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We study the thermodynamic behavior of attractive binary Bose mixtures using exact path-integral
Monte Carlo methods. Our focus is on the regime of interspecies interactions where the ground state is in a
self-bound liquid phase, stabilized by beyond mean-field effects. We calculate the isothermal curves in
the pressure vs density plane for different values of the attraction strength and establish the extent of the
coexistence region between liquid and vapor using the Maxwell construction. Notably, within the
coexistence region, Bose-Einstein condensation occurs in a discontinuous way as the density jumps from
the normal gas to the superfluid liquid phase. Furthermore, we determine the critical point where the line of
first-order transition ends and investigate the behavior of the density discontinuity in its vicinity. We also
point out that the density discontinuity at the transition could be observed in experiments of mixtures
in traps.
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Ultracold atomic samples of Bose particles with attrac-
tive interactions typically exhibit instability and collapse of
the gaslike phase [1]. However, recent developments in the
fields of dipolar systems and quantum mixtures have
revealed that attractive interactions can also lead to the
formation of an exotic liquidlike phase, in which self-
bound droplets maintain their shape even without external
confinement. The density in these quantum droplets satu-
rates at values 7 orders of magnitude lower than water or
liquid helium, but 1 order of magnitude higher than typical
Bose condensates. In the case of dipolar gases, the
characteristic attractive anisotropic interaction is balanced
by short-range, spherically symmetric repulsive forces
leading to the formation of elongated droplets that are
stable above a critical number of atoms [2,3]. Notably,
beyond mean-field effects contributing to repulsive inter-
actions are crucial to explain the stabilizing mechanism of
these droplets [3]. A similar mechanism is responsible for
the formation of quantum droplets in binary Bose mixtures
featuring repulsive intraspecies and attractive interspecies
couplings [4–6]. The physical picture, in this case, involves
an overall mean-field attraction balanced by a beyond
mean-field repulsion. This combination leads to a mini-
mum of the ground-state energy corresponding to the
equilibrium density of the liquid state [7]. This is the
central density of the droplet, reached if the number of
particles exceeds a critical value and remaining constant if
more particles are added to the droplet. The observed
droplet size and critical atom number agree reasonably well
with the ground-state scenario described in Ref. [7].

The stabilizing mechanism produced by beyond mean-
field effects in quantum droplets at T ¼ 0 has been also
confirmed by more microscopic calculations based on the
quantum Monte Carlo method both for dipolar [8,9] and
short-range interactions [10–12], including in this latter
case low-dimensional systems [13–15]. Additionally, the
persistence of droplet states in trapped configurations at
finite temperature has been verified through numerical
simulations using the path-integral Monte Carlo (PIMC)
technique [16]. It has also been found that liquid droplets in
vacuum are unstable against thermal fluctuations [17–19].
Furthermore, these works point out the difficulty of deve-
loping a finite-temperature theory of this liquid state
following the standard Bogoliubov scheme. Specifically,
density wave excitations become complex and cannot be
used to build a proper thermodynamic description [20].
Because of the challenges in developing a proper theoreti-
cal framework for this exotic liquid state of matter, its
intriguing aspects, such as the liquid-vapor coexistence line
characterizing the first-order phase transition and the
critical point where the line terminates and the transition
is continuous, have remained largely unexplored.
In this Letter, we study the thermodynamic behavior of

binary attractive Bose mixtures using exact PIMC methods
and we map out the phase diagram in the temperature-
density as well as temperature-pressure plane. We deter-
mine the region where gas and liquid states coexist in
equilibrium and we characterize the corresponding critical
point in terms of critical temperature, pressure, and density
[21]. We find that the qualitative behavior of isothermal
curves in the coexistence region of densities shares many
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analogies with the liquid-gas transition in classical fluids.
Remarkably, in our quantum degenerate mixture, this first-
order transition links the normal gaseous phase and the
superfluid liquid phase across the Bose-Einstein conden-
sation of the two components. Both the discontinuous
density jump at the transition and the sudden appearance of
a finite condensate density could be observed in experi-
ments with trapped mixtures.
We consider a mixture of N ¼ N1 þ N2 particles be-

longing to two distinguishable Bose components with
equal mass m described by the Hamiltonian H, where
particle coordinates ri and ri0 refer to the first and second
component:

H ¼ −
ℏ2

2m

XN1

i¼1

∇2
i −
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XN2
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Particles interact via the interspecies potential v12ðrÞ and
equal repulsive intraspecies potentials vðrÞ. For the first
we use a zero-range pseudopotential featuring a negative
s-wave scattering length a12, while for the latter hard-
sphere interactions are implemented: vðrÞ ¼ þ∞ if r < a
and zero otherwise. Furthermore, the two populations are
balanced: N1 ¼ N2 ¼ N=2 and calculations are performed
at fixed overall density n ¼ N=V in a cubic box of volume
V with periodic boundary conditions. We use the imple-
mentation of the PIMC algorithm detailed in [24], which is
particularly well suited for dealing with systems subject to
periodic boundary conditions, further extended to the case
of attractive mixtures [25]. Calculations are performed at
fixed temperature T and for varying densities expressed in
terms of the gas parameter na3. The interspecies s-wave
scattering length a12 is chosen to be in the mean-field
theory unstable region ja12j=a > 1, but close to the thresh-
old. In three spatial dimensions, this region features a stable
liquid phase and corresponds to realistically small values of
the gas parameter [7] while it avoids strong effects arising
from the hard-sphere potential used to model the intra-
species interactions and ensures the universality [35].
In Fig. 1 the case a12=a ¼ −1.2 is considered and we

show results for the isothermal pressure at the lowest
temperature considered in this work. This choice of T
makes the PIMC simulation for densities in the deep
quantum degenerate regime highly demanding in terms
of the required number of imaginary time steps M and
calculations can be safely carried out only for relatively
small system sizes. In Fig. 1, the total number of particles is
N ¼ 216 and at the highest density shown the required
number of imaginary time steps is M ¼ 160. The com-
parison with the T ¼ 0 case is important to understand the
effects of a finite temperature. In fact, at T ¼ 0 the pressure

can be calculated using the energy functional in Ref. [7],
yielding the result

p ¼ 1

4
gn2

�
1þ a12
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�
þ 4

5π2
m3=2ðgnÞ5=2

ℏ3
ð2Þ

in terms of the coupling constant g ¼ ð4πℏ2a=mÞ. The first
term in the equation above is negative and corresponds to
the mean-field instability while the second term is positive
and provides the beyond mean-field stabilizing effect. As
shown in Fig. 1, the pressure in Eq. (2) decreases with
density, resulting in a negative inverse compressibility
κ−1T ¼ nðdp=dnÞ, then reaches a minimum, and finally it
increases monotonically. The density at which the pressure
crosses the p ¼ 0 value corresponds to the minimum of
the energy functional and is the equilibrium density of
the liquid phase reached in the center of large droplets. The
corresponding gas parameter na3 ∼ 10−4 agrees with the
estimated value for the droplets observed in experiments
[4–6]. This picture changes completely at T > 0 where the
liquid is no longer in equilibrium with the vacuum at zero
pressure, but with a low density gas at some finite value of
p. At finite T an important density scale is the BEC density
nBEC ¼ 2ζð3=2Þ=λ3T , where each component would under-

go BEC in the absence of interactions (here λT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2=mkBT

p
is the thermal wavelength and ζð3=2Þ≃

2.612). For densities below nBEC the mixture is in the gas
phase and the pressure can be safely calculated using the
Hartree-Fock scheme

p ¼ 1

4
gn2

�
2þ a12

a

�
þ 2kBT

λ3T
g5=2ðeβμ̃Þ; ð3Þ

FIG. 1. Isothermal curves of pressure as a function of density. The
solid line refers to theT ¼ 0 result fromEq. (2)while the dotted line
is the Hartree-Fock (HF) prediction from Eq. (3) holding for
n < nBEC. The PIMC results correspond to N ¼ 216 particles.
The vertical and horizontal dot-dashed lines refer respectively to the
density nBEC and pressure pBEC at the onset of BEC. Close to each
PIMC point we report the corresponding value of the reduced
temperature T=TBEC, where nλ3TBEC

¼ 2ζð3=2Þ.
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where the factor 2 in the first term is due to exchange effects
in the normal phase and the effective chemical potential μ̃ is
fixed by the normalization n ¼ 2g3=2ðeβμ̃Þ=λ3T in terms of
the standard special Bose functions gνðzÞ. It is important to
stress that well-grounded approximate theories do not exist
for n > nBEC: at the mean-field level one predicts a nega-
tive compressibility while beyond mean-field Bogoliubov
approaches are plagued by a complex value of the speed of
sound in the spectrum of elementary excitations [36].
Our PIMC results along the isothermal curve are in very

good agreement with Eq. (3) for n < nBEC, while for larger
densities they feature a minimum, occurring at p > 0,
followed by a steady increase. A negative compressibility,
corresponding to the region where p decreases with n, is
expected in a finite-N system featuring coexisting phases as
a result of the interface free energy [37]. The liquid-vapor
coexistence region shall be pinpointed using the Maxwell
construction with larger N, as discussed below. Still, we see
that, already for N ¼ 216, the zero of pressure is lifted and
there is no minimum in the free energy per particle F=N at
finite density. One should point out that at any fixed
temperature T, the entropy contribution yields a diverging
F=N ¼ kBT logðnλ3T=2Þ for vanishing densities. Only at
very low temperatures a local minimum in F=N at finite
density is present, indicating the existence of a metastable
liquid state, whereby droplets are surrounded by vacuum.
Estimates in Ref. [17] show that this metastable state
disappears for values of T about 10 times smaller than
the one reported in Fig. 1. In our simulations, the liquid can
exist in equilibrium with a finite-density gas, or in a
homogeneous phase but at densities larger than the critical
ones for phase coexistence, which are discussed later. At
the temperature considered in Fig. 1 we expect that for
larger values of N the pressure flattens near the finite-N
maximum. This value of pressure is expected to be close to
pBEC ¼ ðgn2BEC=4Þð2þ a12=aÞ þ ð2kBT=λ3TÞζð5=2Þ (hori-
zontal dashed line in Fig. 1) corresponding to the pressure
at the onset of BEC with ζð5=2Þ ≃ 1.341.
A constant pressure in the isothermal curves signals the

liquid-vapor coexistence region, which we obtain via the
Maxwell construction for the larger values of T reported in
Fig. 2. In this case we are able to perform simulations well
converged in the number of imaginary time steps for
significantly larger values of N. The isothermal lines in
Fig. 2 correspond to N ¼ 512 and still feature the typical
S-like shape of finite-size systems in the coexistence
region. Above the critical point the pressure is instead a
monotonically increasing function of the density. The
results for the pressure along a given isothermal line are
fitted using a cubic curve in the volume per particle 1=n and
the Maxwell construction is applied to determine the gap
parameter Δn ¼ nL − nG between the densities respec-
tively of the liquid and the gas. These two densities delimit
the constant p region. The Maxwell construction amounts
to require the following condition on the fitting function

R n−1L
n−1G

p dð1=nÞ ¼ 0 (see inset of Fig. 2). We also checked

that, by increasing further the number of particles, the
values of nL and nG extracted from the Maxwell con-
struction do not change appreciably [25].
The results for the gap Δn are reported in Fig. 3 for

different temperatures and two values of the interspecies
coupling a12. The shaded region represents the coexistence
between the two phases and the critical point is estimated
from the isothermal line for which the Maxwell construc-
tion yields Δn ¼ 0. The results for the critical temperature
Tc, pressure pc, and density nc are reported in Table I for
the two values of a12 [25]. Furthermore, we notice that the
lower extreme nG of the coexistence region in Fig. 3 is
slightly lower than the density nBEC, which signals the
onset of BEC. As a result, the phases in the coexisting

FIG. 2. Isothermal curves of pressure as a function of density
below and across the critical point. PIMC results refer to systems
with N ¼ 512 particles and the dotted lines are a guide to the eye.
Labels on each curve indicate the value of kBT in units of
ℏ2=ma2. The inset shows the cubic fit to the points near the phase
transition and the Maxwell construction used to determine the
gap parameter Δn.

FIG. 3. Phase diagram in the temperature vs density plane for
two values of a12. The shaded area corresponds to the liquid-gas
coexistence region and the cross is our estimate (with uncertain-
ties) of the critical point. The dotted line indicates the BEC
transition density nBEC ¼ 2ζð3=2Þ=λ3T.
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region involve a normal gas, on the verge of the BEC
transition, and a superfluid liquid featuring a finite value of
the condensate density n0. Both the gap parameter Δn and
the discontinuous jump in the condensate density n0 at the
first-order vapor-liquid transition are reported in Fig. 4 as a
function of temperature showing their closure at the criti-
cal temperature Tc. The condensate fraction n0=nL is
determined using the density nL of the homogeneous
liquid phase at the upper extreme of the coexistence
region [38].
The phase diagram in the temperature vs pressure plane,

instead, is shown in Fig. 5. The pressure along the
coexistence line lies slightly below the pressure pBEC of
the gas at the onset of BEC. This finding is consistent with
nG, at the lower extreme of the coexistence region, being
slightly smaller than nBEC (see Fig. 3). The coexistence
lines for the two values of a12 shown in Fig. 4 terminate at
the corresponding critical points. For values of pressure and
temperature larger respectively than pc and Tc there is no
difference between the liquid and the gas phase and one
crosses over from one to the other in a continuous way. The
critical point is the ending point of the first-order transition
line. For larger temperatures and pressures the BEC
transition line is second order without density discontinuity.
We remark the peculiarity of the phase diagram’s topology
compared to the one of 4He and ultracold gases known so
far. General aspects of the phase diagram in ultraquantum
liquids and the possible emergence of a tricritical point
have been discussed in Refs. [39,40].

A possible way to observe the liquid to gas first-order
transition in attractive Bose mixtures is by investigating
the density profile of the cloud confined in large harmo-
nic traps VextðrÞ where the local density approximation
can be safely applied in the form of the condition
μlocal½T; nðrÞ� þ VextðrÞ ¼ const. By analyzing in situ the
density as a function of the distance from the center of
the cloud one should be able to observe the density jump
nL − nG at the distance corresponding to a local chemical
potential μlocal ¼ μLðnLÞ ¼ μGðnGÞ, where μL and μG are
respectively the chemical potential of the liquid and the
gas at the two densities nL and nG. A similar procedure
was used with polarized Fermi mixtures to observe the
first-order transition between a paired superfluid and a
polarized normal gas [41,42]. We also note that the
possibility of characterizing the liquid-gas coexistence
via the discontinuity of the density profile in trapped
systems was put forward in Ref. [22] considering ground-
state Bose mixtures with Rabi coupling. The discontinu-
ous jump of the condensate density n0 should also emerge
from the analysis of the bimodal density distribution of the
trapped cloud. Another possibility is to measure the
canonical equation of state p ¼ pðT; nÞ where, according
to the local density approximation, the system behaves
locally as a homogeneous system at the density nðrÞ. For a
single component Bose gas the isothermal curves pðT; nÞ
were measured as a function of the density along the cloud
profile crossing the BEC critical density [43]. A similar
experiment for the mixture should be well suited to
capture the coexistence region where the pressure remains
constant. Experiments on Bose mixtures carried out in box
potentials with varying geometries [44] could also allow
for access to the coexistence regime between liquid and
vapor [45]. It is also worth noticing that the use of
heteronuclear mixtures could lead to much lower values

TABLE I. Estimated values of the critical temperature, pres-
sure, and density for two values of a12.

kBTc [ℏ2=ma2] pc [ℏ2=ma5] nca3

a12 ¼ −1.2a 0.0138(8) 4.1ð6Þ × 10−6 5.7ð4Þ × 10−4

a12 ¼ −1.1a 0.0113(9) 2.5ð5Þ × 10−6 4.2ð4Þ × 10−4

FIG. 4. Decay of the order parameter Δn (upper panel) and of
the condensate fraction discontinuity (lower panel) with T on
approaching Tc. The vertical lines indicate our central value
estimate of Tc.

FIG. 5. Phase diagram in the temperature vs pressure plane for
two values of a12. The solid line indicates the coexistence line
between liquid and gas and the cross is our estimate (with
uncertainties) of the critical point. The dotted lines refer to the
pressure pBEC at the onset of the BEC transition.
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of the critical density nc and consequently much longer
lifetimes due to strong reduction of three-body losses [6].
In conclusion, we used PIMC simulations to investigate

the liquid to gas first-order transition in attractive binary
Bose mixtures characterizing its critical point. The emerg-
ing picture shows intriguing analogies with the physics of
classical fluids captured by Van der Waals theory of real
gases. The mixture is, though, ultradilute and Bose con-
densed and the critical parameters are determined by
quantum effects. Interesting new directions include the
superfluid properties in the liquid phase, the physics of the
liquid-gas interface, and the study of asymmetric mixtures
(different scattering lengths and different atomic masses)
where a richer scenario of the liquid to gas transition is
expected to occur. The data presented in this Letter are
freely available from Ref. [46].
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