), which is marked by
gray. (b) The Z2 non-Hermitian skin effect. For the Hamiltonian with 100 unit cells under the open boundary conditions, we compute all
the energy eigenstates jψEiwith energy E. For each E, we plot PEðxÞ ¼

P
α jhx; αjψEij2, where jx; αi is the on-site state at αth site in the

xth unit cell. (c) The energy spectra and (d) the generalized Brillouin zone (blue and red) of the system. The black circle in (d) denotes
jβj ¼ 1. The parameters are JR ¼ JI ¼ 1.5, t ¼ μ ¼ 1, γ ¼ 2.
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spinful time-reversal symmetry of Eq. (8), the skin mode
jβ;þi is mapped to j1=β;−i in a Kramers pair [26,44].
Here, � denotes the two pseudospin states. The GBZ for
symmetry-related pseudospin bands is shown by red and
blue curves in Fig. 2(d), which have inverse β to each other.
Thus, the spinfulZ2 non-Hermitian skin effect is formed by
the Kramers pairs of skin modes localized at opposite ends.
2D non-Hermitian spinful topological phases and flux

skin effect in spinless lattices.—We proceed to discuss the
realization of 2D spinful topological phases in spinless
lattices. Among the three nontrivial 2D spinful classes in
the lower table of Fig. 1(a), we discuss two classes of AII†

and CII† in the following, and leave DIII† class in the
SM [46]. Notably, for AII† class in 2D, a novel type of non-
Hermitian flux skin effect can emerge, which is different
from the Z2 skin effect discussed above. Moreover, we
propose the electric-circuit realization of the topological
phase in this class in the SM [46].
For all three spinful classes in 2D, we can use the twisted

rectangle with π flux in Fig. 1(c) to construct their
topological phases. In such a structure, the mirror sym-
metry is projectively represented as in Eq. (4). Thus, the
gauge-field enriched time-reversal symmetry is

T̃ ¼ MzT ¼ iτ2 ⊗ σ0KI; T̃ 2 ¼ −1; ð10Þ

which realizes the required symmetry algebra of Eq. (1).
Our first 2D example is the spinful topological phase in

class AII† with only time-reversal symmetry. It possesses
the non-Hermitian flux skin effect as its characteristic
feature [45,51]. That is, when flux defects are present,
extensive numbers of skin modes will be localized at the

flux cores. As shown Fig. 3(a1), this model is constructed
by the block of Fig. 1(c), which reads,

H2Dðkx;kyÞ¼HðkxÞþHðkyÞ;
HðkyÞ¼ðtlþ trÞcoskyτ0⊗σ0þ iðtl− trÞsinkyτ3⊗σ0;

HðkxÞ¼JRτ0⊗σ1þJIτ2⊗σ2þ tcoskxτ0⊗σ1

þ tsinkxτ0⊗σ2þ iγτ0⊗σ1: ð11Þ

Here, HðkxÞ denotes the Hamiltonian in the x direction,
which is composed of the JR and JI terms within unit cells,
the hopping term t, and the γ term to induce non-
Hermiticity. In the y direction, HðkyÞ consists of nonre-
ciprocal hoppings as shown in Fig. 3(a2). The hopping
amplitudes are tr toward right and tl (≠ tr) toward left on
the top layer, while they are exchanged on the bottom layer.
The PBC energy spectrum is plotted in Fig. 3(a3).
While T̃ in Eq. (10) remains to be the time-reversal

symmetry for this 2D system, the individual Mz and T
symmetries are broken by the nonreciprocal hoppings in
the y direction. Corresponding to T̃ , a Z2 invariant
ν2DðEÞ∈ f0; 1g is defined in Refs. [22,45], where E is
a reference energy. We plot ν2DðEÞ against E in Fig. 3(a4).
The topological invariant takes nontrivial values
for E inside the red region, indicating the 2D system is
topological.
Different from the 1D case, there is no Z2 skin effect

under full OBC. Instead, a nontrivial magnetic flux
response serves as the characteristic feature of this spinful
2D topology [45,51]. By inserting a pair of π flux defects,
there will be OðLÞ skin modes from the total OðL2Þ modes

FIG. 3. (a1) Schematic picture for the 2D lattice in AII† class. The unit cell marked in gray. (a2) The nonreciprocal hoppings in the y
direction. (a3) The PBC spectrum, and (a4) the topological invariant of the system. (a5) The non-Hermitian flux skin effect, which is
localized at the cores of the π flux defects. At the ðx; yÞ position, the density is ρðx; yÞ ¼ P

α;β jhx; y; αjψβij2, where α runs over all
internal degrees of unit cell and β all eigenstates. Full PBC is taken to avoid boundary effects. The parameters are JR ¼ JI ¼ 1.5,
γ ¼ tr ¼ 2, t ¼ tl ¼ 1. (b1) Schematic picture for the bilayer hexagonal lattice. The two layers are connected by lattice blocks adjusted
from Fig. 1(c), as shown in the right. (b2) The PBC spectrum of the system, and (b3) the Wilson loop spectrum. The parameters are
t ¼ JI ¼ 1, JR ¼ 0.1.
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localized at the flux cores, where L2 is the system size. In
Fig. 3(a5), the 2D system clearly shows such a non-
Hermitian flux skin effect, confirming the nontrivial top-
ology. We provide the calculation details and the finite-size
scaling of the flux skin effect in the SM [46].
Our second example is a non-Hermitian generalized

spinless Kane-Mele model, which belongs to CII† class in
2D. It is constructed based on the renowned Kane-Mele
model, where the spin-orbit coupling is replaced by the
spinless block of Fig. 1(c) with adjustments [52], as
shown by the next-nearest-neighbor (NNN) hoppings in
Fig. 3(b1). These blocks connect the top and bottom
layers of the hexagonal lattice. The momentum-space
Hamiltonian reads,

HKMðkÞ ¼ tχ1ðkÞτ0 ⊗ σ1 þ tχ2ðkÞτ0 ⊗ σ2

− 2iJRη1ðkÞτ0 ⊗ σ3 − 2iJIη2ðkÞτ2 ⊗ σ0; ð12Þ

where t is the nearest-neighbor hopping amplitude,
χ1 þ iχ2 ¼ 1þ eik1 þ eik2 , and η1 þ iη2 ¼ eik1 þ eik2 þ
eiðk2−k1Þ with k1ð2Þ ¼ k × b1ð2Þ. The primitive vectors are

b1ð2Þ ¼ ð3=2;� ffiffiffi
3

p
=2Þ. We plot the PBC spectrum in

Fig. 3(b2), which has a point gap with respect to the
zero energy.
Besides the time-reversal symmetry of Eq. (10), the

system is invariant under the sublattice symmetry S ¼
τ0 ⊗ σ3 as SHKMðkÞ†S−1 ¼ −HKMðkÞ. A 2D topological
phase satisfying these symmetries is characterized
by a Z2 Kane-Mele invariant [22]. This invariant can
be computed by the extended Hermitian Hamiltonian
HHðkÞ ¼ antidiagfH†

KMðkÞ;HKMðkÞg [46], where “anti-
diag” denotes antidiagonal matrices, due to the topologi-
cal equivalence [21,22,53]. We then calculate the invariant
using the Wilson loop spectrum [54]. A nontrivial (trivial)
topological invariant corresponds to odd (even) number
of crossings of the θ ¼ π reference line. As shown in
Fig. 3(b3), this spinful phase possesses a nontrivial Z2

invariant. More discussions on the topological edge states
can be found in the SM [46].
Summary and discussions.—In this Letter, we have

presented mechanisms for realizing spinful ramified sym-
metry classes with the time-reversal symmetry by spinless
systems, and systematically constructed experimentally
realizable models for all topologically nontrivial cases in
one and two dimensions. Our theory may be extended
along the two directions, namely all non-Hermitian
symmetry classes that contain either original or ramified
time-reversal symmetry among the 38-fold symmetry
classification, and non-Hermitian systems with other types
of energy gaps [42]. This is due to the fact that the essence of
our approach relies on themodification of symmetry algebras
using gauge fields, which is independent of non-Hermitian
ramification and complex-energygaps.OurLetter shows that
ubiquitously existing gauge structures may significantly

enrich non-Hermitian physics at the fundamental level,
and considering effects of gauge structures would be a
promising direction to extend the current framework of
non-Hermitian physics.
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