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Bosonic codes offer noise resilience for quantum information processing. Good performance often comes
at a price of complex decoding schemes, limiting their practicality. Here, we propose using a Gottesman-
Kitaev-Preskill code to detect and discard error-prone qubits, concatenated with a quantum parity code to
handle the residual errors. Our method employs a simple linear-time decoder that nevertheless offers
significant performance improvements over the standard decoder. Our Letter may have applications in a wide
range of quantum computation and communication scenarios.
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Introduction.—Quantum-error-correcting codes known
as bosonic codes [1] protect discrete quantum information
encoded in bosonic mode(s). The infinite-dimensional
nature of the bosonic Hilbert space allows more sophisti-
cated encoding than the conventional single-photon encod-
ing [2–4] or matter-based qubits [5–7]. Various codes
exist that protect encoded quantum information against
decoherence, with better than break-even performance
demonstrated recently [8,9]. These versatile codes find
applications in optical, solid-state, and vibrational systems.
We call qubits encoded in a bosonic code “bosonic qubits.”
While quantum supremacy has been demonstrated in

both solid-state qubits [10] and optics [11,12], the
ultimate goal of a large-scale, fault-tolerant quantum
computer will require additional innovations, and its
ultimate architecture remains an open question. Such
requirements on the device can be roughly classified into
scalability (many qubits) and fault tolerance (of good
quality) [13] and architectures designed to use bosonic
qubits, as the information carriers have recently demon-
strated prominent advances in both areas.
Progress on scalability has been most significant in

optics through demonstrations of computationally universal
continuous-variable (CV) cluster states [14,15] comprising
∼104 modes [16,17] and measurement-based implementa-
tion of CV quantum gates [18,19]. When used to process
the bosonic qubits proposed by Gottesman, Kitaev, and
Preskill (GKP) [20]—and with high enough squeezing—
these architectures can be made fault tolerant [21,22].
The GKP qubit [20] has emerged as a promising bosonic

qubit for fault tolerance due to its excellent performance
against common types of noise [1]. Experiments involving
trapped ions [23,24] and superconducting circuits [25,26]
have demonstrated a GKP qubit, with the latter boasting a
squeezing level close to 10 dB. This level is sufficient for

fault tolerance in some proposed architectures [27,28]
and is approaching what is required by others [29–31].
Numerous proposals exist to produce these states in optics
as well [32–45]. Furthermore, the GKP qubit performs well
for quantum communication [46–48] thanks to the robust-
ness against photon loss [1]. In fact, recent results show that
using GKP qubits may greatly enhance long-distance
quantum communication [49,50].
A conventional noise model in bosonic systems is the

Gaussian quantum channel (GQC) [20,51], also known as
additive Gaussian noise. While the landscape of Gaussian
operations includes other types of channels [52,53], the
GQC is a particularly common one [54], and we focus on
it here. The GQC is a simple canonical type of noise for
analyzing bosonic code performance [20,51]. Buoyed by
the fact that displacements form an operator basis,
protecting against the GQC allows some level of protec-
tion against all types of bosonic noise [20]. The GKP
encoding is specifically designed to protect qubit infor-
mation against the GQC (and thus against bosonic noise
in general), but despite this, its performance “out of the
box” as a single-mode code is suboptimal against the
GQC [20,51].
A long-standing open problem in CV quantum informa-

tion [51] is to design a simple and efficient concatenated
code that enables finite-rate quantum communication
with levels of GQC noise that are guaranteed to allow
this [51,55]. This bound can be achieved by GKP-type
codes based on high-dimensional sphere packing [51], but
the authors of that work were unsatisfied with this because
such a code is not concatenated and thus offers no obvious
structure that might be exploited [56,57] to further improve
its performance.
Analog quantum error correction (QEC) [58] makes

strides toward achieving the goal of Ref. [51] by using the
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real-valued syndrome of a GKP qubit to improve error
recovery in a concatenated code by selecting the most
likely error pattern for a given syndrome. In fact, when used
with a suitable qubit code, analog QEC can achieve the
bound [27,58]. This would seem to be the end of the story,
except for one major drawback: The decoder for analog
QEC employs a type of belief propagation [59] that may
become unwieldy in real-world implementations. This is
especially true in optical architectures, where fast process-
ing of the outcomes is vital [29,30]. In such cases—and
especially when hardware-level control is used—reducing
the number of bits required to represent outcomes may be
critical to fast decoding.
What we would like instead is a simple CV-level

decoder that generates discrete outcomes that can be
fed directly into a qubit-level code at the next level of
concatenation. This is the key innovation that makes
further improvements feasible, since more complicated
codes or additional layers of concatenation do not require
modifying the CV-level decoding scheme, thus keeping
the decoder simple and efficient.
In this Letter, we make significant progress toward

achieving this goal. Our innovation uses the CV-level
measurement outcome from GKP error correction merely
to decide whether to keep the qubit or discard it entirely and
treat it as a located erasure error. This is a simple local
decoding step and does not require complicated modeling
of CV-level errors. The quantum parity code (QPC) [60] is
well suited to dealing with the discarded qubits [61–63],
and we numerically show that concatenating the GKP code
with a QPC considerably improves its performances with a
small code and straightforward decoding, linear in the
number of modes.
GKP qubit.—The GKP code encodes a qubit in an

oscillator in a way that protects against errors caused by
small displacements in the q (position) and p (momentum)
quadratures [20]. [We use conventions a ¼ ðqþ ipÞ= ffiffiffi

2
p

,
½q; p� ¼ i, ℏ ¼ 1, vacuum variance ¼ 1=2.] The ideal code
states of the GKP code are Dirac combs in q and in p.
Physical states are finitely squeezed approximations to
these and are often modeled as a comb of Gaussian peaks of
width (i.e., observable standard deviation) σ, with separa-
tion

ffiffiffi

π
p

, and modulated by a larger Gaussian envelope of
width 1=σ. Since these approximate states are not orthogo-
nal, there is a probability of misidentifying j0i as j1i (and
vice versa) in a measurement of logical Z, which is
implemented by a q measurement and binning to the
nearest integer multiple of

ffiffiffi

π
p

. Similarly, jþi and j−i
may be misidentified when measuring logical X with a p
measurement. A qubit-level measurement error occurs
when the measured outcome is more than

ffiffiffi

π
p

=2 away
from the correct outcome.
Gaussian quantum channel.—The GKP code is tailored

to combat the GQC, which randomly displaces the state in
phase space according to a Gaussian distribution [20,51].

The GQC is described by the superoperator Gξ acting on
density operator ρ as

GξðρÞ ¼
1

πξ2

Z

d2α e−jαj2=ξ2DðαÞρDðαÞ†; ð1Þ

where DðαÞ ¼ eαa
†−α�a is the phase-space displacement

operator. With α ¼ ð1= ffiffiffi

2
p Þðuþ ivÞ, the position q and

momentum p are displaced independently as q → qþ u,
p → pþ v, where u and v are real Gaussian random
variables with mean zero and variance ξ2. Therefore, the
GQC maintains the locations of the Gaussian peaks in the
probability for the measurement outcome, but it increases
the variance of each spike by ξ2 in both quadratures.
Noise model.—GKP error correction, in both its original

[20] (Steane-style [64]) form and in its teleportation-based
[65] (Knill-style [66]) form, involve measuring the
deviation of the state’s support in each quadrature (q, p)
away from an integer multiple of

ffiffiffi

π
p

. These measurement
outcomes—each of the form sm ¼ n

ffiffiffi

π
p þ Δm with integer

n and jΔmj ≤
ffiffiffi

π
p

=2, where even and odd n correspond to 0
and 1 logical bit values, respectively—together form the
syndrome. Normally, each value of Δm locally determines
the displacement to apply in order to correct the error—
either snapping back to grid in the original method [20]
or applying a logical Pauli in the teleportation-based
method [65]. Analog QEC [27,58] instead feeds all these
real-valued syndrome data sm directly to a higher-level
decoder, which makes a global decision. Our proposal
keeps aspects of both approaches. We use Δm to locally
decide whether we keep it or give up and report the qubit as
lost to the next-level decoder.
We model a damaged GKP code word as an ideal

one [20] that has been displaced by a definite (but
unknown) amount in each quadrature. This approximately
models the errors due to both coherent and incoherent noise
[21,27,58,67] and simplifies the analysis. Because of the
2

ffiffiffi

π
p

periodicity of all GKP code words, given any initial
distribution p0ðuÞ of the unknown displacement u in a
single quadrature, its effect on a GKP codeword is captured
by folding p0ðuÞ into the wrapped distribution pðuÞ ¼
P

k∈Z p0ðuþ 2k
ffiffiffi

π
p Þ, whose domain is ½− ffiffiffi

π
p

;
ffiffiffi

π
p Þ. When

p0 is a zero-mean Gaussian of variance σ2, it wraps into

pðuÞ ¼ 1

2
ffiffiffi

π
p ϑ

�

−
u

2
ffiffiffi

π
p ;

iσ2

2

�

; ð2Þ

where ϑðz; τÞ ¼ P

m∈Z exp½2πið1
2
m2τ þmzÞ� is a Jacobi

theta function of the third kind. Figure 1(a) shows this
distribution and the logical effect of a shift by u (mod 2

ffiffiffi

π
p

)
on measuring a GKP code word.
Highly reliable measurement.—Logical errors occur

when the GKP syndrome value sm, which is wrapped
mod

ffiffiffi

π
p

, misidentifies u as u� ffiffiffi

π
p

[20]. The highly
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reliable measurement (HRM) [27] buffers against this
possibility by introducing a danger zone of outcomes
0 ≤

ffiffiffi

π
p

=2 − jΔmj < δ for some δ > 0. Outcomes in this
zone are flagged as unreliable, with δ → 0 recovering the
usual case [20]. This corresponds to flagging as unreliable
any displacement u (mod 2

ffiffiffi

π
p

) that falls within δ of a
crossover point � ffiffiffi

π
p

=2, as shown in Fig. 1(b). When the
HRM flags a result sm as unreliable, the corresponding
qubit is discarded and treated as a located erasure error
(sm → E), while otherwise the result is kept and binned as
usual (sm → �1) [20] depending on which of an even or
odd multiple of

ffiffiffi

π
p

sm is close to. The HRM is thus a
ternary (three-outcome) decoder for GKP qubits that maps
each raw CV outcome sm from R → f�1; Eg.
Given a definite displacement u∈ ½− ffiffiffi

π
p

;
ffiffiffi

π
p Þ, we define

probabilities for three cases: the measurement result is
correct, PðcÞ ¼ Prðjuj < ffiffiffi

π
p

=2 − δÞ; the result is incorrect,
PðiÞ ¼ Prðjuj > ffiffiffi

π
p

=2þ δÞ; or the result is unreliable and
the qubit discarded, PðdÞ ¼ Prð−δ < juj − ffiffiffi

π
p

=2 < δÞ.
We further define the “success probability,” 1 − PðdÞ, as
the probability the qubit was not discarded and the

“postselected error probability,” PðiÞ
post ¼ PðiÞ=ð1 − PðdÞÞ,

as the probability of getting an incorrect outcome
within the sample of qubits that are not discarded.
Decreasing the postselected error probability (by increasing
δ) reduces the success probability [27], as shown in
Figs. 1(c) and 1(d).
Trading errors for loss.—The HRM is the key to

improving the performance of the code against the GQC
without the significant computational overhead required for
conventional analog QEC for this code. Analog QEC for
this code requires modeling the joint likelihood of real-
valued outcomes over multimode code words, which will
be intractable when the code size gets larger, while the

FIG. 2. Trading errors for loss to improve error correction.
(a) Teleportation-based QEC using GKP qubits [20] concatenated
with the QPC [60,61]. All gates are shown at the GKP logical
level. The feed forward operationsDp andDq implement logical-
level X and Z operations via physical-level displacements [20],
determined by the outcomes of the logical Bell measurement
[61]. (b) Encoded measurement with the (5,4) QPC in the X basis.
Performing the HRM in p [Fig. 1(b)] gives, for each qubit, either
a binary outcome (�1) or a located erasure error (E). The latter is
indicated in red (with the unreliable binary outcome underneath)
and occurs when the CV-level outcome is in the danger zone
(see Fig. 1). A horizontal block is ignored if it has any discarded
outcomes. All remaining blocks have their parity (product) taken,
after which a majority vote of those parities determines the
logical outcome—with heralded failure if there is no majority.
(c) Encoded measurement with the (5,4) QPC in the Z basis.
This is similar to (b), but with the HRM done in q and majority
voting within a block preceding taking the parity of the blocks’
voting outcomes—with heralded failure if any block has no
majority [61]. (See the Supplemental Material [68] for further
details.) Without the HRM, both logical outcomes would have
been incorrect (likely due to uncorrected errors in the discarded
values).

FIG. 1. Effect of additive Gaussian noise [67] on measuring a
GKP qubit. (a) Effect of shift by u (mod 2

ffiffiffi

π
p

), distributed
according to pðuÞ in Eq. (2), on an ordinary measurement of a
GKP qubit [20]. (b) The highly reliable measurement [27] flags
outcomes in the 2δ-wide “danger zone” (yellow) as unreliable.
(c) Postselected error probability of the HRM for several values
of δ. (d) Corresponding success probability. Note: ðsqueezing
level in decibelsÞ ¼ −10log10ðσ2=σ2vacÞ, where the vacuum vari-
ance σ2vac ¼ 1

2
.

PHYSICAL REVIEW LETTERS 131, 170603 (2023)

170603-3



HRMmaps locally detected unreliable results to lost qubits
at known locations.
Loss-tolerant QEC codes were originally proposed to

overcome loss of individual photons—the main hurdle in
quantum computation based on a single-photon qubit.
Here, concatenating GKP qubits with one of these codes
compensates for the discarded (“lost”) qubits due to using
the HRM. This trade of unlocated errors for located
erasures makes the logical qubit more robust. In the
following, we concatenate GKP qubits with the QPC
proposed by Ralph et al. [60] and implement teleporta-
tion-based QEC as proposed by Muralidharan et al. [61].
The ðn;mÞ QPC [61] is an nm-qubit code built from n

blocks of m qubits. Logical basis states are j�iL ¼
2−n=2ðj0i⊗m � j1i⊗mÞ⊗n. In our code, the physical qubit
states are square-lattice GKP states [20] of a single bosonic
mode—i.e., j0i ¼ j0GKPi and j1i ¼ j1GKPi.
We analyze the performance of our code by simulating

the process shown in Fig. 2, which implements error
correction using the teleportation-based protocol of
Ref. [61] (see figure caption and the Supplemental
Material [68] for details). Using teleportation guarantees
that the output state is already in the logical subspace, and
only logical corrections are required [66].
Numerical simulation.—We evaluate our proposed QEC

method using a Monte Carlo simulation of the circuit in
Fig. 2(a). The input state passes through a GQC [Eq. (1)].
Our model simulates code-capacity noise (i.e., assuming
no errors aside from the channel noise itself [69,70])
in order to evaluate the best possible performance of our
code under the GQC and to compare with previous results
[20,27,51,58]. We consider two cases: (a) the conventional
case, which corresponds to choosing δX ¼ δZ ¼ 0, and
(b) an optimized choice of δX and δZ for logical X and Z
errors (specified below).
We define the “failure probability” of the QPC as the

probability that the final value of XL or ZL is wrong.
When a heralded failure occurs—see caption of Figs. 2(b)
and 2(c), we randomly assign the outcome. (More sophis-
ticated handling may be possible, e.g., concatenating with a
higher-level code.)
Figure 3 shows the performance of (a) the QPC without

HRM and (b) that with HRM, as a function of the standard
deviation of the GKP qubit for several sizes ðn;mÞ of the
QPC. In Fig. 3(a), we optimized the value of n for the given
m so that the failure probability is minimized; in Fig. 3(b),
we optimized δZ and δX, as well as n, so that the failure
probability is minimized. For m ¼ 5, 7, 9, 11, 13, respec-
tively, the optimized values of n are n ¼ 13, 39, 109, 209,
817 for the conventional method (a) and n ¼ 13, 39, 117,
337, 967 for our new method (b). Furthermore, the
optimized values of the HRM parameters δX and δZ for
(b) are δX=

ffiffiffi

π
p ¼ 0.0963, 0.0967, 0.0968, 0.0968, and

0.0968 and δZ=
ffiffiffi

π
p ¼ 0.130, 0.134, 0.137, 0.138, and

0.139, respectively, which leads to the loss probability of

about 15% for X and 21%–22% for Z. The conventional
method (a) gives a threshold of ξ ≈ 0.555, matching
previous work with concatenated codes and simple
decoding [20,51]. Our improved method greatly sur-
passes this, achieving a threshold ξ ≈ 0.585 with a simple
and efficient decoder.
Conclusion.—The key insight of this Letter is that one

does not need to model the full likelihood function [27,58]
to correctly interpret GKP syndrome information [20]
within a concatenated code. Instead, the real-valued out-
comes can be coarse grained to one of three qubit-level
outcomes through the HRMmappingR → f�1; Eg, where
E represents an untrustworthy value. These ternary out-
comes suffice to achieve a considerable improvement of the
code against GQC by treating E outcomes as erasure errors
and concatenating with a qubit-level code designed to
handle such errors [60–63].
The innovation of this Letter over using the full analog

information for error correction [27,58] lies in the effi-
ciency and versatility of the decoder. Respectively,
(1) decoding happens in linear time since the CV-level
decoding is entirely local; and (2) the HRM wraps each
GKP qubit in a simple error-detecting code, so concat-
enating with any qubit-level code designed to handle

FIG. 3. Failure probabilities using the ðn;mÞ QPC, as shown in
Fig. 2, for (a) δX ¼ δZ ¼ 0 (conventional GKP error correction
[20]) and (b) optimized values of the HRM parameters δX and δZ
shown in the main text.
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erasures [71–73] should benefit from this type of outcome
mapping. Further applications and extensions include
improved decoding in GKP-based architectures (e.g.,
[29–31]) and in codes that exploit biased noise (e.g.,
[70,74–76]). The numerical result implies that there is
room for further improvement to achieve the hashing bound
of the GQC, ξ ≈ 0.607, by using more complicated codes,
additional layers of concatenation, or sophisticated decod-
ers. Our innovation, however, is rooted in the simple and
efficient decoder.
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