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Treating the infinite-dimensional Hilbert space of non-Abelian gauge theories is an outstanding
challenge for classical and quantum simulations. Here, we employ q-deformed Kogut-Susskind lattice
gauge theories, obtained by deforming the defining symmetry algebra to a quantum group. In contrast to
other formulations, this approach simultaneously provides a controlled regularization of the infinite-
dimensional local Hilbert space while preserving essential symmetry-related properties. This enables the
development of both quantum as well as quantum-inspired classical spin-network algorithms for
q-deformed gauge theories. To be explicit, we focus on SUð2Þk gauge theories with k∈N that are

controlled by the deformation parameter q ¼ e2πi=ðkþ2Þ, a root of unity, and converge to the standard SU(2)
Kogut-Susskind model as k → ∞. In particular, we demonstrate that this formulation is well suited for
efficient tensor network representations by variational ground-state simulations in 2D, providing first
evidence that the continuum limit can be reached with k ¼ Oð10Þ. Finally, we develop a scalable quantum
algorithm for Trotterized real-time evolution by analytically diagonalizing the SUð2Þk plaquette
interactions. Our work gives a new perspective for the application of tensor network methods to high-
energy physics and paves the way for quantum simulations of non-Abelian gauge theories far from
equilibrium where no other methods are currently available.

DOI: 10.1103/PhysRevLett.131.171902

Introduction.—Lattice gauge theories (LGTs) constitute
the foundation of our fundamental understanding of nature,
as formulated in the standard model of particle physics [1]
and the spin foam approach to quantum gravity [2]. LGTs
also find applications for topologically ordered phases in
condensed matter physics [3] and quantum information
processing [4]. The lattice formulation [5–7], discretizing
space-time while preserving the relevant symmetries of the
theory, allowed to put gauge theories on computers,
eventually leading to remarkable predictions in QCD [8].
These well-established methods are, however, hindered by
numerical sign problems [9] that arise, e.g., for real-time
dynamics or in the presence of fermionic matter.
In recent years, quantum-inspired classical methods,

such as tensor networks that target physically relevant
low-entangled states [10], have emerged as promising
alternatives to simulate LGTs without sign problems
[11–13]. On the other hand, quantum computers and
simulators can more efficiently tackle highly entangled
regimes [14–18]; see Refs. [19–31] for experimental
realizations of LGTs. While the simulation of non-
Abelian LGTs is arguably one of the most promising
targets for a potential quantum advantage [32], treating the
infinite-dimensional Hilbert space of non-Abelian theories
remains an outstanding theoretical challenge [17,33–44]
and previous approaches have suffered from fundamental

drawbacks: in particular, (i) finite subgroup truncations
[35,36,45–50] ultimately lead to uncontrolled errors
because any non-Abelian Lie group has a largest finite
subgroup; (ii) quantum link models [17,41,51–53] give up
unitarity of the plaquette operator, rendering known effi-
cient decompositions inapplicable; and (iii) hard cutoffs in
the “representation” basis [38,54–60] typically require
more sophisticated quantum algorithms as subroutines
leading to hardware requirements beyond the realm of
current “noisy intermediate-scale quantum” devices [61].
For a recent comparison of different Hamiltonian formu-
lations of LGTs, we refer to the literature [62–65].
In this Letter, we propose to overcome these problems by

employing another LGT formulation [3,43,66–68], which
is tailored for quantum algorithms but also serves as a
natural starting point for quantum-inspired classical meth-
ods. In addition to the spatial lattice regularization under-
lying the Kogut-Susskind (KS) formulation [69], we
regularize the infinite-dimensional Hilbert space resulting
from non-Abelian Lie groups by replacing the correspond-
ing Lie algebra with a quantum group [70–73] with
deformation parameter q, a root of unity [74]. In a basis
of gauge-invariant spin network (SN) states, we thus define
a truncated model, which we call q-deformed Kogut-
Susskind (qKS) LGT, and argue that it preserves essential
symmetry-related properties, while the KS theory is
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recovered by tuning a single control parameter k∈N. While
closely related q-deformed gauge theories have been
studied in the past (see, e.g., [3,43,66–68] and references
therein), here we point out their relevance for both classical
and quantum simulations.
In particular, we study the case of SUð2Þk LGT in two

spatial dimensions in detail and first show the convergence
of the k → ∞ limit with exact results for a single plaquette.
We then illustrate the advantages of this formulation by
developing both classical and quantum spin-network algo-
rithms for q-deformed gauge theories (SNAQs). In the
classical case, we perform tensor network simulations based
on an infinite projected entangled pair states (iPEPS) [10]
ansatz, indicating quantitative agreement with continuum
results for k ¼ Oð10Þ. Concerning quantum simulations, we
design a scalable digital quantum algorithm for real-time
evolution using an analytical Trotter decomposition,
enabled by an exact diagonalization of the plaquette operator
using local basis transformations on a SN register. Our
resource estimates for this algorithm demonstrate the poten-
tial of qudit quantum computers [75–79] for high-energy
physics [49,80–85].
Model and truncation.—To be specific, we consider

SU(2) LGT in two spatial dimensions, but the approach
applies to SU(N) LGTs in arbitrary dimensions. In prepa-
ration for the q-deformed theory, we start with the KS
Hamiltonian [69,86]

HKS ¼
g2

2a

X
l

E2
l −

1

2ag2
X
□

ðU□ þ U†
□
Þ; ð1Þ

where g2 is the dimensionless bare coupling constant and a
denotes the spatial lattice spacing. Here, E2

l is the electric
energy operator acting on every link l of a 2D square
lattice, while U□ acts on four links forming an elementary
plaquette [see Fig. 1(a)]. In the Hamiltonian formulation,
gauge invariance is expressed by Gauss’ law operators Gþ,
associated to every vertex þ of the lattice, such that
½HKS; Gþ� ¼ 0 ∀ þ, and the gauge-invariant Hilbert space
is spanned by all states jψi that fulfill Gauss’ law Gþjψi ¼
0 (in the absence of static charges).
Before defining the qKS theory in a gauge-invariant

basis formed by spin-network (SN) states, we recall this
construction for the standard KS model [86]. These states
are obtained by solving Gauss’ law in terms of spin singlets
at every four-vertex. To keep track of inequivalent singlets,
it is convenient to work on a tri-valent lattice obtained by
“point splitting” every four-vertex into two three-vertices as
indicated in Fig. 1(b), a construction that is also heavily
used in the loop-string-hadron (LSH) formulation [40,87].
The fundamental nonuniqueness of this procedure implies
the existence of local basis changes [see Fig. 1(d)], which
will become essential for SNAQs. A general SU(2) SN state
has the form jji ¼⊗0

l jjli with one SU(2) representa-
tion label jl ∈ f0; 1

2
; 1;…g assigned to every link of the

resulting lattice. The rules of angular momentum addition
lead to an additional “triangle” constraint jj1 − j2j ≤ j3 ≤
j1 þ j2, together with j1 þ j2 þ j3 ∈N, which has to be
satisfied by all triples of spins ðj1; j2; j3Þ that meet at a
vertex, which we indicate by the primed product. One can
show that the collection of all such SN states forms an
orthonormal basis of the gauge-invariant Hilbert space (see
Ref. [86] and Supplemental Material (SM) [88]).
We regularize the KS model by deforming the corre-

sponding Lie algebra. In the present example, we proceed
by replacing the data arising from the representation theory
of SU(2) with analogous expressions for the quantum group
SUð2Þk (see, e.g., [70] and the SM). Here, it is crucial to
work with deformation parameter q ¼ e2πi=ðkþ2Þ, a root of
unity that leads to a closed fusion ring with irreducible
representations of finite dimension [95,96]. This allows us to
define generalized SN states with jl ∈ f0; 1

2
; 1;…; ðk=2Þg,

truncating the local Hilbert space dimension that physically
corresponds to a maximum electric flux jmax ¼ ðk=2Þ with
k∈N. Additionally, the triangle constraint for triples
ðj1; j2; j3Þ is replaced by the SUð2Þk fusion rule: j1 þ j2 ≥
j3 and j1 þ j2 þ j3 ≤ k. To remain close to the original KS
model, we define the electric energy operator E2

l analo-
gously and only truncate it to admissible states. That is,E2

l is
diagonal and acts only on the links l that are also present in
the original square lattice (additional links introduced by
point splitting do not carry electric energy), whereE2

ljjli ¼
EðjlÞjjli with EðjÞ ¼ jðjþ 1Þ.

(a) (c)

(b) (d)

FIG. 1. (a) In 2þ 1D Kogut-Susskind LGT [Eq. (1)] gauge
fields live on links of a spatial 2D square lattice, which contains
elementary plaquettes (blue) and four-vertices (red). (b) For the
gauge-invariant SN basis (see main text) every four-vertex is
split into two three-vertices, resulting in an additional link
(dashed). (c) The elementary plaquette operator on the point-
split lattice acts on elementary hexagons according to Eq. (2).
(d) A key feature preserved by the proposed q-deformed
regularization are local unitary transformations (“F moves”)
that effect a basis transformation between inequivalent ways of
point splitting [see Eq. (6)].
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To complete the construction, recall that in the SN basis,
the plaquette operator acts nontrivially on the six inner
links of a plaquette, depending on the six outer links [see
Fig. 1(c)] [97]. The nonvanishing matrix elements are
conveniently expressed using F matrices (see SM for an
explicit formula via Wigner’s 6j symbols) as

hj0jU□jji ¼ Fj12j1j2
1
2
j0
2
j0
1

Fj23j2j3
1
2
j0
3
j0
2

Fj34j3j4
1
2
j0
4
j0
3

× Fj45j4j5
1
2
j0
5
j0
4

Fj56j5j6
1
2
j0
6
j0
5

Fj61j6j1
1
2
j0
1
j0
6

; ð2Þ

where a trivial action for links l not touching the plaquette
□ is implicit and the index “1=2” comes from the fact that
U□ changes the flux by j ¼ 1

2
. For the q-deformed theory,

we define the action of plaquette operators in the SUð2Þk
SN basis by Eq. (2) with F matrices replaced by their
counterparts for SUð2Þk (see Ref. [70] and the SM).
The resulting theory, which we call the “q-deformed”

Kogut-Susskind model (HqKS), can be interpreted as a
perturbation of the stringnet models introduced in [3]. A
related q-deformed truncation of 3D SU(2) lattice Yang-
Mills theory was studied with tensor networks in [43].
While the present discussion builds on gauge-covariant
bases in the Hamiltonian formulation introduced in [86],
note that similar constructions were used for the LSH
formulation [40]. Gauge-invariant bases were also con-
structed for SU(2) quantum link models, enabling efficient
quantum Monte Carlo simulations through an equivalent
dual model [98] (see also [99] for a dual formulation of
SU(2) lattice Yang-Mills theory).
As we demonstrate in the rest of the Letter, the qKS

formulation is very promising for simulations with quan-
tum technologies. In particular, it is constructed to recover
the KS description of LGTs as k → ∞ in contrast to, e.g.,
finite subgroup truncations. In that sense, the qKS model is
closely related to a hard cutoff truncation with irreducible
representation j ≤ ðk=2Þ (see SM for a detailed compari-
son) and mainly differs in the matrix elements of plaquette
operators. This difference of the q-deformed theory pre-
serves the structure of local unitary transformations of the
SN basis in terms of so-called F moves [see Fig. 1(d)],
which enables a relatively simple decomposition of pla-
quette operators in contrast to, e.g., quantum link models.
This feature also enables the construction of efficient
quantum algorithms.
Exact results for a single plaquette.—We next illustrate

the convergence of the proposed truncation. Consider a
single plaquette with open boundary conditions and fixed
zero electric flux at the boundaries as indicated by the SN
diagram in the inset of Fig. 2. Then the gauge-invariant
Hilbert space becomes (kþ 1)-dimensional, spanned by
SN states jji with a single label j. The Hamiltonian
(rescaling H0

qKS ¼ ð2a=g2Þ ×HqKS) reads

H0
qKS¼

Xk=2
j¼0

4EðjÞjjihjj− 2

g4
Xðk−1Þ=2
j¼0

����jþ1

2

E
hjjþH:c:

�
; ð3Þ

where the effect of working with the generalized SUð2Þk
theory is particularly transparent as it just imposes a cutoff
jmax ¼ ðk=2Þ on the largest flux allowed on the plaquette.
The qKS formulation thus reduces to a hard cutoff
truncation in this case.
In Fig. 2, we plot the probability distributions jhψ jjij2 of

the ground state jψ0i and the first three excited states
jψ1=2=3i for fixed coupling. These results, obtained by exact
diagonalization, are compared to analytical results in terms
of Mathieu functions of the limit k → ∞ (see SM). We
observe that the wave functions converge rapidly for
sufficiently large values of k, where the threshold is dictated
by the total energy and shifts to larger values for higher
excited states. Similarly, larger k will be needed to reach
small g2 required for scaling toward the continuum limit.
Classical SNAQ for ground states.—The continuum

field theory limit is approached by increasing the lattice
size and sending g2 → 0. In the following, we provide first
estimates of how to scale k to reach the continuum limit.
We make a variational ansatz jψi for the ground state of

an infinite system

jψi ¼
Y
□

"Xk=2
j¼0

ψ jU
ðjÞ
□

#
j0i; ð4Þ

generalizing the one used in Refs. [100,101]. Here, j0i is
the SN vacuum state, UðjÞ

□
the plaquette operator that creates

FIG. 2. The probability distributions jhψ jjij2 for ground state
(top left), first (top right), second (bottom left), and third (bottom
right) excited states for g2 ¼ 0.1 of a single plaquette converge to
the k → ∞ limit quickly once the cutoff jmax ¼ ðk=2Þ is large
enough to support the bulk of the wave function. The inset in the
top right panel illustrates the SN basis for a single plaquette with
open boundary conditions and zero incoming flux.
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a j flux loop on the plaquette □, i.e., replacing 1=2 by j in
Eq. (2). The ψ j are variational parameters, normalized

as
Pk=2

j¼0 jψ jj2 ¼ 1.
There are several reasons for this ansatz (see SM for

details): first, it can exactly represent ground states in the
limits g2 ¼ 0 and g2 → ∞. Second, we can evaluate the
expectation value of HqKS analytically and find

hψjH0
qKSjψi ∝

X
j1j2j3

jψ j1 j2jψ j2 j2
j3ðj3 þ 1Þdj3

dj1dj2
δj1j2j3

−
1

g4
X
j1j2

ψ�
j1
ψ j2δj1j212: ð5Þ

Here, δj1j2j3 abbreviates the fusion constraint that ðj1j2j3Þ
forms an admissible vertex and dj is the quantum dimen-
sion of j. We emphasize that even though the ansatz has a
“mean-field-like” character, it in general represents a highly
entangled state. Technically, it can be interpreted as an
iPEPS (see also [54,101–104]). We expect that general-
izations of this tensor network ansatz will be useful for
future investigations with classical high-performance com-
puting and with quantum hardware, or hybrid variational
approaches.
We find an approximation of the ground state as a

function of g2 for several k by numerically minimizing the
average energy [Eq. (5)]. Our results are summarized in
Fig. 3. For large g2, the system is in a confined phase as
expected for a strong electric field energy, which is also the

phase expected for the continuum theory [105]. For finite
values of k, however, we observe indications of a phase
transition for small g2. For k ¼ 1, this phase is expected to
be topologically ordered, i.e., deconfined, with Z2 (Toric
code) topological order [3] and we argue in the SM that for
general k the exact g2 ¼ 0 ground state has SUð2Þk
topological order. Note that the undesired phases (from a
high-energy physics point of view) shrink toward g2 → 0
as k → ∞.
As illustrated in Fig. 3, we find fast convergence of local

observables with increasing k once the system is in the
anticipated “correct” phase. This motivates to consider
the location g2c ¼ g2cðkÞ of the transition as an estimate for
the value kc ¼ kcðg2Þwhen the model significantly deviates
from the desired continuum behavior. For a given coupling
g2, we expect to converge to the continuum limit rapidly for
k≳ kcðg2Þ. Our findings are consistent with a simple power-
law behavior g2c ¼

�
g0=ðkþ k0Þ

�
2 with g0 ≈ 4.4 and

k0 ≈ 2.5, which agrees with the expectation that g2c → 0

as k → ∞. This suggests that a moderately small coupling
like g2 ¼ 0.1 requires k ¼ g0=g − k0 ∼Oð10Þ, which lies
within reach of trapped-ion qudit computers [78] by encod-
ing a single link into a single qudit (see, e.g., [75] for a
general review of qudit quantum computing, [77–79] for
experimental realizations, and [49,80–85] for applications
of qudits in the context of high-energy physics).
In practice, it is sufficient to decrease g2 until the scaling

regime is reached, where continuum physics can be reliably
extracted. For the 2þ 1D SU(2) KS model, we compare
our simulations to Euclidean Monte Carlo (MC) results for
the plaquette expectation value [106]. We obtain quantita-
tive agreement with the MC data in the regime k≳ 15 and
0.1≲ g2 ≲ 0.5, indicating that our tensor network ansatz—
despite its simplicity—captures the essential degrees of
freedom correctly.
Quantum SNAQ for real-time evolution.—To illustrate

the usefulness of our proposal for quantum simulation, we
now present a quantum SNAQ that provides an exact
Trotter decomposition of the time-evolution operator of the
q-deformed theory. The algorithm is formulated on a SN
register, where we associate one degree of freedom jjli to
every link l of the hexagonal graph obtained from point
splitting the original lattice. We refer to jjli as a local qudit,
but decomposition into qubits is of course possible. Note
that this computational basis is overcomplete because it
contains states violating the fusion constraints. We keep
this redundancy because it simplifies gate parallelization
within SNAQ, making the approach scalable to large
system sizes. Furthermore, since the constraints imposed
by the fusion rules are diagonal in the computational basis,
configurations that do not correspond to valid SN states can
be identified easily.
The core elements of this SNAQ are local basis changes

(F moves), which allow diagonalizing the plaquette

FIG. 3. The top left panel shows the critical coupling g2c as a
function of k, extracted from the nonanalytic behavior of hU□i ¼
hψoptjU□jψopti (lower left panel) in the optimized iPEPS jψopti.
Both the total energy (top right) and the electric energy (bottom
right) converge rapidly with increasing k, once the threshold kc is
surpassed. The dotted vertical and horizontal lines indicate the
relation between the values of kc and g2c. We compare our iPEPS
results for hU□i with MC data taken from Table VIII of
Ref. [106].
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operator. On the SN register, an F move corresponds to a
multiply controlled unitary operator that changes the state
of one target qudit, depending on the state of four control
qudits [see Fig. 1(d)] as

Fjj1j2j3j4ji ¼ jj1j2j3j4j0i; ð6Þ

where F is defined by the matrix elements�
Fj1j2
j3j4

�
j;j0

¼ Fj1j2j0
j3j4j

. This five-qudit operator F induces

other controlled unitaries with fewer controls. Explicitly,
we will need a four-qudit operator F0 defined through the

matrix elements
�
F0j1
j3j4

�
j;j0

¼ Fj1j1j0
j3j4j

, identifying j1 ¼ j2.

Finally, we introduce a controlled two-qudit operator G,
which diagonalizes the matrix ðF00

JÞj0j ¼ FJjj
1
2
j0j0 , whose

eigenvalues we denote by ωðJÞ
j .

We arrive at a key observation: there exists a sequence of
F moves, shown in Fig. 4(a), that partially diagonalizes the
plaquette operator on an elementary hexagon. Intuitively,
the properties of F matrices allow to shrink the loop down

to F
ej4j1j1
1
2
j0
1
j0
1

(see SM for details). To the best of our knowledge,

this property was first observed in [86] for the original KS
theory and later translated to quantum circuits for stringnet
models [107]. Our proposal to employ a q-deformed
regularization is tailored to preserve this property. As a
direct consequence, we obtain the controlled unitary
quantum circuit F shown in Fig. 4(b). The operator F
acts on inner qudits of a hexagon j1;…; j6 and takes the
outer qudits j12;…; j61 as controls. This decomposition
enables an analytic control over the plaquette operator—
made possible by the unitarity of F moves, a property that
is lost in other formulations—which we expect will be
beneficial in many quantum algorithms for LGTs. In the
SM we provide explicit decompositions of the involved
unitaries into controlled two-qudit gates, demonstrating a

simple and transparent implementation on a qudit quantum
computer [49,75–79].
An immediate application is a SNAQ using an analytical

Trotter decomposition of the evolution operator
UqKSðτÞ ¼ e−iτHqKS . Explicitly, we write a Trotter step of
a single plaquette term as

e
iτ 2

ag2
U□ ¼FΩðτÞF †; ΩðτÞjj1j4i ¼ e

iτ 2

ag2
ω
ðj4Þ
j1 jj1j4i; ð7Þ

where ΩðτÞ denotes a two-qudit phase gate. For a 2D
square lattice this Trotter step can be applied in parallel on
half of all plaquettes, yielding an exact realization of the

magnetic part UBðτÞ¼eþiτð2=ag2Þ
P

□
U□ ¼Q

□
eþiτð2=ag2ÞU□ .

The electric part UEðτÞ¼e−iτðg
2=2aÞ

P
l
E2
l ¼Q

le
−iτðg2=2aÞE2

l

can be parallelized in terms of single-qudit phase gates
e−iτðg

2=2aÞE2
l jjli ¼ e−iτðg2=2aÞjlðjlþ1Þjjli on physical links.

UqKS can then be approximated using UB and UE as usual.
For example, we analyze the resources of a second-order

algorithm UqKSðτÞ¼UEðτ=2Þ×UBðτÞ×UEðτ=2ÞþOðτ2Þ,
assuming that every link is encoded into a single qudit of
size kþ 1. Including parallelizations, a single Trotter step
has a circuit depth determined by 2 electric phase gates
(E2

l), 2 magnetic phase gates (Ω), 4 applications of G and
F0, and 12 F gates. Quantifying the circuit complexityC by
the number of controlled two-qudit unitaries using the
decompositions shown in SM yields a polynomial scaling
of C ≤ 4þ 28ðkþ 1Þ3 þ 108ðkþ 1Þ4 ∼Oðk4Þ. We note
that the choice of qudit gate set can affect the scaling,
leading to, e.g., Oðk5Þ controlled-increment (CINC) gate
entangling gates (see SM). Using the properties of the F
matrices, we expect that the gate count can be drasti-
cally improved, and we leave further optimizations for
future work.
Outlook.—Our work sets the stage for several follow-up

investigations. First, an extension to general SUðNÞ, in
particular N ¼ 3, LGTs is desirable. In this case, a
technical obstacle are multiplicities in the generalized

(a) (b)

FIG. 4. (a) Sequence of five F moves that partially diagonalizes the plaquette term for a hexagon-shaped SN. Dashed lines indicate
auxiliary links that arise from virtual point splitting of four-vertices on a 2D square lattice. Links affected by a single F move are
highlighted in red in the resulting SN diagram. For example, the first F move denoted as 6 → 6̃ involves the links j61, j1, j5, j56 and
changes j6 to j6̃. (b) Quantum circuit decomposition derived from the local unitary transformation illustrated in (a).
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Clebsch-Gordon series, which could be tackled using a
graphical calculus [108,109] adapted to the q-deformed
case. Second, as briefly outlined in the SM, it appears
straightforward to incorporate matter, fermionic or Higgs
fields, into our approach, which will add matter-specific
gates to SNAQ [82,110]. Third, the close similarities to the
spin-foam approach to quantum gravity [2,111] suggest to
explore related classical and quantum simulations of
gravity [112,113]. From a condensed matter perspective,
q-deformed KS LGTs deserve further study in their own
right as interesting topologically ordered phases [3] and
critical phenomena [114] can be expected, and we refer to
[107,115,116] for related methods to simulate anyons on a
quantum computer.
Classically, we expect that gauge-invariant tensor net-

works [12,54,101,111,117,118] will play a crucial role in
simulations of LGTs. For the theories studied in this work,
extensions of Eq. (4) to inhomogeneous or time-dependent
scenarios could be useful to study the dynamics of
(de)confined flux strings and string breaking. On the
quantum side, near-term hardware, especially based on
qudits [49,75–79,82,110], provides the means for imple-
menting our algorithm or variants, such as hybrid varia-
tional SNAQs, that are expected to be more robust against
experimental noise [119].

Note added.—After the completion of our work a closely
related article [120] appeared on arXiv where many-body
scars were studied numerically in non-Abelian stringnet
models using exact diagonalization, including the qKS
formulation discussed here. In a subsequent work by the
same authors [121], they also applied the ansatz of Eq. (4)
to a SUð3Þk qKS model.
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