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We measure the lifetime of the D meson using a data sample of 207 fb~! collected by the Belle II
experiment running at the SuperKEKB asymmetric-energy e e~ collider. The lifetime is determined by
fitting the decay-time distribution of a sample of 116 x 10> Dy — ¢z decays. Our result is
Tpr = (499.5 £ 1.7 £ 0.9) fs, where the first uncertainty is statistical and the second is systematic. This

result is significantly more precise than previous measurements.

DOI: 10.1103/PhysRevLett.131.171803

The lifetime of a particle, like its mass and spin, is one of
the fundamental properties that distinguishes it from other
particles. The lifetime is the reciprocal of the total decay
width, which is the sum of all partial decay widths. Each
partial width is proportional to the magnitude squared of
the sum of all decay amplitudes to a final state, and thus
every decay amplitude potentially affects the lifetime. As a
result, the lifetime can provide information about ampli-
tudes that are difficult to measure or calculate.

Lifetimes of D mesons are dominated by partial widths
to hadronic final states. The relatively long lifetime of the
DT meson, 2.5 times that of the D°, implies there is a
reduction in hadronic partial widths. This reduction is
attributed to destructive interference between a “spectator”
amplitude and a color-suppressed amplitude (Fig. 1, left)
[1]. The small difference in lifetimes of the D° and D7
mesons is attributed to the dominance of the spectator
amplitude for hadronic decays and different color factors
that enter subdominant “exchange” (D) and “annihilation”
(DY) amplitudes [2]. The latter amplitude for DY decays
(Fig. 1, right) is Cabibbo favored and thus plays a larger
role than it does for D' decays, in which it is Cabibbo
suppressed.

Hadron lifetimes are difficult to calculate theoretically, as
they depend on nonperturbative effects arising from quan-
tum chromodynamics (QCD). Thus, lifetime calculations
are performed using phenomenological methods such as
the heavy quark expansion [3-8]. Comparing calculated
values with measured values improves our understanding
of QCD, which leads to improved QCD calculations of
other quantities such as hadron masses, structure functions,
etc. [9]. Measurements of the D7 lifetime have been
reported by many experiments [10-16]; the world average
value is 7+ = (504 £ 4) fs [17]. In this Letter, we present
a new measurement of the D] lifetime using D] — ¢z
decays [18] reconstructed in 207 fb~! of data collected by
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the author(s) and the published article’s title, journal citation,
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the Belle II experiment [19,20]. The data were recorded at
an e e~ center-of-mass energy corresponding to the Y'(4S)
resonance, and at an energy slightly below. Our result has
significantly greater precision than the world average value.

The Belle II experiment runs at the SuperKEKB e*e™
collider [21]. The overall detector [19] has a cylindrical
geometry and includes a two-layer silicon-pixel detector
(PXD) surrounded by a four-layer double-sided silicon-
strip detector (SVD) [22] and a S6-layer central drift
chamber (CDC). These detectors reconstruct tracks (tra-
jectories of charged particles). Only one sixth of the second
layer of the PXD was installed for the data analyzed here.
The axis of symmetry of these detectors, defined as the
z axis, is almost coincident with the direction of the elec-
tron beam. Surrounding the CDC is a time-of-propagation
counter (TOP) [23] in the central region, and an aerogel-
based ring-imaging Cherenkov counter (ARICH) in the
forward region. These detectors provide charged-particle
identification. Surrounding the TOP and ARICH is an
electromagnetic calorimeter based on CsI(Tl) crystals that
provides energy and timing measurements for photons and
electrons. Outside of the calorimeter is an iron flux return
for a superconducting solenoid magnet. The flux return is
instrumented with resistive plate chambers and plastic
scintillator modules to detect muons, K9 mesons, and
neutrons. The solenoid magnet provides a 1.5 T magnetic
field that is parallel to the z axis.

d—€¢————<—

FIG. 1. Left: Spectator amplitude (top) and color-suppressed
amplitude (bottom). Right: Annihilation amplitude.
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We use Monte Carlo (MC) simulated events to optimize
event selection criteria, calculate reconstruction efficien-
cies, and study sources of background. We generate
ete” - qq(q =u,d,s,c,b) events using the KKMC pack-
age [24] and simulate quark hadronization using the
PYTHIAS package [25]. Hadron decays are simulated using
EVTGEN [26], and the detector response is simulated using
GEANT4 [27]. Final-state radiation is included in the
simulation via PHOTOS [28]. Both MC-simulated events
and collision data are reconstructed using the Belle II
analysis software framework [29,30]. To avoid introducing
bias in our analysis, we analyze the data in a “blind”
manner, i.e., we finalize all selection criteria and the
fitting procedure before evaluating the lifetime of signal
candidates.

We reconstruct Dy — ¢z™ decays by first reconstruct-
ing ¢ > K"K~ decays and subsequently pairing the ¢
candidate with a z track. We select well-measured tracks
by requiring that each track have at least one hit (measured
point) in the PXD, four hits in the SVD, and 30 hits in the
CDC. We select tracks that originate from near the
interaction point (IP) by requiring |6z <2.0 cm and
or < 0.5 cm, where 0z is the displacement of the track
from the IP along the z axis, and Jr is the radial
displacement in the plane transverse to the z axis. The
IP position is measured at regular intervals of data taking
using eTe™ — pu~ events. The spread of the IP position is
typically 250 pm in the z direction, 10 pm in the transverse
horizontal direction (x), and only 0.3 pm in the transverse
vertical direction (y). We have checked that none of the
above requirements, nor any subsequent selection require-
ments, bias the lifetime measurement.

We identify tracks as pions or kaons based on Cherenkov
light recorded in the TOP and ARICH, and specific
ionization (dE/dx) information from the CDC and SVD.
This information is combined to calculate a likelihood Ly ,,
for a track to be a K™ or z". Tracks having a ratio
Lx/(Lx+ L,) > 0.60 are identified as kaon candidates,
while tracks having L /(Lx + £,) < 0.55 are identified
as pion candidates. These requirements are 90% and 95%
efficient for kaons and pions, respectively.

To reconstruct ¢p - KK~ decays, we combine two
kaon candidate tracks having opposite charge and an
invariant mass satisfying 1.010 GeV/c?> < M(KTK~) <
1.030 GeV/c?. This selected range retains 91% of ¢ —
K™K~ decays. We pair ¢ candidates with 7zt tracks to
form D] candidates and require that the invariant mass
satisfy a loose requirement of 1.922 GeV/c? < M(¢pn") <
2.020 GeV/c?. We fit the three tracks to a common vertex
using the TREEFITTER algorithm [31]. The vertex position
resulting from the fit is taken as the decay vertex of the D}
The fit includes a constraint that the DY trajectory be
consistent with originating from the IP; this constraint
improves the resolution on the D} decay time by a factor
of 3.

To eliminate D mesons originating from B decays,
which would not have a properly determined decay time,
we require that the momentum of the DY in the eTe™
center-of-mass frame be greater than 2.5 GeV/c. This
selection eliminates all D mesons from B decays while
retaining 67% of those produced via ete™ — cc. We
reduce background arising from random combinations of
¢ and 7" candidates by requiring | cos 0| > 0.45, where
Ok is the angle in the ¢ rest frame between the K~
momentum and the direction of the Dj . This requirement
reduces combinatorial background by 40% while retaining
90% of signal decays. After applying all selection criteria,
about 2% of events have more than one D] — ¢r™
candidate. False signal candidates arise mainly from
combinations of ¢ decays with unrelated z™* tracks.
These do not peak in M(¢z") and are counted as back-
ground in our fits for signal yield and D7 lifetime;
consequently, they have a negligible effect on the fitted
lifetime. We thus retain all signal candidates.

The final M(¢z*) distribution is shown in Fig. 2. We
perform an unbinned maximum likelihood fit to M (¢z ™) to
determine the yield of D} — ¢z decays. The signal shape
is modeled as the sum of two Gaussian functions and an
asymmetric Student’s ¢ distribution. The background con-
tains no peaking structure (> 95% consists of random
combinations of ¢ and z" candidates) and is well-modeled
by a second-order polynomial. To measure the D lifetime,
we select candidates having an invariant mass satisfying
1.960 GeV/c* < M(¢pn) < 1.976 GeV/c?. This range
retains 95% of DY — ¢zt decays. In this signal region,
the fit yields 115 560 signal decays and 9970 background
events; the signal purity (ratio of signal over the total)
is 92%.

b 16000

S L4000 Belle Ii I Data

(0] —1

= 12000 _[ L dt =207 fb — Total fit

----- Background

¥ (A

1 M T T
703 1.94 195 1.96 197 1.98 1.99 2
M(¢7*) [GeVi/c?]

5.01 2.02

Candidates per 1.0
5
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FIG. 2. Distribution of M(¢pzn™") for D} — ¢z candidates, with
the fit result overlaid. Black dots correspond to the data; the red
dashed curve shows the background component; and the blue solid
curve shows the overall fit result. Vertical dotted lines denote the
signal region, and vertical dot-dashed lines denote the upper and
lower boundaries of the lower and upper sidebands (see text). The
corresponding pull distribution is shown in the lower panel, where
the pull is defined as (data — fit)/(statistical uncertainty in data).
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The decay time of a D} candidate is calculated as

d-p

where d is the displacement vector from the IP to the D
decay vertex, p is the D7 momentum, and m p+ is the
known D] mass [17]. The average resolution on 7 is 108 fs.
We determine the D; lifetime by performing an unbinned
maximum likelihood fit to two observables: the decay time
t and the per-candidate uncertainty on ¢ (o,) as calculated

from the uncertainties on d and p. The likelihood function
for the ith candidate is given by

[’(T|ti’ 6;) = fsigPsig(ti|T’ ai)Psig(o-D
+ (1 = faig) Poke(£']0}) Prrs (0).  (2)

where f, is the fraction of events that are signal DY —
¢rt decays; Pgg(t7,0,) and Py, (tlo,) are probability
density functions (PDFs) for signal and background events
for a reconstructed decay time ¢, given a D7 lifetime 7 for
signal and an uncertainty o,; and Pg,(0,) and Py, (o,) are
the respective PDFs for o,. To reduce highly mismeasured
events that are difficult to simulate, we impose loose
requirements —2000 fs < ¢ < 4000 fs and o, < 900 fs.
These requirements reject less than 0.1% of signal
candidates.

The signal PDF is the convolution of an exponential
function and a resolution function R:

Psig(ti

. 1 , . .
7,00) = ;/ e "IPR(E — 1y, s, 60)dt,  (3)

where R(t' — t'; u, s, 61) is a single Gaussian function with
mean y and a per-candidate standard deviation s x ¢'. The
scaling factor s accounts for under- or over-estimation of
the uncertainty o}. The PDF Py,(t|o,) is determined by
fitting the decay-time distribution of events in the
M(¢pn") “upper” sideband 1.990 GeV/c? < M(¢pn") <
2.020 GeV/ ¢%, which has no contamination from signal
decays with final-state radiation. We model Py, ([o,) as
the sum of three asymmetric Gaussians with a common
mean. We use MC simulation to verify that the decay-time
distribution of background events in this sideband describes
well the decay-time distribution of background events in
the signal region.

The PDFs Pg,(0,) and Py, (o,) are taken to be finely
binned histograms. The former is determined from the o,
distribution of events in the signal region, after subtracting
the o, distribution of events in the M(¢n") sideband. The
resulting Pg,(o,) distribution matches well that of MC-
simulated signal decays. The Py, (o,) distribution is
determined from background events in the M(¢prn™)

n

py 10* Belle Il § Data

© Ldt=2071b" — Total fit
810° - - Background
(%]

Q

Pull

FIG. 3. Distribution of ¢ for D} — ¢z candidates, with the fit
result overlaid. Black dots correspond to the data; the red dashed
curve shows the background component; and the blue solid curve
shows the overall fit result. The corresponding pull distribution is
shown in the lower panel.

sideband. The signal fraction fg, is obtained from the
earlier fit to the M(¢z™) distribution (Fig. 2) and fixed in
this fit. Thus, there are three floated parameters: the lifetime
7, and the mean parameter x and scaling factor s of the
resolution function. These are determined by maximizing
the total log-likelihood >, In L(z|t',6}), where the sum
runs over all events in the signal region.

The result of the fit is 7 = 498.70 &= 1.71 fs, where the
uncertainty is statistical only. The projection of the fit for ¢
is shown in Fig. 3 along with the resulting pulls; the
> divided by the number of degrees of freedom
(100 —4 =96) is 1.02. The values u = 0.56 + 0.86 fs
and s = 1.22 +0.01 obtained for the resolution function
are similar to those obtained from MC-simulated samples.

The main systematic uncertainties are listed in Table I
and evaluated as follows. Uncertainty arising from possible
mismodeling of the detector response and possible corre-
lations between ¢ and o, not accounted for by the resolution
function is assessed by fitting a large ensemble of MC
signal events. The mean of the fitted lifetime values is
calculated, and the difference of —0.85 fs between the
mean value and the input value is used to correct the fitted

TABLE I. Summary of systematic uncertainties.

Source Uncertainty (fs)
Resolution function +0.43
Background (¢, ¢,) distribution +0.40
Binning of o, histogram PDF +0.10
Imperfect detector alignment +0.56
Sample purity +0.09
Momentum scale factor +0.28

D7 mass +0.02
Total +0.87
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lifetime. We assign half of this correction as a systematic
uncertainty.

There is uncertainty arising from modeling the back-
ground decay-time distribution. We model this distribution
using background events in the upper M(¢zn™) sideband
1.990 GeV/c? < M(¢pn™) < 2.020 GeV/c?. To evaluate
uncertainty in this model, we choose a lower sideband
1.922 GeV/c* < M(¢pnt) < 1.946 GeV/c?, a combina-
tion of the two sidebands, and also the MC-simulated
background distribution in the signal region. The largest
difference observed between the resulting fitted lifetime
and our nominal result is assigned as a systematic
uncertainty.

We model both signal and background o, distributions
using histogram PDFs, and there is systematic uncertainty
arising from our choice for the number of bins (i.e.,
statistical fluctuations of the sideband data used to obtain
the histogram PDF). We evaluate this by changing the
number of bins from the nominal value (80) to other values
in the range 60—400. For each choice of binning, we refit
for z. The largest difference observed between the resulting
values and our nominal value is taken as a systematic
uncertainty.

As measuring the decay time depends on a precise
determination of the displacement vector d and momentum
p [Eq. (1)], there is uncertainty arising from possible
misalignments of the PXD, SVD, and CDC detectors.
We study the effect of such misalignment using MC events
reconstructed with various misalignments. Each sample is
equivalent in size to that of the collision data used. The
difference between the fitted value of z and the result
obtained with no misalignment is recorded, and the root-
mean-square (r.m.s.) of the distribution of differences is
taken as the systematic uncertainty due to possible detector
misalignment.

There is uncertainty arising from the fraction of signal
candidates (f,), which is fixed in the decay-time fit to the
value obtained from the fit to the M (¢z ") distribution. We
vary this parameter by its uncertainty and take the resulting
change in the fitted lifetime as a systematic uncertainty.

There is an uncertainty arising from the global momen-
tum scale of the detector, which is calibrated using the
peak position of D° — K~z decays. We evaluate this by
varying the global scale factor by its uncertainty (+0.06%)
and assigning the resulting variation in the fitted lifetime as
a systematic uncertainty.

Finally, we include a systematic uncertainty due to
uncertainty in the D mass [17], which is used to calculate

the decay time from the vectors d and D [see Eq. (1)]. The
total systematic uncertainty is obtained by adding together
all individual contributions (listed in Table I) in quadrature.
The result is £0.87 fs.

As a final check of our analysis procedure, we divide the
data sample into subsets based on D} (or D7) charge, DY
momentum, D] polar angle, D} azimuthal angle, and data-

L A T L B B B

530F 0 Bellell e Average -

a I Ldt=207fo" — Full data fit E
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= s10F * 3
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FIG. 4. Fitted lifetime for different run periods (c1—c15). For
these fits, the parameters of the resolution function are fixed to the
overall fitted values. All values are consistent with the overall
result, which is plotted as a red data point. The red dashed line
shows the average of the lifetime results for the different run
periods.

collection (run) period, and we measure the lifetime
separately for each subset. All measured values are con-
sistent with statistical fluctuations about the overall result.
The fitted lifetime for different run periods is plotted
in Fig. 4.

In summary, we have used 116 x 103 D} — ¢z decays
reconstructed in 207 tb~! of data recorded by Belle II in
e e collisions at or near the Y (4S) resonance to measure
the D] lifetime. The result is

T = (499.5 + 1.7 £0.9) fs, (4)

where the first uncertainty is statistical and the second is
systematic. This is the most precise measurement to date. It
is consistent with, but has half the uncertainty of, the
current world-average value of (504 £ 4) fs [17]. It is also
consistent with theory predictions [3,6,8]. The high pre-
cision results from significantly improved decay-time
resolution as compared to previous e’e” experiments.
This is due to the smaller beam sizes of SuperKEKB,
which reduce uncertainty on the IP, and to the smaller
radius of the first layer of the vertex detector.
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