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The disorder systems host three types of fundamental quantum states, known as the extended, localized,
and critical states, of which the critical states remain being much less explored. Here we propose a class of
exactly solvable models which host a novel type of exact mobility edges (MEs) separating localized states
from robust critical states, and propose experimental realization. Here the robustness refers to the stability
against both single-particle perturbation and interactions in the few-body regime. The exactly solvable one-
dimensional models are featured by a quasiperiodic mosaic type of both hopping terms and on-site
potentials. The analytic results enable us to unambiguously obtain the critical states which otherwise
require arduous numerical verification including the careful finite size scalings. The critical states and new
MEs are shown to be robust, illustrating a generic mechanism unveiled here that the critical states are
protected by zeros of quasiperiodic hopping terms in the thermodynamic limit. Further, we propose a novel
experimental scheme to realize the exactly solvable model and the new MEs in an incommensurate
Rydberg Raman superarray. This Letter may pave a way to precisely explore the critical states and new ME
physics with experimental feasibility.
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Introduction.—Anderson localization (AL) is a funda-
mental and ubiquitous quantum phenomenon that quantum
states are exponentially localized due to disorder [1].
Scaling theory shows that all noninteracting states are
localized in one and two dimensions with arbitrarily small
disorder strength [2,3], while in three dimensions (3D), the
localized and extended states can coexist at finite disorder
strength, and be separated by a critical energy Ec, dubbed
the mobility edge (ME). The ME leads to various funda-
mental phenomena, such as metal-insulator transition by
varying the particle number density or disorder strength [4].
Moreover, a system with ME exhibits strong thermo-
electric response, enabling application in thermoelectric
devices [5–7]. An important feature of ME between
extended and localized states is that it is stable, and can
survive under perturbations and interactions [8–12].
Unlike in randomly disordered system, the extended-AL

transition and ME can exist in a 1D system with quasi-
periodic potential [13–30]. This result has triggered many
experimental studies in realizing quasiperiodic systemswith
ultracold atoms [11,31–40] and other systems like photonic
crystals, optical cavities, and superconducting circuits
[41–46]. More importantly, quasiperiodic systems can host

a third type of states called critical states [46–51]. The
critical states are extended but non-ergodic, locally scale
invariant and fundamentally different from the localized and
extended states in spectral statistics [52–54], multifractal
properties [55–57], and dynamical evolution [58–60].
With interactions, the single-particle critical states may
become a many-body critical (MBC) phase [29,61,62] that
interpolates the thermal and many-body localized phase
[63,64]. However, unlike localized and extended states,
confirming critical states ismore subtle and requires arduous
numerical calculations like finite-size scaling. It remains
unclear what generic mechanism leads to the critical states.
Therefore, it is highly important to develop exactly solvable
models with critical states being unambiguously determined
and fully characterized. Moreover, similar to the ME for
extended and localized states, are there newMEs separating
critical from localized states [25], in particular, in experi-
mentally feasible models? A definite answer to this funda-
mental question is yet elusive but may be provided by
resolving the following issues. First, one can develop exactly
solvable models with analytic MEs between critical and
localized states. Further, one needs to confirm that such new
MEs are robust, e.g., in the presence of perturbation and/or
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interactions. Finally, the proposed exactly solvable models
are feasible in experimental realization.
In this Letter, we propose a class of exactly solvable 1D

models featured with mosaic type quasiperiodic hopping
coefficients and on-site potential, and obtain unambigu-
ously critical states and robust exact MEs. The new MEs
fundamentally distinct from those in previous exact solv-
able models [23]. The localization and critical features of
all quantum states in the spectra are precisely determined
by extending Avila’s global theory [65], enabling an
accurate characterization of the critical states and new
MEs. We further confirm the robustness of MEs against
single-particle perturbation and interactions in the few-
body regime. The robustness is rooted in a profound
mechanism unveiled with our exactly solvable models that
the critical states are protected by incommensurately
distributed zeros (IDZs) of mosaic hopping terms in
thermodynamic limit. Finally, we propose a novel scheme
with experimental feasibility to realize and detect the exact
MEs in Raman superarray of Rydberg atoms.
Model.—We propose a class of quasiperiodic mosaic

models as pictorially shown in Fig. 1(a), and described by

H ¼
X
j

ðtja†jajþ1 þ H:c:Þ þ
X
j

Vjnj; ð1Þ

where the particle number operator nj ¼ a†jaj, with a†jðajÞ
the creation (annihilation) operator at site j, and the key
ingredients in the models are that both the quasiperiodic
hopping coefficient tj and on-site potential Vj are mosaic,
with

ftj; Vjg ¼

8>><
>>:

fλ; 2t0 cos½2παðj − 1Þ þ θ�g; j ¼ 1 mod κ;

2t0 cosð2παjþ θÞf1; 1g; j ¼ 0 mod κ;

fλ; 0g; else:

ð2Þ

Here κ is an integer and κ ≥ 2. λ and θ denote hopping
coefficient and phase offset, respectively. We take t0 ¼ 1,
and set θ ¼ 0 and α ¼ limn→∞ðFn−1=FnÞ ¼ ð ffiffiffi

5
p

− 1Þ=2
without affecting generality, with Fn being Fibonacci
numbers. For finite system one may choose the system
size L ¼ Fn and α ¼ Fn−1=Fn. To facilitate our discussion
we focus on the minimal model for κ ¼ 2 in main text. The
results with κ > 2 are in the Supplemental Material [66].
We shall prove that the minimal model has exact energy-
dependent MEs separating localized states and critical
states, which are given by

Ec ¼ �λ: ð3Þ

Before showing the rigorous proof, we present numerical
verification. For this exactly solvable model, the different
types of states can be identified by the fractal dimension
(FD), defined for mth eigenstate jψmi ¼

P
L
j¼1 um;ja

†
j jvaci

as FD ¼ −limL→∞ lnðPj jum;jj4Þ= lnðLÞ. The FD tends to
1 and 0 for the extended and localized states, respectively,
while 0 < FD < 1 for critical states. Fig. 1(b) shows FD as
a function of λ for different eigenstates of eigenvalues E.
The red lines starting from band center denote the MEs
Ec ¼ �λ, across which FD changes from values close to
0.5 to values close to 0, indicating a critical-to-localization
transition predicted by the analytic results. Particularly, we
fix λ ¼ 2.0 and show FD of different eigenstates in Fig. 1(c)
as a function of the corresponding eigenvalues for different
sizes. The dashed lines in the figure are the MEs
Ec ¼ �λ ¼ �2.0. One can observe that FD tends to 0
for all states in energy zones with jEj > λ with increasing
the system size, implying that those states are localized. On
the contrast, in energy zones with jEj < λ, FD is far
different from 0 and 1, and nearly independent of the
system size. A more careful finite size scaling for FD can be
found in [66].
Rigorous proof.—The MEs of the models in Eqs. (1)–(2)

can be analytically obtained by computing Lyapunov
exponent (LE) γϵ in combination with IDZs of hopping
coefficients, which provides the unambiguous evidence of
the critical zone. Denote Ti as the transfer matrix at site i,
i.e., ðCiþ1; CiÞ⊤ ¼ TiðCi; Ci−1Þ⊤ and T i ¼ TiTi−1 � � �T1.
The LE γ0 for a state with energy E is computed via
γϵðEÞ ¼ limm→∞

R
dθ ln kT mðθ þ iϵÞk=ð2πmÞ, where k · k

denotes the matrix norm and ϵ is imaginary part
of complexified θ. We extend Avila’s global theory [65]
to singular cocycles, and show that γ0 ¼ limϵ→∞γϵ ¼
κ−1 ln klimϵ→∞T κðθ þ iϵÞk [69]. For κ ¼ 2,

FIG. 1. (a) The 1D quasiperiodic mosaic model with κ ¼ 2 and
κ ¼ 3. The black solid and dashed lines denote the quasiperiodic
hopping (tj ¼ Jn) and constant hopping (tj ¼ λ), respectively.
The black sphere denotes a lattice site, and Vn is the quasiperiodic
mosaic potential. Here Jn ¼ Vn ¼ 2t0 cosð2πκαnÞ, n is an
integer. (b) Fractal dimension (FD) of different eigenstates as
a function of corresponding E and λ for L ¼ 2584. The red lines
denote the MEs Ec ¼ �λ. (c) FD versus E with fixed λ ¼ 2.0 for
L ¼ 2584 (red dots) and L ¼ 10 946 (blue dots). The dashed
lines represent the MEs. The t0 is set to 1.
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T 2ðθ þ iϵÞ ¼ 1

λM

�
E −M −M

λ 0

��
E −M −λ
M 0

�
;

where M ¼ 2 cosð2παþ θ þ iϵÞ and the LE is

γ0ðEÞ ¼
1

2
ln
���jE=λj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=λÞ2 − 1

q ���: ð4Þ

If jEj > jλj, then γ0ðEÞ > 0 and the state with energy
E is localized with the localization length ξðEÞ ¼ γ−10 . If
jEj < jλj, then γ0ðEÞ ¼ 0 and the state can be either
extended or critical, which belong to absolutely continuous
(AC) spectrum or singular continuous (SC) spectrum,
respectively [70]. There are two basic approaches to
exclude the AC spectrum: one is introducing unbounded
spectrum [25] and the other is introducing zeros of hopping
terms in Hamiltonian [71,72]. For our model, there exists a
sequence of sites f2jkg such that t2jk → 0 in the thermo-
dynamics limit, so there is no AC spectrum [73], and all the
eigenstates with jEj ≤ jλj are all critical. In summary,
vanishing LEs and IDZs of hopping unambiguously
determine the critical region for jEj ≤ jλj and posi-
tive LEs determine the localized region for jEj > jλj.
Therefore E ¼ �λ mark critical energies separating local-
ized states and critical states, manifesting MEs.
Mechanism of critical states.—The emergence of MEs

and critical states has a universal underlying mechanism
unveiled from the exact results. Namely, it is due to IDZs
of hopping coefficients [74] in the thermodynamic limit
and vanishing the LE. Such zeros in tj effectively divide
system into weakly coupled subchains, which cannot
support extended states, and leaving the localized or
critical states depending on the corresponding LEs. To
confirm the abundance of critical states in the whole
spectrum, we first consider the special case of λ → 0
[Fig. 1(a)], where the model consists a series of dimmers,
each with a 2 × 2 matrix with all elements being
Jj ¼ Vj ¼ 2 cosð2παjÞ. The eigenvalues are E1 ¼ 2Jj
and E2 ¼ 0, corresponding to localized states and a
zero-energy flat band with degeneracy equal to half of
the system size, respectively. Note that a linear combi-
nation of the zero modes are also eigenstates of the model,
which can be either localized, extended, or critical.
Further inclusion of λ hybridizes the zero-energy flat-
band modes and localized modes, yielding the critical
states and MEs between them and localized ones. This
mechanism also explains emergence of critical states
starting from band center. Moreover, the number of
critical states equals to that of localized states under
the exactly solvable condition, as verified by the numeri-
cal counting. This zero hopping coefficient mechanism
also explains a novel feature that the critical zone is robust
against single-particle perturbation which deviates the
model from exactly solvable condition. We consider an
extra mosaic on-site potential term Vp as perturbation,

which represents the mismatch between hopping
and potentials in Eq. (2), and is relevant to real
experiment,

Hp ¼ H þ
X
j

Vp
j nj; ð5Þ

where Vp
j ¼ vm cosð2παjþ θÞ for even-j sites and

Vp
j ¼ vm cos½2παðj − 1Þ þ θ�) for odd-j sites. Figure 2

shows numerically calculated LEs for different vm, with
λ ¼ 2. The strong mismatch potentials can localize the
critical states near MEs while those near the band center
remain unchanged [Fig. 2(a)]. A closer inspection of LEs
shows that localizing critical states requires finite
vm > vcm, which depends on the position of the critical
state [Fig. 2(b)]. These results manifest the robustness of
critical zones against perturbations. In comparison, the
celebrated Aubry-André (AA) model exhibit a self-duality
point at V ¼ 2t, where all states are critical [13]. However,
those critical states are not robust and become localized
for infinitesimal perturbations. The present study unveils a
generic mechanism to obtain robust critical zones pro-
tected by the zeros of hopping coefficients with vanishing
LEs in the thermodynamic limit, which are not removed
by the perturbations. This also shows a nontrivial regime
that while Avila’s global theory cannot give analytical
MEs, the MEs exist.
Robustness against interactions.—We further demon-

strate the robustness of MEs in the presence of interactions
by studying a few-body Hamiltonian given by

H ¼ H0 þU
X
j

njnjþ1; ð6Þ

where H0 is the Hamiltonian of Eq. (1) for few hard-core
bosons with hnji ≤ 1, and U is the strength of neighboring
interactions. This model can be simulated with Rydberg
atoms (see details in next section). We propose normalized
participation ratio (NPR) to detect the MEs in the few-body

( ) ( )

FIG. 2. Numerical LEs γ0 for perturbation strength vm. (a) γ0 as
a function of eigenvalues E for different vm. Solid lines are
original MEs. (b) γ0 as a function of vm for eigenstates jψni from
the band center (n ¼ 1292) to the states nearby original MEs
(n ¼ 1822). Critical states nearby MEs can be driven to localized
states while critical zones nearby band center remains unchanged.
The other parameters are λ ¼ 2.0 and L ¼ 2584.
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system. The NPR of an eigenstate jψmi ¼
P

c um;cjci is
defined as NPR ¼ 1=ðVH

P
c jum;cj4Þ, where fcg is the

computational basis and VH is the size of the Hilbert
state [75]. When U ¼ 0, the few-body states are product
states of single particle orbitals, which fall into three
categories [8,9] depending on whether particles occupy
localized (critical) orbitals or occupy mixed orbitals.
Denote the maximum energy of critical (localized) orbitals
as λ (Emax), where Emax is the maximum energy of
spectrum, we can construct the maximally allowed energy
for Nc (Nl) particles filled in critical (localized) orbitals as
ENc;Nl

¼ ðNcλþ NlEmaxÞ=Np with Np ¼ Nc þ Nl. Then
ENc;Nl

locates the transition of different types of few-body
states, where NPR changes discontinuously. For instance,
when Np ¼ 3, the maximal allowed energy for a mixed
state with 2 particles filled in critical orbitals and 1 particle
filled in localized orbitals is E2;1. Figure 3(a) shows that
NPR changes sharply at ENc;Nl

as expected.
The sharp discontinuities near �ENc;Nl

persist for U ≠ 0
for the few-body regime, manifesting the robustness of
MEs against few-body interactions. Figure 3(b) shows that
for U ¼ 1.4, ENc;Nl

can still identify the NPR transition.
This is because only those states with at least two particles
occupying neighboring sites can be influenced by the
interaction, and the portion of such states is of order
OðL−1Þ, with L the system size. Thus for relatively large
L, most eigenstates remain product states of single-particle
orbitals, except for those perturbed by interaction. Note that
the localized orbitals have zero contribution to NPR in large
L limit, and the number of critical orbitals determine NPR

of the few-body states. Thus the NPR exhibits sharp
transitions across critical energies of ENc;Nl

, which are
related to single particle MEs, showing the robustness of
MEs and critical zones in the few-body case. This novel
result motivate us to realize the exactly solvable model
and observe our predictions with Rydberg atoms
arrays [67,76,77] which are natural platforms to simulate
hard-core bosons [78,79].
Experimental realization.—Finally we propose an exper-

imental scheme dubbed incommensurate Raman super-
array of Rydberg atoms [Figs. 4(a1) and 4(a2)] to realize
the model in Eq. (1) with κ ¼ 2. The realization of the
Hamiltonian is equivalent to the realization of a two-leg
lattice model, with even (odd) sites mapped to the sites on
AðBÞ-leg as shown in Fig. 4(a2), whose Hamiltonian reads
H ¼P

jðJja†jbjþ λa†jbjþ1 þH:c:ÞþP
j Vjða†jaj þ b†jbjÞ.

This idea can be generalized to models with larger κ by
introducing more legs in supperarray. The Hamiltonian can
be realized by Rydberg atoms using three key ingredients.
(i) The AB-leg superarray has an effective Zeeman splitting
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FIG. 3. Normalized participation ratio (NPR) as a function of
energy density E=Np of few hardcore bosons with U ¼ 0 (upper
panel) and U ¼ 1.4 (lower panel), with λ ¼ 1.0 and t0 ¼ 1.0.
Critical energy ENc;Nl

is the maximal allowed energy for Nc

particles filled in critical orbitals and Nl particles filled in
localized orbitals. (a1)(b1) Np ¼ 2, L ¼ 120. (a2)(b2) Np ¼ 3,
L ¼ 60. The critical energy E2;0ðE3;0Þ is equal to the single
particle ME E ¼ λ for two(three)-boson case.

FIG. 4. Realization of the quasiperiodic mosaic model with
κ ¼ 2 in incommensurate Raman superarrays of Rydberg atoms.
(a1) Rydberg atoms trapped in optical tweezers to form a two-leg
array. (a2) The equivalent two-leg lattice model. The incom-
mensurate and constant hopping coefficients are denoted as Jj
and λ. An effective Zeeman splitting gradient (red) modifies
energy difference between Rydberg states. The Rydberg atoms
are tapped along the magic angle ϕm, at which the amplitude of
dipolar interaction vanishes. (b1) The intrinsic dipole-dipole
interaction induce constant hopping coupling λ. (b2) The interleg
exchange coupling between Aj and Bj is suppressed by the
Zeeman detuning. A two-photon Raman process (see inset)
compensates this energy penalty and induces the laser-assisted
dipole-dipole interaction. The compensated exchange coupling
realizes incommensurate hopping coupling Jj.
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gradient along the x direction (a2); (ii) two types of
nearest neighbour couplings, with constant hopping
coupling λ simulated by intrinsic dipole-exchange inter-
action and quasiperiodic hopping coupling Jj induced by
laser-assisted dipolar interaction [68]; and (iii) an on-site
incommensurate chemical potential Vj. Two Rydberg
states j↓i ¼ j70; Si and j↑i ¼ j70; Pi are chosen to sim-
ulate empty and occupied states at each site. As illustrated
in Fig. 4(b1), the intrinsic dipole-dipole interactions
between two Rydberg states lead to an exchange coupling,
which maps to constant hopping λ of the hard-core
bosons [78,79].
The AB-leg superarray and laser-assisted dipole-dipole

interactions altogether realize the incommensurate hopping
Jj. The inter-leg exchange couplings between Aj and Bj

sites are suppressed by a large energy detuning Δ, but can
be further restored by applying the Raman coupling
potential VR ∝ cosð4παjxÞ cosðπjyÞeiðω2−ω1Þtσxjx;jy þ H:c:,

which is generated by two Raman beams Ω1;2 with
frequency difference ω1 − ω2 ≈ Δ such that the Zeeman
splitting can be compensated by a two-photon process
[Fig. 4(b2)]. Further, the spatial modulation of the Raman
potential determines the incommensurate strength of the
induced exchange couplings as Jj ¼ 2t0 cos 4παj [66]. To
prohibit laser-assisted exchange couplings along x direc-
tion, we use the angular dependence of dipole-dipole
interaction Vdd ¼ d2ð1 − 3 cos2 ϕÞ=R3 with d and R being
the dipole moment and distance between two Rydberg
levels, respectively. There exists a “magic angle” ϕm ¼
arccosð1= ffiffiffi

3
p Þ ≈ 54.7° [67,80], along which the exchange

coupling vanishes. By arranging the Rydberg atoms along
this angle, we avoid coupling in the x direction. Finally, the
incommensurate mosaic potential Vj can be realized via ac
Stark shift [66]. Combining those ingredients together we
reach the target model. The non-interacting critical states
and MEs can be observed from the spectrum when a single
hard-core boson is excited in this scheme, while the critical
energies depicted in Fig. 3 will be observed when several
hard-core bosons are excited in experiment.
Conclusion and discussion.—We have proposed a class

of exactly solvable 1D incommensurate mosaic models to
realize new and robust MEs separating critical states from
localized states, and suggested a novel experimental reali-
zation through incommensurate Raman superarrays of
Rydberg atoms. The robust critical states andMEs originate
from a combination of incommensurately distributed zeros
of hopping coefficients in the thermodynamic limit and the
zero LEs, which can be analytically obtained for the
proposed models and in agreement with the numerical
studies. We note that these two features, serving as a
generic mechanism, can provide the guidance to construct a
broad class of analytic models hosting robust critical states.
Moreover, we demonstrate the robustness of MEs
and propose NPR as a new probe to detect the MEs in

the few-body regime. A future intriguing issue is to explore
the interacting effects in the finite filling regime, which
might lead to exotic many-body new MEs. Our Letter
broadens the concept of MEs and provides a feasible lattice
model that hosts exact MEs and unambiguous critical zones
with experimental feasibility.
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