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Quasicrystalline Bose Glass in the Absence of Disorder and Quasidisorder
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We study the low-temperature phases of interacting bosons on a two-dimensional quasicrystalline lattice.
By means of numerically exact path integral Monte Carlo simulations, we show that for sufficiently weak
interactions the system is a homogeneous Bose-Einstein condensate that develops density modulations for
increasing filling factor. The simultaneous occurrence of sizeable condensate fraction and density
modulation can be interpreted as the analogous, in a quasicrystalline lattice, of supersolid phases occurring
in conventional periodic lattices. For sufficiently large interaction strength and particle density, global
condensation is lost and quantum exchanges are restricted to specific spatial regions. The emerging
quantum phase is therefore a Bose glass, which here is stabilized in the absence of any source of disorder or
quasidisorder, purely as a result of the interplay between quantum effects, particle interactions and
quasicrystalline substrate. This finding clearly indicates that (quasi)disorder is not essential to observe Bose
glass physics. Our results are of interest for ongoing experiments on (quasi)disorder-free quasicrystalline

lattices.
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Quasicrystals are structures whose constituents are
arranged in ordered but not periodic patterns [1,2]. While
originally discovered in solid-state materials [3,4], their
peculiar geometrical properties [5,6] have inspired extensive
investigation in statistical and quantum many-body physics.
In this framework, great interest has been elicited by many-
body systems on quasicrystalline substrates (i.e., lattices),
which have been experimentally studied using photonic
platforms [7-10], relativistic Dirac fermions [11], and
electronic states of layered graphene [12], to cite a few
examples. Bosonic and fermionic systems such as atoms in
trapping potentials and/or cavities have also recently
emerged as a highly controllable and versatile setup for
the realization of quasicrystalline physics [13-25]. In these
experiments, the superposition of incommensurate laser
standing waves is used to engineer effective quasicrystalline
lattices. In particular, the quasicrystalline arrays generated
via this procedure are characterized by site-dependent
depths of the potential minima defining the lattice sites.
This peculiar feature, referred to as “quasidisorder,” is
deterministic, and hence different from standard disorder,
which is intrinsically related to some degree of randomness
(e.g., between different system realizations) [14,26,27].

From the theoretical point of view, the investigation of
Hamiltonians on quasicrystalline substrates pointed out
possible intriguing connections between quasicrystalline
physics and elasticity theory [28], topological properties
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[29-34], and superconductivity [35,36]. Clearly, the accu-
rate determination of the low-temperature (7)) phases
hosted by these systems, as well as of the mechanisms
underlying the stabilization of such phases, constitutes a
point of primary importance.

Previous theoretical studies [15,18,37,38], inspired by
current cold atom setups, focused on (quasi)disordered
models hosting at low 7 superfluid and/or condensate,
insulating, and Bose glass (BG) states. The latter, usually
arising in disordered scenarios [39—46], are exotic insula-
tors that feature rare regions of delocalized particles
involved in local exchange cycles. Whether or not the
typical low-T phase diagram of models on quasicrystalline
lattices changes if (quasi)disorder is lifted is a crucial, still
open question. Providing an accurate answer to this
question is (i) fundamental to unveil the conjectured
relation (if any) between the intriguing BG phase and
(quasi)disorder, and (ii) of direct relevance for possible
realizations of disorder and quasidisorder-free quasicrys-
talline Hamiltonians in, e.g., photonic systems [9].

In this Letter, we investigate the low-7 physics of a
(quasi)disorder-free, extended hardcore-boson Hubbard
model on a two-dimensional quasicrystalline lattice. By
means of numerically exact quantum Monte Carlo simu-
lations, we determine the phase diagram of our system of
interest as a function of both the chemical potential and the
interaction strength (see Fig. 1). We find that for weak
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FIG. 1. Low-temperature phase diagram of the model in Eq. (1)
as a function of the interaction strength V and of the chemical
potential u. Performed simulations converging to condensate
(Bose glass) states are marked by circles (diamonds). The
gradient from light to dark color indicates increasing density
modulation strength in the condensate.

interactions and/or low particle density (i.e., low chemical
potential) the system is a homogeneous Bose-Einstein
condensate; as particle number increases, this state deve-
lops density modulations, similarly to what happens in a
superfluid-supersolid transition for models on Bravais
lattices [47]. Conversely, for sufficiently large interactions,
the condensate makes way for a BG phase, where patches
of exchanging particles survive in a globally insulating, yet
compressible state. The demonstration that a BG can be
stabilized in the absence of (quasi)disorder, uniquely as a
result of the interaction between particles and the quasi-
crystalline nature of the system substrate, is the central
result of our work.

The Hamiltonian considered in the present study reads

N

(i.J)

where b; and bj are the annihilation and creation operator
for a hardcore boson on site i, respectively, n; = bfb,-, uis
the chemical potential, N is the number of sites, V > 0 is
the interaction strength, and (i, j), as detailed below,
denotes all couples of sites connected by the hopping
and interaction terms [i.e., the first and the last term in
Eq. (1), respectively]. In this Letter, the coefficient of the
hopping term is set to 1 and chosen as unit of energy and
temperature. Our adopted quasicrystalline substrate is
realized by taking as lattice sites the vertices of approxi-
mants of the Ammann-Beenker tiling [48,49]. These
structures, obtained here via the inflation mapping method
[49], are only defined for specific sizes: in this work, we
analyze the three consecutive sizes N = 41, 239, 1393 [the
corresponding lattices are shown in Figs. 2(a)-2(c)]. We
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FIG. 2. (a)-(c) Approximants of the Ammann-Beenker tiling
for N = 41 (a), N = 239 (b), and N = 1393 sites (c). Dots denote
the lattice sites, and segments are drawn between pairs of sites
connected by the two-body Hamiltonian terms. The red and
yellow areas are a square and rhombic tile in the Ammann-
Beenker tiling, respectively. (d),(e) Lattice-size dependence of the
condensate fraction f,.foruy =1,V =4 (d)andu =4,V = 8 (e).
Error bars are smaller than the symbol size. Solid and dashed
lines correspond to linear and quadratic (in N~'/2) fitting
functions to our numerical data, respectively. Our estimated
value of f,. in the thermodynamic limit is, for each given u
and V, the one resulting from the fit yielding the lowest reduced
chi square. (f),(g) Lattice-size dependence of the compressibility
k for the same parameters of panel (d) and (e), respectively;
Kk stays finite in the thermodynamic limit (convergence within
error bars is achieved for the two larger sizes).

consider as connected by the two-body terms of the
Hamiltonian all pairs of sites at a distance equal or smaller
than the side of the square tiles in the approximants [filled
square in Fig. 2(a)]. The segments in Fig. 2 explicitly
illustrate the connectivity of each site [50].

The interparticle interaction in Eq. (1) is of relevance for
experiments with cold atoms, for example, in Rydberg-
dressing schemes where it has already been realized with
fermions [51] while, in the bosonic case, it has been the object
of different theoretical and numerical studies leading, for
various choices of Bravais lattice and interaction range, to the
prediction of exotic states of matter in both the equilibrium
and out-of-equilibrium regime [52-57]. Notably, our model
is also of interest for current experiments with Rydberg atoms
in the resonant regime, which may realize essentially any
lattice geometry by means of optical tweezers, and a spin-1/2
XXZ Hamiltonian as that in Eq. (1), albeit with a “tail”
algebraically decaying as r7, with y = 3 or 6 [58,59].

We study Eq. (1) via path integral Monte Carlo (PIMC)
simulations based on the worm algorithm for lattice
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systems in the grand canonical ensemble [60]. In this
scheme, each quantum particle is mapped into a classical
polymer, known as “worldline.” Hence, the original, d-
dimensional quantum system is exactly transformed into a
(d + 1)-dimensional classical counterpart. Statistical mean
values of operators (denoted by (- - -) in the following) are
then computed by averaging over both the additional
synthetic dimension (i.e., “imaginary time”) and the sto-
chastically sampled classical configurations.

We determine the phase diagram of the Hamiltonian in
Eq. (1) at temperatures T = 1/4 and 1/8, observing no
relevant discrepancies between the obtained results in the
two cases. All figures shown consistently refer to the choice
T = 1/8. Figure 1 displays our computed phase diagram,
which hosts both condensate and insulating phases occur-
ring at low and high (for sufficiently large interaction
strength) values of chemical potential, respectively.
Interestingly, at V = 6, we find that the condensate phase
extends up to u ~5, “re-entering” for u = 14. The order
parameter used to discriminate between condensate and
insulating phases is the condensate fraction f .. The latter is
defined as the maximum among the relative occupations of
the single-particle Hamiltonian eigenstates: hence, it will be
finite (vanishing) in condensate (insulating) states in the
thermodynamic limit. Operatively, f. can be estimated as
the largest eigenvalue of the renormalized one-body density
matrix G;; = (bjb;)/N [61]. Our finite-size results are
then extrapolated in the N — oo limit to estimate the
condensate-insulator phase boundary (solid line in
Fig. 1). Figure 2 shows examples of this procedure where
f. scales to finite [panel (d)] or vanishing [panel (e)]
values; the corresponding points in the phase diagram are
then classified as condensate and insulating, respectively.

We also estimate the compressibility k = NS({n*) — (n)?),
where n is the average particle occupation per site of our
simulated system. A finite value of x occurs both in a
condensate and in a (globally insulating) BG where con-
densation occurs locally in rare regions (see below). We find
that « stays finite in the thermodynamic limit in the whole
Hamiltonian-parameter range explored in this work. The size
dependence of « for the same parameter sets of panels (d) and
(e) is shown in panels (f) and (g), respectively, The latter
illustrate in particular that across our condensate-to-insulator
phase transition the compressibility does not vanish. The
value of k, as expected, decreases deep in the insulating phase
remaining however finite. The insulating phase of our phase
diagram is therefore a BG.

Further insight into the obtained phases can be gained by
examining single-configuration density maps, such as those
displayed in Figs. 3(a)-3(c). Here, lattice sites are marked
by black dots, while the sizes of the corresponding colored
circles are proportional to the site occupation averaged over
imaginary time in a single PIMC configuration. In a
condensate [panel (a)], essentially all sites have a non-
integer occupation, signaling particle delocalization. This
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FIG. 3. (a)-(c) Imaginary-time-averaged density maps for a

given PIMC configuration. Panel (a) refers to a condensate
(u =4, V=5), while panels (b) and (c) refer to Bose glass
states (1 = 8,V = 6,and u = 8, V = 8, respectively). Each small
black dot represents a lattice site, while the size of the corre-
sponding colored circle is proportional to its occupation. Solid
and dashed circles point out examples of quantum and classical
wheels, respectively (see text). (d),(e) Worldline structure of the
particles occupying a quantum (d) and classical (e) wheel.
Horizontal dashed lines denote the sites in the wheel, vertical
ones correspond to particle hoppings, and small circles denote
hopping outside of the wheel. Separate worldlines are shown in
different colors. (f)—(h) Histograms for the collected values
of Qlc‘W (see text) in all wheels and configurations. Panels
(f)—(h) are obtained for the same parameter values of panels
(a)—(c), respectively. The horizontal solid (dashed) line indicates
the value of Q; (Q}°l) (see text).

has to be contrasted with a classical configuration, in which
particles do not change their position in imaginary time,
yielding only O or 1 average occupations.

Increasing the interaction strength and/or the chemical
potential hampers delocalization, leading from condensate
to insulating states. The nature of such insulating states is,
however, nontrivial, as one can realize via inspection of
single-configuration density maps [Figs. 3(b)-3(c)]. Here,
intriguing physics occurs in “wheels,” i.e., eightfold rota-
tionally symmetric groups of lattice sites. Wheel centers are
the only sites in the quasicrystal with exactly eight nearest
neighbors, which allows us to easily identify them.
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Remarkably, these structures may host delocalized par-
ticles, in contrast with the substantially classical behavior
of the rest of the system: all this is again apparent from the
noninteger site occupations of these “quantum wheels”
[solid circles in Figs. 3(b) and 3(c)], as opposed to the
essentially integer ones (i.e., 0 or 1) observed elsewhere.
“Classical wheels,” where particles are not delocalized in
the quantum sense, may also coexist with their quantum
counterparts [dashed circle in Fig. 3(c)].

With the aim of investigating the presence of particle
exchanges in quantum wheels, we inspect the worldline
configurations of particles residing in these regions. Indeed,
in the path integral representation, worldlines of particles
involved in exchange cycles fuse into one, consistently with
the notion of indistinguishability. Figure 3(d) displays an
example of worldline structure in a quantum wheel. Here,
all particles are involved in a single exchange cycle, which
covers the entire wheel but essentially does not extend
outside of it. Conversely, the worldlines in a classical wheel
[Fig. 3(e)] are basically flat, as expected for classically
behaving particles. In quantum wheels particles are then
delocalized and involved in quantum exchanges; however,
due to the local (i.e., confined to the wheel region) character
of these permutation cycles, global condensation, which is
associated to system-wide exchange cycles, is suppressed.
The emerging physical picture is therefore that of a globally
insulating compressible state hosting condensate patches,
namely, a BG.

In order to quantify the presence of quantum wheels in
our observed insulating states, we introduce the single-
configuration density modulation parameter Q¢, defined
for a generic PIMC configuration C as

> (”zc - ”_IC)Z

Q? - —
an(l - nlc>

a({nf}). (2)

Here, {n{} is the set of the imaginary-time-averaged

occupations in C, and n¢ = N=!' 3", n¢. The Qf parameter
is inspired by similar ones employed in the context of
glassy physics [55,57,62,63], and here measures the inho-
mogeneity of the imaginary-time-averaged site occupations
in a single configuration. Specifically, its extremal values 0
and 1 correspond to perfectly delocalized configurations
(i.e., uniform n¢ < 1) and perfectly classical particles (i.e.,
each of the n¢ is either 0 or 1), respectively. Qf can be
computed either for the entire system or for a subset of
lattice sites, by appropriately restricting the sums. In the
following, we will use the notation Qlc'W to indicate the
value of this observable computed on a wheel W in a single
configuration C.

In Figs. 3(f)-3(h) we show histograms, accumulated over
the entire PIMC simulation, of the values of Q" for all
wheels. In both condensate [panel (f)] and insulating states

[panels (g),(h)], the histograms display a peak close to O,
which denotes the presence of a large number of quantum
wheels. In turn, classical wheels are associated to high
values of Q€"". The latter are rather infrequent in BG states
close to the condensate-BG transition [see, e.g., the
histogram in panel (g)]. Conversely, at higher values of
V and/or u [panel (h)] classical wheels become more
frequent, and the histogram develops a second peak at
high values of 0", However, the low-Q¢"" peak remains,
signaling the persistence of quantum wheels.

The nature of the wheels can be compared to that of the
rest of the system by computing the configuration average
of QIC for the whole system, which we dub Q, (dashed lines
in Fig. 3) and the average of Q<" over all configurations
and wheels, which we dub Qs (solid lines in the same
figure). We find that these two averages are essentially
coinciding in the case of a condensate [panel (f)], while in
our insulating states they display a sizeable difference
[panels (g),(h)]. This implies that in our globally non-
condensate states a significant fraction of the wheels host
delocalized particles. For all parameter sets associated to
insulating states in our phase diagram, the obtained values
of the relative difference W = (Q; — Q™) /0, stay
finite in the N — oo limit, indicating the presence in the
system of a sizeable number of quantum wheels. The latter
are responsible, in our BG phase, for the finite value of the
compressibility.

In previous studies (see for example Refs. [15,16]) the
condensate-BG transition has been investigated in continu-
ous-space models explicitly including quasidisorder. There,
a BG phase emerges in the limit of low particle density,
weak interparticle potential, and sufficiently large strength
of quasidisorder, while, away from the weakly interacting
limit, i.e., for increasing interparticle potential, the BG
progressively makes way to a Mott insulator state. In the
present study the situation is substantially different: in the
dilute, weakly interacting regime, our system is a homo-
geneous condensate and the transition to a BG is not
driven by quasidisorder, which is absent in our model.
Remarkably, our observed BG phase occurs for sufficiently
high particle density, in a regime where the interparticle
potential takes values V ~ 6-10. Such a BG is ultimately
stabilized by a subtle interplay between interactions,
quantum effects, and quasicrystalline lattice.

The analysis of PIMC density maps also allows us to
characterize nontrivial features in our obtained condensate
states. Specifically, in Figs. 4(a) and 4(b) we show stochas-
tically averaged density maps for two condensate states, at
weak interactions and low and high particle density, respec-
tively. In the former case the density map, as expected, is
basically uniform [panel (a)]; conversely, in the latter,
sizeable density inhomogeneities are evident [panel (b)].

We measure the strength of these density modulations
through the parameter defined in Eq. (2) computed on the
averaged density map, Q> = ¢({(n;)}). This parameter is
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FIG. 4. (a),(b): Statistically averaged density maps for a portion
ofa N = 1393 lattice,at V =5,y =4 (a)and V = 5,y = 16 (b).
Each small black dot represents a lattice site, while the size of the
corresponding colored circle represents its occupation. (c):
Values of f. (circles) and Q, (triangles) extrapolated to the
thermodynamic limit (see text). Error bars, where not visible, are
smaller than the symbol size.

expected to be 0 in a perfect condensate, where statistically
averaged site occupations are uniform, while it is finite in
the presence of density modulations.

Figure 4(c) shows values of Q, (triangles) at interaction
strength V =5 and increasing p (i.e., increasing particle
density). We see how this observable grows monotonically
with u, reaching up to ~30% for y = 16. Our Q, estimates
remain substantially unchanged when N increases from
239 to 1393, i.e., the largest size considered in our study.
Therefore, the observed density inhomogeneities will
persist in the thermodynamic limit. Concomitantly with
the development of density fluctuations, the value of the
condensate fraction extrapolated to the thermodynamic
limit (circles) decreases from approximately 0.2 to slightly
less then 0.1, hence f, stays finite in the whole parameter
range of Fig. 4(c). The coexistence in our system of global
condensation and density modulations is reminiscent of
supersolid states on Bravais lattices [47].

In conclusion, we have studied the low-temperature
physics of a model of hardcore bosons on a two-dimensional
quasicrystalline lattice, demonstrating that a Bose glass state
may be stabilized in the absence of either disorder or
quasidisorder sources. Indeed, we show that the latter are
not essential ingredients for the appearance of a Bose glass,
which may result purely from the interplay between quan-
tum effects, interactions, and the nonperiodic nature of a
quasicrystalline lattice. We also find that the homogeneous
condensate phase characterizing our Hamiltonian at low
interaction strength and chemical potential (i.e., particle
density) progressively develops sizeable density modulation
for increasing values of u. The resulting modulated

condensate calls for an intriguing analogy with supersolid
states predicted in a variety of systems on periodic lattices.

Our results contribute to motivate an experimental focus
toward the development of quasidisorder-free quasicrys-
talline lattices, for example in photonic systems [7], or in
different kinds of ultracold-atom setups [58,59,64]. An
interesting extension of our work is its generalization to
different types of interactions, such as dipolar ones, that
have been associated in recent years to a wealth of exotic
physical phenomena [59,65,66]. A detailed analysis of
bosonic physics across a variety of quasicrystalline geom-
etries—and even correlated disorder—also constitutes a
viable option for further investigations, e.g., in the
framework of hyperuniform lattices [67,68].
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