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We introduce a modification to the standard expression for tree-levelCP violation in scattering processes
at the LHC, which is important when the initial state is not self-conjugate. Based on that, we propose a
generic and model-independent search strategy for probing tree-level CP violation in inclusive multilepton
signals. We then use TeV-scale 4-fermion operators of the form tull and tcll with complex Wilson
coefficients as an illustrative example and show that it may generate Oð10%Þ CP asymmetries that should
be accessible at the LHC with an integrated luminosity of Oð1000Þ fb−1.
DOI: 10.1103/PhysRevLett.131.171801

The nature of CP violation (CPV), which is closely
related to the flavor structure, is one of the major unre-
solved problems in particle physics. Indeed, the search for
new CP-violating sources, beyond the standard model
(SM), may be the key to a deeper understanding of particle
physics and the evolution of the Universe, since CPV has
far-reaching implications for cosmology [1–3]; in particu-
lar, the strength of CPV effects in the SM is insufficient to
explain the observed baryon asymmetry of the universe
(BAU), see, e.g., [4–6]. It is, for these reasons, that the
search for CPV beyond the SM is a very important
component of the on-going effort for unveiling the physics
that underlies the SM, even if the latter has already been
observed.
In this Letter we reexamine the formulation of tree-level

CP-violating effects in scattering processes at the LHC,
introducing a new term to the “master” CPV expression,
which properly identifies the genuine CP violating signal
and also takes into account “fake” CP-violating effects that
arise when the initial state is not self-conjugate. We then
present a generic test of CPV in scattering processes, which
is potentially sensitive to a wide variety of underlying new
physics (NP) scenarios. We are particularly interested in
CPV in the inclusive trilepton and four-lepton signals:

pp → l0−lþl− þ X3; ð1Þ

pp → l0þl−lþ þ X̄3; ð2Þ

pp → l0þl0−lþl− þ X4; ð3Þ

where l;l0 ¼ e; μ; τ (preferably l ≠ l0, see below) and X3,
X̄3, and X4 contain in general jets and missing energy.
These include the e�μþμ− and μ�eþe− final states for
l;l0 ¼ e; μ and similarly for the pairs l;l0 ¼ e; τ and
l;l0 ¼ μ; τ, as well as the three-flavor final state
pp → eμτ þ X. As an example, we will consider below
CPV in the e�μþμ− trilepton signals, but it should be clear
that it is equally important to search for CPV in multilepton
final states with as many different combination of flavors as
possible.
Multilepton final states with high transverse momentum

(pT) particles have been extensively studied at the LHC,
both in measurements of SM processes and in searches for
NP. However, searches for CP asymmetries in such
processes have been limited [7–9]. Indeed, high-pT charged
leptons are rather easily identifiable objects with excellent
resolution and are, therefore, very useful probes of generic
NP at the LHC [9–12]; they are sensitive to many types of
well-motivated underlying NP phenomena, such as lepton-
flavor violation, lepton-universality violation, lepton-
number violation [13–25], and CPV, which is the subject
studied in this Letter. These multileptons signatures are also
useful channels for searching for NP in top-quark
systems and this has led to experimental searches,
e.g., in single-top and top-pair production processes
pp → tt̄V; tt̄H; tV ðV ¼ W;ZÞ [26–29] as well as in
4-top production pp → ttt̄ t̄ [30,31] and searches for
flavor-changing (FC) top physics [32–41].
The available momenta of the charged leptons in the final

state of these multilepton signals allow a straightforward
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construction of CPVobservables in the laboratory frame, as
will be shown below. We note, though, that special care is
needed for CPV tests at pp colliders, where the initial state
is not self-conjugate and the parton distribution functions
(PDFs) of the incoming partons may, therefore, have an
asymmetric structure. This will be discussed below.
It should be emphasized that a sizable, say Oð≳1%Þ

manifestation of CPV in multileptons events of the type (1),
(2), or (3) will be strong evidence for NP, since the CP-odd
CKM-phase of the SM (which is responsible for CPV in the
quark sector and has been measured [42]) is expected to
yield negligible CP-violating effects in these processes,
as it can only arise from EW processes at higher loop
orders [43,44]. Furthermore, new CP-violating effects in
leptonic systems may shed light on Leptogenesis, where the
BAU is generated from a lepton asymmetry via a decay of a
heavy neutral lepton [45,46].
Finally, we recall that in the last several years a few σ

deviations from the SM in B decays [47–63] as well as in
the muon g − 2 [64–66] have been measured, indicating a
possible need for NP. The CPV searches in collider physics
that are being suggested here are then especially timely
since CP is not a symmetry of nature and, on general
grounds, one expects new physics to entail beyond the SM
CP-odd phase(s) [43,67].
Potential large tree-level CP asymmetries at the LHC in

the tri- and four-lepton production processes (1), (2), and
(3) can be searched for, using the following triple products
(TP) of the lepton momenta (l ≠ l0) [68]:

OCP ¼ p⃗l0− · ðp⃗lþ × p⃗l−Þ;
OCP ¼ p⃗l0þ · ðp⃗l− × p⃗lþÞ; ð4Þ

which are odd under P and under naive time reversal (TN):
time → -time. Under C and CP they transform as

CðOCPÞ ¼ þOCP; CðOCPÞ ¼ þOCP;

CPðOCPÞ ¼ −OCP; CPðOCPÞ ¼ −OCP: ð5Þ

Thus, to measure a nonzero TP correlation effect for the
OCP’s defined in (4), the following TN-odd (and also
P-violating) asymmetries can be constructed:

AT ≡ NðOCP > 0Þ − NðOCP < 0Þ
NðOCP > 0Þ þ NðOCP < 0Þ ; ð6Þ

ĀT ≡ Nð−OCP > 0Þ − Nð−OCP < 0Þ
Nð−OCP > 0Þ þ Nð−OCP < 0Þ ; ð7Þ

where NðOCP > 0Þ is the number of events for which
signðOCPÞ > 0 is measured, etc.
As will be shown below, a measurement of AT ≠ 0 and/

or ĀT ≠ 0 may indicate the presence of CPV [CP-odd
phase(s)], but may also be a signal of some strong or

generic CP-even phase, e.g., from final state interactions
(FSI) [43,75,76], even if the underlying dynamics that
drives the processes under consideration is CP conserving.
Therefore, in order to better isolate the pure CPVeffect, we
use the following observable, sensitive to CPV:

ACP ¼ ðAT − ĀTÞ=2: ð8Þ

ACP may, in fact, also be “contaminated” by CP-even
phases when the initial state is not CP symmetric, as can be
the case at the LHC or at pp colliders, in general. To see
this, let us consider the underlying (hard) processes of
the trilepton signals of (1) and (2) [the discussion below
applies similarly to the four-lepton signals of (3)]: ab →
l0−lþl− þ X and ā b̄ → l0þl−lþ þ X̄. We assume for
simplicity that there are only 2 interfering amplitudes that
contribute to these processes as follows (CPV requires at
least two amplitudes with different phases for any given
process):

Mab→l0−lþl− ¼ M1eiðϕ1þδ1Þ þM2eiðϕ2þδ2Þ; ð9Þ

where we have factored out the CP-odd phases, ϕ1;2, and
CP-even phases δ1;2. The latter typically arise from FSI at
higher loop orders. Also,Mi can be complex in general (as
in our case below) and the amplitude for the charge-
conjugate (CC) channel (ā b̄ → l0þl−lþ) is obtained
from (9) by changing the sign of the CP-odd phases
ϕi → −ϕi and replacing Mi → M⋆

i .
The corresponding (hard) differential cross sections can

then be schematically written as

dσ̂ ¼ W þ U · cosðΔδþ ΔϕÞ þ V ·OCP · sinðΔδþ ΔϕÞ;
ð10Þ

and d ¯̂σ ¼ dσ̂ðΔϕ → −Δϕ;OCP → OCPÞ for the CC chan-
nel, where Δϕ ¼ ϕ1 − ϕ2, Δδ ¼ δ1 − δ2, W ∝ jM1j2;
jM2j2, U ∝ ReðM1M

†
2Þ and the 3rd term in (10) arises

from ImðM1M
†
2Þ ∝ OCP and is where the tree-level CPV

resides, i.e., when Δδ ¼ 0.
We then find for AT and ĀT in (6) and (7):

AT ¼Iab sinðΔδþΔϕÞ; ĀT ¼I ā b̄ sinðΔδ−ΔϕÞ; ð11Þ

with

Iab ∝
R
R dΦ · fafb · V · signðOCPÞR

R dΦ · fafb · ðW þ U · cosðΔδþ ΔϕÞÞ ; ð12Þ

where dΦ is the phase-space volume element, R is the
phase-space region of integration and fa, fb are the PDFs
of the incoming particles a, b; similarly, for the CC
channel, I ā b̄ is obtained by replacing fafb → fāfb̄,
OCP → OCP and Δϕ → −Δϕ.
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As mentioned earlier, we see that AT ≠ 0 and/or ĀT ≠ 0
can be observed even in the absence of CPV (i.e., when
Δϕ ¼ 0), due to the presence of CP-even phases (Δδ ≠ 0).
Also, jAT j ≠ jĀT j is possible at the LHC, even with
Δδ ¼ 0, due the different PDF’s of the incoming particles
in the process and its CC channel, i.e., due to
fa; fb ≠ fā; fb̄, when the initial state is not self conjugate.
This affects the CP asymmetry ACP of (8), which is given
by [using (11)]:

ACP ¼ Iab þ I ā b̄

2
cosΔδ sinΔϕþ Iab − I ā b̄

2
sinΔδcosΔϕ:

ð13Þ

Thus, when the initial state is self-conjuate and Iab ¼
I ā b̄ (i.e., the initial state and its CC state have the same
PDFs), then the asymmetry appears with the conventional
CP-even and CP-odd phase factors, ACP ∝ cosΔδ sinΔϕ;
in this case ACP vanishes when the CP-odd phase vanishes.
The second term in (13), which is ∝ I ā b̄ − Iab, deals with
the case when the initial state is not self-conjugate and
Iab ≠ I ā b̄, as is the case for the LHC or other future
hadron colliders that are being envisioned (see also below).
This term is a new correction to the classic expression for
tree-level CPV in scattering processes. It is a fake CP signal
(being ∝ cosΔϕ) that can be generated in the presence of a
CP-even phase. We note, though, that such a fakeCP effect
cannot be generated at tree-level in scattering processes at
the LHC if there are no resonances involved (for situations
involving resonances, see [77]), since then CP-even phases
can only arise from FSI at higher loop orders, as opposed to
the potentially large tree-level effects in ACP, i.e., the 1st
term in (13). It thus follows that, in the absence of
resonances, if a large CP asymmetry is measured, say of
Oð10%Þ, (as shown below), then besides the fact that it will
be strong evidence for NP, it will also be a signal of genuine
CP-violating tree-level dynamics.
We use an effective field theory (EFT) approach to

describe the underlying NP responsible for CPV and
demonstrate our strategy using the following scalar and
tensor 4-Fermi operators [78–81]:

OSðprstÞ ¼ ðl̄jperÞϵjkðq̄ksutÞ; ð14Þ

OTðprstÞ ¼ ðl̄jpσμνerÞϵjkðq̄ksσμνutÞ; ð15Þ

where l and q are left-handed SU(2) lepton and quark
doublets, respectively; e and u are SU(2) singlet charged
leptons and up-type quarks, respectively; and p, r, s, t
are flavor indices. These 4-Fermi interactions can be
generated by tree-level exchanges of heavy scalars and
tensors in the underlying heavy theory. Interesting exam-
ples are the scalar leptoquarks S1 and R2, which transform
as ð3; 1;−1=3Þ and ð3; 2; 7=6Þ, respectively, under the
SUð3Þ × SUð2Þ × Uð1Þ SM gauge group. Indeed, these

scalar leptoquarks can address the RDð�Þ anomaly [82–88],
as well as the muon g − 2 discrepancy [89,90] (see
also [91–100] and for an alternative scenario with R-parity
violating supersymmetry see [101–104]).
In particular, tree-level exchanges of S1 and R2 among

the lepton-quark pairs induce the operators in (14) and (15),
where, in this case, the Wilson coefficients, fi, of the
operators in (14) and (15), satisfy

jfTðprstÞj ¼ jfSðprstÞj=4; ð16Þ

universally for any given set of flavor indices prst in (14)
and (15), see [14]. We will use this relation as a benchmark
scenario in the numerical calculations described below.
The scalar and tensor four-Fermi operators in (14)

and (15) (or, equivalently, tree-level exchanges of the
leptoquarks S1 and R2) generate tt̄lþl− as well as FC
tūilþl− (and the charge-conjugate t̄uilþl−) contact terms,
where l ¼ e; μ; τ stands for any one of the SM charged
leptons and ui ¼ u, c. The ttll interaction modifies the
process pp → tt̄lþl−, as discussed in detail in [14], and
can thus also give rise to tree-level CPV in both the trilepton
and four-leptons production channels of (1)–(3).
In the following, we focus just on the FC tuill four-

Fermi interactions, which can modify (see also [13,32]) and
generate CPV in the trilepton signals of (1) and (2), via the
underlying single-top hard processes uig → tlþl− and the
CC channel (see Fig. 1), followed by the t and t̄ decays
t → bl0þνl and t̄ → b̄l0−ν̄l.
As discussed below, the contribution of the FC tuill

effective operators to the trilepton signal does not interfere
with the SM diagrams, so that the CPV in this case is a pure
NP effect; it arises from the imaginary part of the interference
between the scalar and the tensor operators, if at east one
of the corresponding Wilson coefficients is complex [105].
In particular, the numerator of ACP (and of AT and ĀT) is
proportional to the CP-violating part of the cross section for
uig → tlþl− → l0þlþl− þ X [hereafter we suppress the
flavor indices of the operators in (14) and (15)]:

dσ̂ðCPVÞ ∝ ϵðpui ; pl0þ ; plþ ; pl−Þ · ImðfSf⋆T Þ; ð17Þ

and similarly for the CC channel ūig → t̄l−lþ →
l0−l−lþ þ X̄ by replacing ϵðpui ; pl0þ ; plþ ; pl−Þwith ϵðpūi ;

pl0− ; pl− ; plþÞ, where ϵðp1; p1; p3; p4Þ ¼ ϵαβγδpα
1p

β
2p

γ
3p

δ
4

FIG. 1. Representative lowest order Feynman diagrams for
pp → tlþl− and pp → tlþl− þ j (j is a light jet), via the
tulþl− four-Fermi interaction (marked by a heavy dot).
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and ϵαβγδ is the Levi-Civita tensor. In contrast to the
numerators, the NP contributions to the denominators of
our CP asymmetries are proportional to the CP-conserving
terms ∝ jfSj2; jfT j2;ReðfS · f⋆T Þ, where the dominating
term is the pure tensor contribution jfT j2. The SM
trilepton production processes will also contribute to the
total number of trilepton events which enter the denominators
of ACP and TN; T̄N ; the dominating SM trilepton process is
pp → WZ þ X [108].
To assess the feasibility of CP asymmetry measurements

in multilepton final states at the LHC, we perform a
simulation on the trilepton signal processes described
above, together with the relevant SM background proc-
esses, which do not include detector effects other than those
modeled by simple threshold and acceptance requirements.
Although more elaborated analysis approaches might also
be useful, for simplicity, we follow an approach that is
completely generic and provides a model-independent
test of CPV in multilepton final states, which would
be designed to be sensitive to any type of underlying
CP-violating NP involving charged leptons. We therefore
define the asymmetries for the inclusive multilepton sig-
nals, with no further event selections on the types or
kinematic properties of the other objects in the final state,
i.e., Xi in (1)–(3). Indeed, in general it is possible to use
additional useful selections, e.g., in our case a selection of
one b jet (see [14,32,109–111]) will essentially eliminate
the dominating pp → W�Z þ X → l0�lþl− þ X SM
contribution to the denominators of our asymmetries.
Nonetheless, we use only a selection on the minimum
invariant mass of the dileptons involved, mminðlþl−Þ,
which allows us to suppress the SM background without
loss of generality. The input for the numerical calculations
is further described in the Supplemental Material [112].
Furthermore, for the NP contribution we study the

dependence on the NP scale up to Λ∼ few TeV; the typical
bounds on the natural scale of the operators under inves-
tigation, in (14) and (15), are Λ≳Oð1Þ TeV, see [32].
Guided by the relation between the scalar and tensor
couplings in (16), we set jfSj ¼ 1, jfT j ¼ 0.25 with a
maximal CP-odd phase for the tull and tcll operators, so
that

ImðfS · f⋆T Þ ¼ 0.25: ð18Þ

Our results are summarized in Fig. 2 and Table I.
In Fig. 2 we show the dependence of ACP on mminðlþl−Þ
and inTable Iwegive the resultingCP-violating andTN-odd
asymmetries for mminðlþl−Þ ¼ 400 GeV. The expected
inclusive trilepton cross sections for the NP and the
dominant SM background, after the event selection criteria
have been applied, are given in the Supplemental Material
[112]: formminðlþl−Þ ¼ 400 GeV and an integrated lumi-
nosity of 1000 fb−1, we expect an Oð100Þ l0�lþl− from
the SMpp → ZW� background, whereas the new tull and

tcll 4-Fermi operators yield ∼104 and ∼500 l0�lþl−

events, respectively, if Λ ∼ 1 TeV.
We see that the CP-asymmetry increases with the

invariant mass cut on the same-flavor dileptons,
mminðlþl−Þ. This is due to the decrease of the SM
contribution with mminðlþl−Þ in the denominators of
the asymmetries. Also, the asymmetry is larger in the
ug-fusion case, since the SM background in this case is
considerably smaller with respect to the signal in this
case (see Supplemental Material [112] and discussion
above) [117]. On the other hand, the asymmetries
AT; ĀT , and ACP decrease with Λ, as expected. For
example, in the tull 4-Fermi case, the CP asymmetry
drops from ACP ∼ 11% if Λ ¼ 1 TeV to ACP ∼ 8% if Λ ¼
2 TeV (see Table I). A plot of ACPðΛÞ is given in the
Supplemental Material [112]. Note also that jAT j ≫ jĀT j in
the ug fusion case due to the difference between the
incoming ug and ūg PDFs, see (11).
Finally, it is possible to further refine this approach

by defining the axis-dependent TP CP asymmetries

FIG. 2. ACP as a function of mminðlþl−Þ, for Λ ¼ 1 TeV,
ImðfSf⋆T Þ ¼ 0.25 and including the SM background. The error
bars represent the expected statistical uncertainty with an integrated
luminosity of 1000ð3000Þ fb−1 for the ug-fusion(cg-fusion) case.

TABLE I. The expected TN-odd and CP asymmetries in
trilepton events, pp → l0�lþl− þ X, via the ug-fusion and
cg-fusion production channels (and the CC ones) at the LHC,
for mminðlþl−Þ ¼ 400 GeV. Values are given for
Λ ¼ 1ð2Þ TeV, ImðfSf⋆T Þ ¼ 0.25 and the SM background from
pp → ZW� þ X, as explained in the text.

ug-fusion: Λ ¼ 1ð2Þ TeV cg-fusion: Λ ¼ 1ð2Þ TeV
ACP 11.1% (7.9)% 3.9% (0.7)%
AT 16.4% (13.5)% 3.1% (0.5)%
ĀT −5.8% ð−2.3Þ% −4.7% ð−1.0Þ%
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Oi
CP ¼ pi

a · ðp⃗b × p⃗cÞi, where i ¼ x, y, z. As shown in the
Supplemental Material [112], the Ox;y;z

CP can be useful for a
deeper understanding of the origin of the underlying
CP-violating NP; in the case of the 4-Fermi effective
interactions studied here, they allow us to distinguish
between the tull and the tcll CP-violating dynamics.
To summarize, we have investigated the possible detec-

tion of tree-level CPV in scattering processes at the LHC
and introduced a modification to the standard formula for
suchCP-violating effects, which is relevant when the initial
state in not self-conjugate. We focused specifically on
multilepton signals and their sensitivity to new TeV-scale
sources of CPV. In particular, we have constructed
CP-violating triple-product correlations out of the
momenta of the charged leptons in multilepton events,
which can be used as model-independent tests of tree-level
(and therefore large) CPV from any source of underlying
CP-violating physics. We have calculated the expected CP
asymmetry in trilepton events at the LHC from new
TeV-scale FC tull and tcll 4-Fermi interactions, which
can be viewed as an EFT parametrization of tree-level
TeV-scale leptoquark exchanges in these channels. We
showed that an Oð10%Þ CP asymmetry is naturally
expected in this case, if the EFT operators carry a
CP-odd phase and the NP scale is of OðTeVÞ.
The measurement of such Oð10%Þ CP asymmetry in

multilepton events is challenging, but if observed, it should
stand out as an unambiguous signal of NP that may shed
light on the fundamental issue of BAU. We believe that it is
quite feasible provided the experimental uncertainties can
be kept at the level of Oð1%Þ (see [118]) bearing in mind
that such CP-violating effects in the SM are unobservably
small in multilepton events. Indeed, we estimate the
statistical uncertainty in measuring the CP asymmetry,
based on the expected number of trilepton events in our NP
scenario (see Supplemental Material) to be ∼1% − 2%with
an integrated luminosity of L ∼ 1000ð3000Þ fb−1 in the
tuμμðtcμμÞ NP cases (see Fig. 2).
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