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Dispersion relations govern wave behaviors, and tailoring them is a grand challenge in wave
manipulation. We demonstrate the inverse design of phononic dispersion using nonlocal interactions
on one-dimensional spring-mass chains. For both single-band and double-band cases, we can achieve any
valid dispersion curves with analytical precision. We further employ our method to design phononic
crystals with multiple ordinary (roton or maxon) and higher-order (undulation) critical points and
investigate their wave packet dynamics.
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Phononic crystals and vibroelastic metamaterials are
architected heterogeneous solids for the manipulation of
mechanical waves. They can exhibit many unconventional
properties, such as frequency band gaps [1–7], negative
refraction [8–11], and topologically protected modes
[12–15]. They also have a wide range of applications in
cloaking [16–20], signal manipulation [21,22], focusing
[23,24], and energy trapping [25–27]. Recently, by incor-
porating nonlocal (i.e., farther than nearest neighbor)
interactions [28], Rosa and Ruzzene [29–32] demonstrated
diffusive transport, and Wu and Huang [33,34] investigated
active control, while Chen et al. [35] showed rotonlike
dispersion [36–42], where the local minimum of the
dispersion curve resembles the roton behavior [43–45]
of the helium-4 superfluid [46–50] at low temperature. All
these exotic and desirable dynamic behaviors hinge on
the dispersion relation—how frequency depends on wave
vector—that is intrinsic to each particular design. However,
most studies so far have been focused on the forward
problem from a given design to a set of band structures. It is
a long-standing goal in the research community to solve the
inverse problem from given dispersion bands to actual
metamaterial designs so that exotic behaviors and func-
tionalities can be realized on demand. Prior efforts to tailor
specific dispersions [51–55] or band gaps [56–59] typically
relied on iterative searches with high computational costs,
and they had only very limited success.
In this Letter, we demonstrate a design methodology

that uses nonlocal interactions to customize dispersion
relations. First, we present an analytical protocol to solve
the inverse problem, achieving any arbitrarily defined

single-band dispersion on monoatomic nonlocal chains.
Then, we use this design protocol to obtain dispersion
curves with ordinary and higher-order critical points. Using
time-domain simulations, we illustrate their unconventional
wave dynamics, especially at the undulation point (also
known as stationary inflection point), where both the first
and second derivatives of the dispersion curve vanish. This
results in highly concentrated vibration energy since the
wave mode is simultaneously nonpropagating and non-
spreading. Finally, we also investigate the diatomic non-
local chain and develop the design protocol to customize its
two dispersion bands.
We start with a one-dimensional “monoatomic” phonon

chain of identical masses, m, and linear springs. A
schematic of the model is depicted in Fig. 1(a). Each mass

FIG. 1. (a) An infinite chain of identical masses. Each mass is
connected to its nth-nearest neighbors with spring constant kn.
(b) The design space with fundamental constraints at the center
(q ¼ 0) and edge (q ¼ π=a) of the first Brillouin zone.
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is connected with its two nearest neighbors by local
interactions with the spring constant k1. In addition, each
mass is also connected on both sides to its two nth-nearest
neighbors with nonlocal interactions specified by the spring
constants kn, for n ¼ 2; 3; 4;…; N, where N is the longest-
range nonlocal interaction in the system. The governing
equation of motion for the jth mass is

müj ¼
XN
n¼1

knðujþn − 2uj þ uj−nÞ: ð1Þ

Based on the Bloch theorem [60], we obtain the following
dispersion relation:

ω2ðqÞ ¼ 2

m

�XN
n¼1

kn −
XN
n¼1

kn cosðnqaÞ
�
; ð2Þ

where ω is the frequency, q is the wave number, and a is the
spatial period of the lattice. For conventional chains with
local springs k1 only, Eq. (2) reduces to the classical result
of ω2ðqÞ ¼ ð4k1=mÞ sin2 ðqa=2Þ, which is always mono-
tonic and reaches its maximum at the Brillouin zone
boundary [61]. The nonlocal interactions, on the other
hand, may give rise to local minima and maxima at the
interior of the Brillouin zone, as recently demonstrated by
Chen et al. [35] and earlier by Farzbod and Leamy [62].
Since Eq. (2) takes the form of a Fourier series, we can

use it to tailor the nonlocal interactions to achieve any
desirable dispersion behavior. Mathematically, this origi-
nates from the fact that the dynamic matrix or Hamiltonian
takes the form of a circulant matrix. Before the demon-
stration of customization procedures, it is necessary to
understand all constraints in possible dispersion relations.
Here, we consider the following physical and symmetry
principles as fundamental assumptions of the designer
nonlocal phononic crystals: (i) passive with no energy
input or output, (ii) freestanding with no grounded springs,
(iii) time-reversal symmetric with no gyroscopic effect, and
(iv) stable with a finite static stiffness.
Combining the above, we arrive at the requirements

that, for any target dispersion relation ΩðqÞ defined
on the non-negative half of the first Brillouin zone
(q∈ ½0; π=a�) to be valid, it needs to be a smooth curve
with [See Fig. 1(b)]:

Ωð0Þ¼ 0; 0<Ω0ð0Þ<þ∞; and Ω0ðπ=aÞ¼ 0: ð3Þ

Given an arbitrarily specified dispersion relation, ΩðqÞ,
satisfying Eqs. (3), we can design a nonlocal phononic
crystal using the following protocol. First, we find the
Fourier coefficients as

An ¼
2a
π

Z
π=a

0

Ω2ðqÞcosðnqaÞdq; n¼ 1;2;…;N: ð4Þ

Then, the design can be obtained by

kn=m ¼ −An=2; n ¼ 1; 2;…; N: ð5Þ

Figure 2 shows results of this protocol with several
examples. Since Eq. (5) shows all kns simply scale with m,
we can set m ¼ 1 for all cases. In each case, we compare
the target dispersion with the actual one by examining the
normalized root mean square deviation (NRMSD) between
them. We purposefully choose the target curves with
various interesting features. In the implementation, we use
analytical functions as the targets for Figs. 2(a) and 2(b).
For other cases, we use piecewise spline functions to
construct target curves. The detailed procedures are given
in the Supplemental Material [63]. For each target curve,
the stiffness design variables are obtained using Eqs. (4)
and (5). The total number of stiffness types is N ¼ 10 for
Figs. 2(a)–2(d),N ¼ 20 for Figs. 2(e)–2(g), andN ¼ 25 for
Fig. 2(h), respectively.

FIG. 2. Customized dispersion curves with special features.:
(a) a flattop; (b)–(d) nonmonotonic behaviors at large, medium,
and small wave number q (i.e., at short, medium, and long
wavelength as compared to unit cell size), respectively; (e)–(h)
undulation points (squares), maxons (triangles), and rotons
(circles) occurring at the same frequency.
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The NRMSD is less than 1% in all cases, and the details
are given in the Supplemental Materials [63]. We show that
it is possible to achieve a flat band top [Fig. 2(a)] as well as
nonmonotonic dispersion at relatively short [Fig. 2(b)],
medium [Fig. 2(c)], and long [Fig. 2(d)] wavelength
regimes. In addition, for critical points on the dispersion,
we can design systems where local maxima (maxons), local
minima (rotons), and stationary inflection points (undu-
lations) can occur at the same frequency, as illustrated in
Figs. 2(e) and 2(f).
Next, we investigate these critical points that exhibit

exotic dynamics by considering two specific instances of
nonlocal phononic crystals with the third-nearest-neighbor
(k3) interactions as the only nonlocal effect. When, k3 ¼
3k1 [Fig. 3(a), top), the dispersion curve is nonmonotonic
[blue solid curve in Fig. 3(b)], exhibiting one local
maximum (maxonlike) and one local minimum (rotonlike

[35]) at qa ¼ 2tan−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11=7Þ � ð6 ffiffiffi

2
p

=7Þ
q

Þ. Both of them

represent critical-point wave modes with zero group
velocity (ZGV), and they are analogous to the Van Hove
singularities [68] in electronic band structures. These ZGV
modes also have promising applications in many wave-
related engineering technologies such as noninvasive struc-
tural health monitoring [69–72] since the highly localized
wave modes can enhance both the vibration energy con-
centration and the signal-to-noise ratio in ultrasonic prob-
ing. In contrast, when k3 ¼ k1=3 [Fig. 3(a), bottom),
the dispersion curve is monotonic [black dotted curve in
Fig. 3(b)] with an undulation point in the middle at
qa ¼ π=2, where both the first and second derivatives
vanish. While rotonlike dispersions were recently demon-
strated [35–41], and undulation points of electromagnetic
waves in optical waveguides were studied as frozen
modes [73–75], we show here, for the first time, a second-
order-critical undulation point for vibroelastic waves in
phononic crystals.
To demonstrate wave behaviors at these critical points,

we also perform two types of time-domain simulations on
finite chains.
First, we apply a force excitation on the leftmost mass

of a chain with 5000 unit cells. The forcing function is a
Gaussian envelope in time:

fðtÞ ¼ exp ½−ðt − tmÞ2=τ2� cos ðωctÞ; ð6Þ

where ωc is the carrier frequency corresponding to the
critical point, tm is the peak time of the envelope, and τ ¼
100=ωc characterizes the time duration of the envelope.
Figures 3(c) and 3(d) show the results for maxonlike and
rotonlike dynamics, respectively, in the chain with
k3 ¼ 3k1. In each case, two modes of the same frequency
but different wavelengths are observed: one is the traveling
mode [hollow triangle and circle in [Fig. 3(b)] with finite
group velocity, as indicated by the black dashed line, while
the other is the ZGV mode [filled triangle and circle in

Fig. 3(b)] localized at the source. Although the maxonlike
and rotonlike ZGV modes are not traveling waves, the
results show they do diffuse and spread out in space over
time. In contrast, Fig. 3(e) shows the result at the undu-
lation-point frequency on the chain with k3 ¼ k1=3. Only
one wave mode is observed. More importantly, not only is
this mode nonpropagating, but it is also nonspreading, as
both the group velocity, ω0ðqÞ, and the diffusion rate,
ω00ðqÞ, vanish. This is a unique feature that does not exist in
ordinary ZGV modes.
Second, to further investigate the diffusion phenomena,

we look into the time evolution of a localized Gaussian
spatial wave packet,

FIG. 3. (a) Schematics of two nonlocal phononic crystals with
the first and third nearest-neighbor interactions only—top,
k3 ¼ 3k1; bottom, k3 ¼ k1=3. (b) Dispersion curves. For
k3 ¼ 3k1, a local maximum (maxon) appears at ðω; qa=πÞ ¼
ð3.61; 0.344Þ, and a local minimum (roton) appears at
ðω; qa=πÞ ¼ ð1.72; 0.656Þ. For k3 ¼ k1=3, a stationary inflection
point (undulation) appears at ðω; qa=πÞ ¼ ð1.63; 0.5Þ, where
both the first and second derivatives vanish. (c)–(e) Time-domain
results for the 3 critical points in (b): maxon, roton, and
undulation, respectively. The left column lists the time-space
plots, while the right column shows wave amplitude snapshots.
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uðx; tÞ ¼ exp ½−ðx − x0Þ2=σðtÞ� cos qcx; ð7Þ

where qc is the carrier wave number corresponding to the
critical point, x0 denotes the center of the wave packet, and
σðtÞ characterizes the width of the envelope. We prescribe
an initial Gaussian packet with σðt ¼ 0Þ ¼ σ0. In each case,
there is only one wave mode associated with the prescribed
wave number qc corresponding to the critical point, and it is
a ZGVmode. As such, the wave packet does not propagate.
However, the wave packet can still spread out or diffuse
in space, i.e., while maintaining the same mean x0, the
envelope width σðtÞ changes, and its evolution over time is
governed by [76]

σðtÞ ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðtω00=σ20Þ2

q
: ð8Þ

Numerically, we can determine the diffusion rate of the
wave packet by tracking σðtÞ in time-domain simulations
on finite chains. Figures 4(a)–4(c) show the comparison of
wave packet diffusion for the three critical points: local
maximum (maxonlike), local minimum (rotonlike), and the
undulation point (second order), respectively. In each case,
the initial (t ¼ 0) wave envelope is represented by a black
solid line. After evolving for sufficient time (t ¼ tFinal)
the resulting wave envelope is shown as a blue dotted
line. Figures 4(d)–4(f) show, for each of the cases in
Figs. 4(a)–4(c), respectively, the evolution of the packet
width, σðtÞ, at several time instances. Broadening of the
envelope is observed for both maxon and roton packets,
where ω0 ¼ 0 but ω00 ≠ 0. In contrast, the wave envelope
preserves its initial shape without diffusion in the case of
the undulation point, where ω00 ¼ ω0 ¼ 0. Lastly, we also

establish the customization protocol for the double-band
system of a one-dimensional “diatomic” nonlocal phononic
chain consisting of two different masses m1 and m2. This
model leads to the following dispersion relations:

ω2
� ¼ K0

�
1

m1

þ 1

m2

�

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0

�
1

m1

þ 1

m2

�
2

þ 1

m1m2

ðK2
1 − 4K2

0Þ
s

; ð9Þ

where − and þ in the ∓ sign denote the first and second
bands (historically referred to as “acoustic” and “optical”
branches), respectively. Here, K0 and K1 are

K0ðqÞ ¼
XN
n¼1

kn −
XN
n¼2
n even

kn cosðnqaÞ;

K1ðqÞ ¼ 2
XN
n¼1
n odd

kn cos ðnqaÞ; ð10Þ

which are defined on the non-negative half of the first
Brillouin zone, q∈ ½0; π=ð2aÞ�. Given two arbitrarily speci-
fied smooth curves as the targets, Ω−ðqÞ and ΩþðqÞ,
satisfying all fundamental and symmetry requirements
detailed in the Supplemental Material [63], we can design
a nonlocal chain using the following protocol. First, we
calculate

α ¼ m2=m1 ¼ Ω2þ

�
π

2a

�
=Ω2

−

�
π

2a

�
;

AðqÞ ¼ ½Ω2þðqÞ þΩ2
−ðqÞ�=2;

DðqÞ ¼ ½Ω2þðqÞ −Ω2
−ðqÞ�=2: ð11Þ

Then, we can get

K0ðqÞ ¼ αAðqÞ=ðαþ 1Þ;
K2

1ðqÞ ¼ 4K2
0ðqÞ − αA2ðqÞ þ αD2ðqÞ: ð12Þ

Lastly, we obtain the stiffness values as

kn ¼
2a
π

Z π
2a

0

K1 cosðnaqÞdq; n ¼ 1; 3; 5;…

kn ¼ −
4a
π

Z π
2a

0

K0 cosðnaqÞdq; n ¼ 2; 4; 6;… ð13Þ

We note that the above protocol is capable of customizing
each individual band without affecting the other since it can
work for two independently defined targets, Ω−ðqÞ and
ΩþðqÞ. Figures 5(a)–5(d) show the results of this protocol
by setting m1 ¼ 1. The target curves are purposefully
chosen with various features: Fig. 5(a) demonstrates a
rising first band with a flat second band; Fig. 5(b) shows

FIG. 4. Diffusion at the critical points. Evolution of an initially
prescribed Gaussian packet with different carrier wave number q
(i.e., different carrier wavelength) corresponding to the critical
points in Fig. 3(b): (a) maxon mode with qa=π ¼ 0.656, (b) roton
mode with qa=π ¼ 0.344, (c) undulation mode with qa=π ¼ 0.5.
The Gaussian envelope at time tFinal (blue dotted curve) is
compared to the initial envelope at t0 (black solid curve).
(d)–(f) Theoretical and numerical values of σðtÞ vs t for each
of the cases in (a)–(c), respectively, showing the spreading of
wave envelopes.
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two bands with changing but always opposite convexity;
Fig. 5(c) has a constant-curvature first band and an arched
second band; and Fig. 5(d) has both bands monotonically
increasing. These examples show that both localized and
traveling wave modes can be designed at any arbitrarily
desirable frequency and wavelength by our protocol on
either band. In the implementation, we set the total number
of stiffness types as N ¼ 20 for Fig. 5. We also examine
NRMSD values between the target and actual dispersion
curves. The results show that, in most cases, a good match
can be achieved with just a small number of nonlocal
springs. Furthermore, we also demonstrate the protocol’s
capability of realizing linear (Dirac-cone-like) and quad-
ratic band crossings in Figs. 5(e) and 5(f), respectively.
Detailed information and additional examples are presented
in the Supplemental Material [63].
In conclusion, we can completely and analytically

customize the dispersion relations in phononic crystals
by incorporating nonlocal springs. We show dispersion
curves with multiple critical points of the first (maxon and
roton) and second order (undulation). We further study the
wave packet dynamics at each of the critical points and
illustrate how we can use them to create novel behaviors of
localized modes. This enables future research on higher-
order critical points of elastic waves in terms of topology,
scaling, and symmetry [77,78] in 2D and 3D systems.
Finally, we can also solve the inverse problem for arbitrary
two-band dispersion relations.

For practical considerations, physical samples of pho-
nonic metamaterials with a small number of nonlocal
springs can be fabricated in relatively simple designs
[38,41,79]. In fact, one-dimensional chains with any
number of nonlocal connections are, at least in principle,
feasible by the following reasoning: There are infinitely
many planes that contain the line of masses. Hence, each
nonlocal interaction can exist in a separate plane without
interfering with others, similar to the design illustrations
shown in Figs. 1(a) and 3(a), and in more detail in the
Supplemental Material [63]. During the review process, we
became aware of recent experimental efforts demonstrating
nonlocal effects [80–83]. They provide further evidence
supporting feasibility in design and fabrication. We are
confident that future research efforts will enable more
sophisticated experimental setups with many more non-
local interactions in 2D and 3D phononic crystals and
vibroelastic metamaterials.
At the continuum limit of the lattice constant a → 0,

wave mechanics in nonlocal continuum media can be
described by higher-order strain-gradient models [84–86]
as well as peridynamics [87,88]. In contrast to those
popular phenomenological and semiphenomenological
approaches, our method has the advantage of prescribing
system parameters to achieve desirable dynamic behaviors.
Homogenizing our design methodology could potentially
provide a route to design the micromodulus elasticity
kernel for target dispersion relations in continuum vibroe-
lastic metamaterials.
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