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We put forward a novel method for producing ultrarelativistic high-density high-polarization positrons
through a single-shot interaction of a strong laser with a tilted solid foil. In our method, the driving laser
ionizes the target, and the emitted electrons are accelerated and subsequently generate abundant γ photons
via the nonlinear Compton scattering, dominated by the laser. These γ photons then generate polarized
positrons via the nonlinear Breit-Wheeler process, dominated by a strong self-generated quasistatic
magnetic fieldBS. We find that placing the foil at an appropriate angle can result in a directional orientation
of BS, thereby polarizing positrons. Manipulating the laser polarization direction can control the angle
between the γ photon polarization and BS, significantly enhancing the positron polarization degree. Our
spin-resolved quantum electrodynamics particle-in-cell simulations demonstrate that employing a laser
with a peak intensity of about 1023 W=cm2 can obtain dense (≳1018 cm−3) polarized positrons with an
average polarization degree of about 70% and a yield of above 0.1 nC per shot. Moreover, our method is
feasible using currently available or upcoming laser facilities and robust with respect to the laser and target
parameters. Such high-density high-polarization positrons hold great significance in laboratory astro-
physics, high-energy physics, and new physics beyond the standard model.
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Ultrarelativistic spin-polarized positrons find wide use in
laboratory astrophysics, high-energy physics, and new
physics beyond the standardmodel [1–6], such as simulating
extreme cosmic environments in laboratories [5,7,8], pre-
ciselymeasuring the effectiveweakmixing angle [9,10], and
searching for supersymmetry particles and gravitons [11–
14]. These applications usually demand high density and
high polarization of positrons. For example, relevant experi-
ments in the International Linear Collider (ILC) [15], the
Circular Electron Positron Collider [16], and the Jefferson
Lab Electron Ion Collider [17] require dense (∼ nano-
coulombs per shot) highly polarized (30% ∼ 60%) posi-
trons. There are mainly two methods used in experiments to
obtain ultrarelativistic polarized positrons. One is sponta-
neous polarization of positrons via the Sokolov-Ternov
effect in storage rings, but it typically takes several
minutes to hours due to the relatively weak magnetic field
(∼Tesla) [18]. Another is the Bethe-Heitler (BH) electron-
positron pair production [19] in the interaction of circularly
polarized γ photons with high-Z targets [20–22], but the
average polarization degree of positrons is only 30% ∼ 40%

and the positron yield is limited to 10−6 nC per shot due to
the low luminosity of γ photon beams [23,24].
The rapid development of modern ultraintense ultrashort

laser facilities, with a record intensity of above 1023 W=cm2

[25–28], has led to the proposals of generating polarized
positrons through laser-electron beam collisions in the
strong-field quantum electrodynamics (QED) regime [29–
41]. This collision scheme mainly involves emitting γ
photons via the nonlinear Compton scattering (NCS) and
producing positrons via the nonlinear Breit-Wheeler (NBW)
process in the laser field [42–48]. Positrons with a polari-
zation degree of 30% ∼ 40% can be obtained by colliding an
unpolarized GeV electron beam with an asymmetric laser
pulse, such as an elliptically polarized [37] or bichromatic
laser pulse [38].However, the positron polarization degree is
typically limited, since the parent photon polarizationPγ and
the magnetic field B0 in the positron rest frame are always
nearly perpendicular (i.e.,Pγ⊥B0). Positron polarization and
yield are significantly influenced by the angleΘ betweenPγ

and B0, reaching a maximum when PγkB0 and minimum
when Pγ⊥B0 [39,40,49–52]. Alternatively, positrons with a
polarization degree of 40% ∼ 65% can be obtained by a fully
longitudinally polarized GeVelectron beam colliding with a
circularly polarized laser pulse [41], but its applicability is
limited by the flux and polarization of electron beams [53].
In the above laser-electron beam collision scheme, to
achieve high density of positrons, denseGeVelectron beams
are envisioned to be obtained via plasma wakefield
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acceleration [54–57], typically resulting in a yield of
10−4 nC per shot and a maximum density of ∼1014 cm−3

[38]. Moreover, achieving precise spatiotemporal synchro-
nization between the laser and electron beams is also
challenging.
By comparison, laser irradiation on solid targets can

avoid the spatiotemporal synchronization issue and is
predicted to produce dense positrons in the strong-field
QED regime [58–68]. For instance, a 10 PW laser irradiat-
ing an aluminum foil can achieve a maximum positron
density of ∼1020 cm−3 [58]. Meanwhile, polarized posi-
trons can be generated by a laser with a peak intensity
exceeding 1024 W=cm2 normally irradiating a foil target
[69]. In this method, positrons are polarized by an asym-
metrical laser field in the skin layer of overdense plasma.
However, the polarization degree is limited to about 30%
due to the intrinsic geometric relationship Pγ⊥B0, similar to
Refs. [37,38]. Therefore, it is still a great challenge to
obtain dense polarized positrons with a high-polarization
degree (≳60%).
In this Letter, we investigate the generation of ultra-

relativistic high-density high-polarization positrons via
single-shot laser-foil interaction in the strong-field QED
regime; see Fig. 1(a). The driving laser ionizes the target
and directly accelerates the emitted electrons [70–78], and
these electrons then emit abundant γ photons via the NCS,
which is dominated by the laser field. The emitted γ
photons subsequently generate polarized positrons via
the NBW process, which is dominated by a strong self-
generated quasistatic magnetic field BS. We find that
placing the foil at an appropriate angle can result in a
directional orientation of BS due to the electric currents
along the foil surface [see Fig. 1(b)], thereby polarizing
positrons. Manipulating the laser polarization direction can
control the polarization of intermediate γ photons Pγ [see
Fig. 1(c)], thereby controlling the angle Θ between Pγ and
BS and significantly enhancing the polarization degree of
positrons [see Fig. 1(d)]. Under the influence of BS, most
positrons move through the target, while newborn electrons
propagate along the front surface of the target, ultimately
mixing with unpolarized target electrons. Our three-
dimensional spin-resolved QED particle-in-cell (PIC) sim-
ulations show that using a laser with a peak intensity of
about 1023 W=cm2 can obtain dense (≳1018 cm−3) trans-
versely polarized positrons with an average polarization
degree of about 70% and a yield of above 0.1 nC per shot;
see Fig. 2. Our method is feasible using currently available
or upcoming laser facilities, as it avoids the need for exact
spatiotemporal synchronization. Moreover, our method is
robust with respect to the laser and target parameters; see
the Appendix.
We utilize a Monte Carlo algorithm [37,39,79] in PIC

code to investigate spin-resolved QED phenomena in laser-
solid interactions. Two primary QED processes, NCS
and NBW, are implemented in the local constant field

approximation [30,31,34], which is valid for the
invariant field parameter a0 ≡ jejE0=mcω0 ≫ 1. These
processes are characterized by two nonlinear QED

parameters χe ≡ ðjejℏ=m3c4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

q
and χγ≡

ðjejℏ=m3c4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνkνÞ2

q
[30,31], respectively. Here e and

m are electron charge and mass, respectively, E0 and ω0 are
laser field amplitude and frequency, respectively, c is the
light speed in vacuum, ℏ is the reduced Planck constant, kν

and pν are the 4-momenta of γ photon and electron
(positron), respectively, and Fμν is the field tensor.
Typical results are shown in Fig. 2. The simulation

box has dimensions of x × y × z ¼ 40 μm × 40 μm×
30 μm, with the corresponding cells of 1000 × 1000 × 750.
A linearly polarized laser pulse propagates along þx̂,
with a polarization angle ϕL ¼ 45° [see Fig. 1(a)],
wavelength λ0 ¼ 1 μm, and an envelope a ¼
a0 expð−r2=w2

0Þ exp½−ðt − t0Þ2=τ2�. Here a0 ¼ 500 [a
smaller a0 also works; see Fig. 4(c) in the Appendix] with
a corresponding peak intensity of 3.4 × 1023 W=cm2,
which can be achieved in upcoming 10 or 100 PW laser
facilities [26,80–86], r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
, w0 ¼ 5λ0 is the focal
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FIG. 1. (a) Interaction scenario. The laser propagates along þx̂
and is polarized along PL, with the laser polarization angle ϕL
between PL and þŷ; the foil has a tilt angle θT with respect to the
x̂-ẑ plane. (b) Direct laser acceleration (DLA). The brown, red,
and blue arrows represent the directional quasistatic magnetic
field BS, the surface electric current Jf , and the return current Jr,
respectively; Jf and Jf are both parallel to the front surface of the
target;BS is oriented alongþẑ; the green-dotted line indicates the
trajectory of the surface fast electrons; the heat maps in the top
left and bottom right represent the incident laser field and the
currents, respectively. (c) NCS process. The red and purple
arrows represent the polarization of the laser and γ photons,
respectively; kγ is the γ photon wave vector; the heat map
represents the reflected laser field, which propagates from left to
right. (d) NBW process. The blue and green arrows represent the
polarization directions of positrons and electrons, respectively,
and the blue- and green-dotted lines represent their respective
trajectories; the approximation of the magnetic field B0 in the
positron rest frame being equal to BS is employed; the heat map
represents BS.
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radius, τ ¼ 6T0 is the pulse duration with a corresponding
full width at half maximum (FWHM) τ0 ≈ 10T0, T0 is the
laser period, and t0 ¼ 12T0 is the time delay. (t0 is used to
shift the laser pulse out of the simulation box at time t ¼ 0.)
A carbon foil with electron density ne ¼ 550nc, length
LT ¼ 30 μm, and thickness dT ¼ 2 μm is placed in the box
center at a tilt angle θT ¼ 30°, where nc ¼ mω2

0=ð4πe2Þ ≈
1.1 × 1021 cm−3 is the plasma critical density. Note that
low-Z target materials are required to effectively suppress
the BH process [19]. Accounting for pulse leading edge or
a prepulse [87], a preplasma with density npre ¼ ne
expð−L=LpreÞ is used. Here L is the distance between
preplasma particles and the front surface of the target, and
Lpre ¼ 0.5 μm is the preplasma scale length. The numbers
of macroparticles in each cell are 30 for electrons and 15 for
fully ionized C6þ.
The yield of positrons generated via the NBW process is

roughly 8.0 × 108 (∼0.13 nC), which is about 2 orders of

magnitude larger than that of the BH process (∼1.7 × 106)
(see Supplemental Material [88]), and thus the contri-
bution of the BH process is negligible. Most positrons
(7.5 × 108 eþ ∼ 0.12 nC) travel downward the target [see
edownþ in Fig. 2(c)], with an average polarization degree of
67.3%, while a small amount propagate upward in the front
of the target [see eupþ in Fig. 2(c)], with a slight polarization
degree (∼5.0%); see Figs. 2(a) and 2(b). Their distinct
polarization properties arise from their different birth
regions; see the reasons in Fig. 3. As shown in Fig. 2(c),
themaximumpositron density is above 10−3nc≈1018 cm−3,
which is 4 orders of magnitude higher than these typi-
cally achieved in laser-electron beam collision schemes
[37,38,41]. At the peak angle of ϕ ¼ 176°, the positron
polarization degree remains above 70% for 0° < θ < 100°;
see Fig. 2(d). Similar phenomena are observed at ϕ ¼ 200°.
The high polarization of positrons over a wide range of
angles can be beneficial for detection.
Considering the capture and transfer of positrons for

subsequent applications, we will focus on positrons within
the peak cone angle α ¼ ð25° < θ < 27°; 175° < ϕ177°Þ;
see Fig. 2(b). These positrons have an average polarization
degree of about 72.3%. Their polarization degree Sþ
decreases from 88.1% to 62.6% within the FWHM energy
range of 225MeV < εþ < 416 MeV, and Sþ ≈ 79.4% at
the energy peak of εþ ≈ 300 MeV; see Fig. 2(e). These
positrons have a yield of 1×106 (∼0.2 pC), a flux of about
2×109 sr−1, and an angle divergence of 35×35mrad2, with
transverse and longitudinal sizes of 3 × 1.5μm2 and 2 μm(at
t ¼ 50T0), respectively; see the comparisons with alterna-
tive sources in theAppendix. In principle, these positrons are
suitable for injection into subsequent acceleration, such as
radio-frequency accelerator and plasma wakefield acceler-
ation [89–91], owing to their sufficient charge and low
divergence. Particularly, the small spatial size is desirable for
injecting positrons in plasma wakefield acceleration due to
the limited acceleration range of a few microns [90,91].
The brilliances are 0.65 × 1019, 0.55 × 1020, 0.42 × 1020,
and 0.17 × 1020 eþ=ðsmm2 mrad2 × 0.1% bandwidth) for
εþ ¼ 200, 300, 400, and 500 MeV, respectively. As shown
in Fig. 2(f), positrons are mainly produced during laser
irradiation (27T0 < t < 37T0), and their yield and polari-
zation tend to stabilize after the laser departs. Moreover, the
radiative polarization effects can enhance the polarization of
the low-energy positrons as they pass through the directional
magnetic field BS; see the results of artificially neglecting
the radiative polarization effects in Fig. 2(e) and the
corresponding reasons in Fig. 3(e). Additionally, the new-
born electrons exhibit a high initial polarization, which
gradually diminishes to a polarization degree of approx-
imately 10% due to the depolarization effects derived from
the spin precession and the radiation during their propaga-
tion along the target surface [88,92].
The mechanisms for the production and polarization of

positrons are shown in Fig. 3. Upon laser irradiation,

FIG. 2. (a) Angle-resolved positron polarization Sþ and (b) dis-
tribution log10ðdNþ=dΩÞwith respect to the polar angle θ and the
azimuth angle ϕ, respectively. Here dΩ ¼ sin θdθdϕ, θ ¼ 0° in
þx̂, and ϕ ¼ 0° in þŷ. (c) Positron density log10ðnþ=ncÞ. The
gray box represents the initial position of the foil; edownþ represents
positrons propagating downward through the target, while eupþ
represents positrons propagating upward along the target surface.
(d) Positron angle distribution dNþ=dθ and polarization Sþ vs θ
at ϕ1 ¼ 176° (solid lines) and ϕ2 ¼ 200° (dotted lines). Here we
collect positrons within a range of Δϕ ¼ 1°. (e) Energy-resolved
positron density dNþ=dεþ and polarization Sþ vs positron energy
εþ at α. The gray-dotted lines indicate the FWHM of positron
energy; the red-dotted line represents the results of neglecting
the radiative polarization effects of positrons. All above results
are at simulation time t ¼ 50T0. (f) Positron yield log10 Nþ
and polarization Sþ vs t at α. tf ¼ 37T0 is the time of laser
departure.
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electrons are accelerated through J ×B heating [93,94] to
form a fast electron current Jf parallel to the front surface of
the target; and a return current Jr of cold electrons also
appears inside the target to maintain charge balance, with a
direction opposite to Jf [75,76,95]; see Fig. 1(b). Therefore,
a quasistatic magnetic field BS is generated and oriented
along þẑ, with a peak strength BS

max≈250B0≈2.5×106 T,
which is of the same order of magnitude as the magnetic
field of the laser; see Fig. 3(a). Here B0 ¼ mω0=jej≈
1 × 104 T. The high-density electron layer on the front

surface of the target can divide the space into an outer
region and an inner region; see Fig. 3(c). In the inner
region, the laser field rapidly decays within the skin depth
andBS dominates the pair creation. When considering only
BS, one has χγ ∼ 0.36, resulting in abundant positron
production. Here BS ∼ ð0; 0; BS

z Þ ≈ ð0; 0; 200B0Þ, k̂γ along
ðθ;ϕÞ ¼ ð25°; 26°Þ, and εγ ¼ 400 MeV are employed (see
Supplemental Material [88]). In contrast, in the outer
region, the laser field is much stronger than BS, and the
angle θ0 between the wave vectors of the laser and γ
photons is small. Therefore, χγ ∝ a0ð1 − cos θ0Þ is typi-
cally small, leading to fewer pair creations than that of the
inner region. Our simulations also support the difference in
positron yields between the two regions, indicating that
positron production mainly occurs for γ photons that
incident at a small angle with respect to the front surface
of the target; see Fig. 3(b).
In addition to dominating the positron production, Bs

also leads to the positron polarization. The average positron
polarization S̄þ can be written as [39]

S̄þ ¼
−
�
εγ
εþ
− ξ3

εγ
ε−

�
K1

3
ðρÞb̂þ þ ξ1

εγ
ε−
K1

3
ðρÞâþ

IntK1
3
ðρÞþ ε2þþε2−

εþε−
K2

3
ðρÞ− ξ3K2

3
ðρÞ

; ð1Þ

where ε− ¼ εγ − εþ is the energy of newborn electrons,
ρ ¼ 2ε2γ=ð3χγε−εþÞ, IntK1

3
ðρÞ≡ R∞

ρ dzK1
3
ðzÞ, Kn is the n-

order modified Bessel function of the second kind, b̂þ ¼
v̂þ × âþ=jv̂þ × âþj ≈ −B0=jB0j with B0 ≈ εþ½B − v̂þ ×
E-v̂þðv̂þ ·BÞ�, v̂þ and âþ are the unit vectors along
positron velocity and acceleration, respectively, and E
and B are the electric and magnetic fields, respectively.
The photon polarization is characterized by the Stokes
parameters ðξ1; ξ2; ξ3Þ ≈ ðsin 2Θ; 0;− cos 2ΘÞ [96] defined
with respect to the axes ê1 ≡ ½E − k̂γðk̂γ ·EÞ þ k̂γ ×
B�=jE − k̂γðk̂γ ·EÞ þ k̂γ ×Bj and ê2 ≡ k̂γ × ê1kB0,
k̂γ ¼ kγ=jkγj, and v̂þ ≈ k̂γ is employed (the emission
angle ∼mc2=εγ ≪ 1 [19]). As shown in Fig. 3(e), S̄þ
always tends to align along −b̂þ, except in the vicinity of
Θ ¼ 90°, where the reversal of S̄þ around εþ=εγ ¼ 0.5
results in a low average polarization degree. In the outer
region, the temporal symmetry of the laser leads to roughly
equal positron yields in each half cycle of the laser, but the
positron polarization direction reverses with the reversal of
the laser magnetic field direction, resulting in zero net
polarization. In contrast, in the inner region, the direction-
ality of B0 ∼ Bs can lead to net polarization. Furthermore,
due to the Lorentz force exerted by BS, the positrons
generated in the inner region mainly move through the
target, i.e., the downward positrons edownþ ; see the blue lines
with arrows in Fig. 3(f). Meanwhile, dominated by the laser
field, the positrons produced in the outer region mainly
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FIG. 3. (a) BS=B0 and projection of electron density log10ðn0eÞ
in the x̂-ŷ plane. The red bidirectional arrow represents the
laser polarization direction. (b) Angle distribution of γ photons
log10ðdNγ=dΩÞ with respect to θ and ϕ. Positron production
mainly occurs within the black circle region (10° < θ < 30°,
0° < ϕ < 60°) [88]. (c) Projection of photon density log10ðn0γÞ for
photon energy εγ > 300 MeV in the x̂-ŷ plane. The green-dashed
line represents the front surface of the target; the black and purple
lines represent the contour lines of the average nonlinear QED
parameter χ̄γ ¼ 0.35 and χ̄γ ¼ 0.15, respectively. (d) Polariza-
tion-resolved distribution of γ photons dNγ=dΘ vs Θ. B0 ≈
εþ½BS-v̂þðv̂þ ·BSÞ� and BSk þ ẑ are employed; the γ photons
originate from the peak cone angles (19° < θ < 21°,
−1° < ϕ < 1°) and (24° < θ < 26°, 25° < ϕ < 27°) for the cases
of ϕL ¼ 0° (red dotted) and ϕL ¼ 45° (blue solid), respectively.
(e) jS̄þj with respect to Θ and εþ=εγ . The black arrows represent
S̄þ; the red line indicates the pair creation probability
dW=dðεþ=εγÞ for Θ¼ 90°, normalized by its maximum; χγ ¼ 0.4
is employed. (f) Projection of BS

z =B0 in the x̂-ŷ plane. The blue,
green, and gray lines with arrows represent trajectories of the
downward positrons edownþ , the newborn electrons, and the
upward positrons eupþ , respectively; l0 is the spatial dimension
of BS. All of the above simulation results are at t ¼ 35T0.
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propagate in the front of the target, i.e., the upward
positrons eupþ ; see the gray lines with arrows in Fig. 3(f).
As previously discussed, the average polarization degree

of positrons S̄þ is low when Θ ¼ 90°, whereas a high S̄þ
can be obtained when Θ ¼ 45°; see Fig. 3(e). Note that Θ
can be manipulated by the laser polarization angle ϕL. For
most γ photons, ϕL þ Θ ≈ 90°. As shown in Fig. 3(d), for
the cases of ϕL ¼ 0° (p-polarized laser incident) and
ϕL ¼ 45°, the γ photons are mainly distributed around Θ ¼
90° and 45°, respectively, leading to S̄þ ≈ 37% and 70%,
respectively [88]. However, as ϕL further increases, the
polarization degree of γ photons will decrease and the
manipulation of Θ will be weaker.
Furthermore, as positrons pass through the directional

magnetic field BS, the polarization effects of radiation
cause positron spins to align preferentially with BS. For
positrons with εþ=εγ < 0.5, S̄þ at the positron creation
moment is almost along −b̂þ ∼ BS [see Fig. 3(e)], leading
to an increase in polarization upon radiation. On the
contrary, for positrons with εþ=εγ > 0.5, S̄þ at the positron
creation moment may not align with BS (such as Θ ¼ 90°
and 45°, where S̄þ points toward b̂þ ∼ −BS and þâ,
respectively), leading to a decrease in polarization upon
radiation. As a result, the average polarization degree S̄þ
increases from 65.8% to 67.3%. Additionally, the depo-
larization caused by the spin precession of the downward
positrons is relatively weak due to their rapid escape from
the strong laser field under the influence of BS [88]. The γ
photon attenuation (such as incoherent scatter, BH process,
etc.) and the positron annihilation and collisions with other
particles (such as Bhabha scattering, positron-nucleus
scattering, etc.) during their propagation are estimated to
be negligible [31,88,97].
For experimental feasibility, the impact of laser and

target parameters on the yield Nþ and average polarization
degree S̄þ of the downward positrons edownþ has been
investigated in the Appendix, which shows that our method
is robust with respect to the foil tilt angle θT, the laser
polarization angle ϕL, the laser peak intensity a0, and the
preplasma scale length Lpre. Moreover, the target configu-
ration can also influence Nþ and S̄þ. For example, using a
conical target with the same laser pulse can remarkably
increase the positron yield up to above 10 nC, but at the cost
of reducing positron polarization [88]. Additionally, the
experimental implementation of a submicron preplasma
usually requires a temporal contrast of about 10−13 ∼ 10−14

for ultraintense lasers with a peak intensity of about
1023 W=cm2 [88,98], which would be generated in the
near future via the utilization of plasma mirrors [99,100],
plasma shutters [101], frequency conversion [102], etc.
In conclusion, we put forward a novel method for

generating ultrarelativistic high-density high-polarization
positrons in the single-shot laser-foil interaction, simply by
manipulating the laser polarization and the foil placement

to generate a proper positron polarization field. The
positrons generated by our method may be widely used
in laboratory astrophysics, high-energy physics, and new
physics beyond the standard model, such as probing the
spin-parity properties of hadrons [103] and providing an
alternative polarized positron source for polarized electron-
positron colliders.
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Appendix: The experimental feasibility and positron
qualities.—For experimental feasibility, the impact of laser
and target parameters on the yield Nþ and average
polarization degree S̄þ of the downward positrons edownþ
has been investigated in Fig. 4. The target tilt angle θT
can affect the acceleration efficiency and angular
distribution of fast electrons [76,95] and also affect the
direction and magnitude of the quasistatic magnetic field
BS [70], thereby further influencing Nþ and S̄þ. If θT is
too small, the energy coupling efficiency between the
laser and the target will be low, resulting in a weak
quasistatic magnetic field BS [74]. Consequently, both the
polarization degree S̄þ and yield Nþ of positrons will be
low; see Fig. 4(a). On the other hand, if θT is too large,
the propagation of fast electron current Jf will gradually
change from propagating along the front surface of the
target to propagating into the target bulk, resulting in
oscillations of BS along ẑ and a reduction in its
magnitude; see the magnitude and direction of BS at
θT ¼ 70° in the Supplemental Material [88]. Meanwhile,
the propagation directions of the reflected laser and γ
photons change approximately from parallel to anti-
parallel, leading to the dominance of the reflected laser in
pair production. Because of the symmetry of the laser
field, the positrons generated in the laser field are almost
unpolarized. Thus, a too large θT will lead to a low
S̄þ. Our simulations show that, for the given parameters,
a high-polarization degree can be achieved when
20°≲ θT ≲ 30°. Additionally, when θT increases slightly,
BS dominates the positron creation and Nþ ∝ χγ ∝ BS

increases, while when θT increases largely, the reflected
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laser dominates and Nþ ∝ χγ ∝ 1 − cos θ0 ≈ 1 − cosð2θTÞ
increases. Consequently, as θT increases, Nþ increases.
Figure 4(b) shows the impact of the laser polarization

angle ϕL on Nþ and S̄þ. As ϕL increases, the coupling
efficiency between the laser and the target decreases,
leading to a decrease in the magnitude of BS [70,73].
Consequently, Nþ ∝ χγ ∝ BS decreases. Moreover, as ϕL

increases, the direction of γ photons Pγ gradually changes,
leading to a reduction in the angle Θ between Pγ and BS

from 90°; see Fig. 3(d). As a result of this manipulation, S̄þ
first increases. However, as ϕL further increases, the
polarization degree of γ photons will decrease, resulting
in a weakened manipulation of Θ, and thus S̄þ decreases.
Precise experimental control of θT and ϕL can be achieved
by adjusting the foil placement via a two-dimensional
motor.
Figure 4(c) shows the impact of the laser peak intensity

a0 on Nþ and S̄þ. In the strong-field QED regime, as the
laser peak intensity a0 increases, the surface electric current
Jf also increases, resulting in strengthening BS. Thus,
Nþ ∝ χγ ∝ BS increases. Nevertheless, an excessively
strong laser will severely damage the target [104], leading
to a decrease in S̄þ due to the arrival of some upward
positrons eupþ at the back of the target.
Figure 4(d) shows the impact of the preplasma scale

length Lpre on Nþ and S̄þ. Increasing the preplasma scale
length Lpre can amplify the surface electric current Jf ,
leading to an increase in the magnitude of BS, thereby
enhancing Nþ and S̄þ. However, when Lpre increases
largely, especially when Lpre > 0.5 μm for the given
parameters, the resonance absorption will gradually domi-
nate the electron acceleration [74,75], resulting in the
emergence of a strong current perpendicular to the target
surface. Consequently, the directionality of BS deteriorates
[76,105], leading to a decrease in S̄þ. Meanwhile, the
spatial size of BS, i.e., l0 [see Fig. 3(f)], will increase,

leading to electron energy εe ∝ l20 increases [74,106], and
thus Nþ ∝ χγ ∝ εγ ∝ εe increases.
Additionally, to facilitate a comparison with alternative

sources of positrons driven by ultraintense lasers, we
present a more comprehensive description on the qualities
of positrons generated through our method. For subsequent
applications, positrons within the peak cone angle αwill be
taken into account; see the selection of α in Fig. 2(b). As
shown in Fig. 2(e), these positrons have an average
polarization degree greater than 70%, meeting the require-
ments for positron polarization in relevant experiments,
such as ILC, which acquires an average polarization degree
of ∼60% [6]. In contrast, positrons generated through the
BH methods [20–22] and laser-electron beam collision
methods [37–41] typically have a polarization degree of
30% ∼ 40%. In addition, the peak flux of the positrons
within α is about 1.5 × 1020 eþ=s, which is higher than the
typical peak flux of about 1017 ∼ 1019 eþ=s generated by
the laser-electron beam collision methods [37,38,41]
and significantly higher than the typical peak flux of
1015 ∼ 1016 eþ=s produced by the BH methods [20–22].
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