
Resource-Efficient High-Dimensional Entanglement Detection via Symmetric Projections

Simon Morelli ,1 Marcus Huber ,2 and Armin Tavakoli 3

1BCAM - Basque Center for Applied Mathematics, Mazarredo 14, 48009 Bilbao, Spain
2Atominstitut, Technische Universität Wien, 1020 Vienna, Austria

3Physics Department, Lund University, Box 118, 22100 Lund, Sweden

(Received 12 April 2023; accepted 2 October 2023; published 25 October 2023)

We introduce two families of criteria for detecting and quantifying the entanglement of a bipartite
quantum state of arbitrary local dimension. The first is based on measurements in mutually unbiased bases
and the second is based on equiangular measurements. Both criteria give a qualitative result in terms of the
state’s entanglement dimension and a quantitative result in terms of its fidelity with the maximally
entangled state. The criteria are universally applicable since no assumptions on the state are required.
Moreover, the experimenter can control the trade-off between resource-efficiency and noise-tolerance by
selecting the number of measurements performed. For paradigmatic noise models, we show that only a
small number of measurements are necessary to achieve nearly-optimal detection in any dimension. The
number of global product projections scales only linearly in the local dimension, thus paving the way for
detection and quantification of very high-dimensional entanglement.
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Introduction.—Entanglement is a paradigmatic resource
in quantum information science. It is essential for appli-
cations in communication [1–3], cryptography [4–6],
sensing [7,8], and device-independent information process-
ing [9,10]. It is also crucial for fundamental tests, for
example in nonlocality [11,12] and for the nature of gravity
[13]. Therefore, entanglement has received massive
research attention [14–17].
An important frontier is the entanglement between two

high-dimensional systems. It is well-known that entangle-
ment typically becomes much more robust to noise as the
dimension increases. This enables stronger tests of steering
[18,19] and even advantages in quantum nonlocality [20,21],
leading to device-independence for high-dimensional
systems [22–24]. In quantum key distribution, higher-
dimensional entanglement can lead to higher key rates
[25–29] and to higher tolerance of errors for the security
[30]. In entanglement-assisted quantum communication, it
can boost the advantages of qubit messages [31,32], increase
the capacity of a quantum channel [33] and enhance the noise
tolerance of teleportation [34]. Naturally, high-dimensional
entanglement has been the focus of many optics experiments
[35,36]. Realizations have been reported, for instance, in
transverse spatialmodes [37–40], in path [41,42], in time bins
[43,44] and in frequency modes [45–47]. Beyond optics,
higher-dimensional entanglement has beendeveloped in, e.g.,
trapped ion quantum computers [48] and superconducting
circuits [49].
In view of all this progress, a central challenge is to

develop methods for detecting and characterizing entangle-
ment. A common approach is to perform state tomography
and then apply a suitable entanglement criterion to the

reconstructed densitymatrix. However, this is typically only
viable for low-dimensional systems; partly because entan-
glement detection is difficult even with the density matrix in
hand [50,51], but mainly because of the rapidly increasing
resource cost. For a bipartite system of local dimension d,
tomography requires measurements in ðdþ 1Þ2 global
product bases. Since for many optical platforms, especially
whend is large, it is a challenge to simultaneously resolve all
d possible local outcomes, it is often more relevant to
perform d2ðdþ 1Þ2 local filter settings, i.e., to make global
product projections separately onto each component of the
basis. This often considerably simplifies experimental
requirements. A different approach is to detect entanglement
via the fidelity of the unknown state with the maximally
entangled state [52]. This is informative because often the
most useful entanglement is close to the maximally
entangled state, which considerably narrows the otherwise
much larger set of entangled states [53]. By performing
suitable global product projections, one can deduce the
fidelity and thereby quantify the entanglement. Moreover,
from the fidelity one also obtains a lower bound on an
important qualitative property of the state, namely, the
number of entangled degrees of freedom (dimension)
needed to prepare the state. This is known both as the
entanglement dimension and Schmidt number [54]. While
the fidelity can be deduced usingmuch fewer measurements
than tomography, it is still resource-intensive for larger
dimensions, requiring dðdþ 1Þ global product projections
(filters) if the total count rate is known. It motivates the need
formore efficient approaches to fidelity-based entanglement
detection.
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Notably, the practical difficulties of certifying high-
dimensional entanglement have sometimes motivated con-
venient additional assumptions to simplify the problem.
Here, we will make no such assumptions. Thus, we develop
an approach that is valid independently of the precise
physical modelling of the state. In this setting, we introduce
two practically useful classes of entanglement detection
criteria. They both provide lower bounds on the fidelity
with the maximally entangled state and a lower bound on
the Schmidt number. One criterion is based on mutually
unbiased bases (MUBs). The other criterion is based on
equiangular measurements (EAMs), among which the most
well-known example is the symmetric informationally
complete measurement (SIC-POVM) [55,56]. Both these
classes of measurements are broadly relevant in quantum
information science and they are frequently studied in both
theory [57,58] and experiment [19,40,59–64].
In addition to their universality, both our criteria have

three important practical features. First, they are versatile.
The experimenter can freely choose how many global
product projections are implemented, thus tuning the trade-
off between using few measurements and tolerating large
amounts of noise [65]. Second, they require very few
projections. The experimenter does not need to measure
global product bases. They need only to estimate the total
count rate and measure the much smaller subset of global
filter projections corresponding to identical outcomes.
Thus, no data needs to be collected for nonidentical
outcomes. For example in the case of MUBs, and similarly
for EAMs, this reduces the scaling of the number of
projections to being only linear in d. This not only greatly
improves on the above fidelity discussion but also on
comparable criteria [38,66], thus making viable tests of
very high-dimensional entanglement. Third, for standard
noise models, only a small number of projections are
necessary to obtain nearly optimal noise tolerance. This
means that the large savings in resource cost come at a
much smaller cost in accuracy.
Schmidt numbers and entanglement fidelity.—The num-

ber of entangled degrees of freedom in a pure bipartite state
jψiAB of local dimension d is given by its Schmidt rank.
That is the number of terms, rðψÞ, appearing in the Schmidt

decomposition jψi ¼ PrðψÞ
i¼1 λijαi; βii, where fjαiigi and

fjβiigi are, respectively, orthonormal states and fλigi
satisfy λi > 0 and

P
i λ

2
i ¼ 1. The Schmidt rank is an

integer delimited by 1 ≤ r ≤ d, with r ¼ 1 (r ¼ d) mean-
ing that the state is product (fully entangled) and 1 < r < d
meaning that entanglement is present but confined to a
smaller subspace. For mixed states, ρAB, the Schmidt rank
generalizes to the Schmidt number [54]. The Schmidt
number, kðρABÞ, is the largest Schmidt rank of all the pure
states fjψ iig appearing in a given convex decomposition of
ρAB, minimized over all possible decompositions. Thus,

kðρABÞ≡ min
fqig;fψ ig

n
rmax∶ ρAB ¼

X

i

qijψ iihψ ij

and rmax ¼ max
i
rðψ iÞ

o
: ð1Þ

While the Schmidt number provides a qualitative bench-
mark for the extent to which a high-dimensional state is
entangled, it does not mean that the entanglement is
useful. For example, the state jψi ¼ ffiffiffiffiffiffiffiffiffiffi

1 − ϵ
p j00i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ϵ=ðd − 1Þ�p P
d−1
i¼1 jiii has maximal Schmidt rank

(r ¼ d) for any 0 < ϵ < 1 but in the limit ϵ → 0 it is
arbitrarily close to the product state j00i (r ¼ 1). Therefore,
we also quantitatively study the entanglement, through its
fidelity with the maximally entangled state,

FðρABÞ≡max
UA

hϕþ
d jUA ⊗ 1BρABU

†
A ⊗ 1Bjϕþ

d i; ð2Þ

where U is a unitary operator and jϕþ
d i ¼

ð1= ffiffiffi
d

p ÞPd−1
i¼0 jiii. We will refer to FðρABÞ simply as the

entanglement fidelity. Moreover, the entanglement fidelity
implies a simple lower bound, FðρABÞ ≤ ½kðρABÞ=d�, on the
Schmidt number [54].
Entanglement criterion via MUBs.—A pair of bases are

called mutually unibased if the modulus overlap between
any two of their elements is constant. Similarly, a set of m
bases fjezaig, indexed by z ¼ 1;…; m with basis element
a ¼ 0;…; d − 1, are called MUBs if the unbiased property
holds between every pair. That is, MUBs satisfy�
�
�
�
eza
�
�ez

0
a0
���
�
2 ¼ ð1=dÞ for any z ≠ z0. For any d, at least

m ¼ 3 and at most m ¼ dþ 1 MUBs exist. Saturation of
the upper bound implies a tomographically complete set
and it is known to be reachable in all dimensions that are
powers of prime numbers [67].
Towards detecting entanglement, consider that we

perform global product measurements of the pro-
jectors comprising m MUBs. Specifically, we measure
jezaihezaj ⊗ jez�a ihez�a j, where jψ�i denotes the complex
conjugate of jψi. The set fjezaig is only assumed to satisfy
the MUB property. As our witness of entanglement, we use
the sum total of the probabilities that the local outcomes are
identical, i.e.,

Sm;dðρABÞ ¼
Xm

z¼1

Xd−1

a¼0

heza; ez�a jρABjeza; ez�a i: ð3Þ

We choose this quantity for three reasons. First, for any
selected set of m MUBs it is invariant under permutations
of the basis label and the outcome label respectively.
Second, it is particularly well suited for the most relevant
entangled state, namely, jϕþ

d i. Since this state is invariant
under any local unitaries of the form U ⊗ U�, it follows
that perfect correlations must be observed in every product
MUB. This leads to the algebraically maximal value
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Sm;dðϕþ
d Þ ¼ m. Thirdly, Sm;d can be measured in the lab

using few global filter projections (identical outcomes), as
compared to measuring the full global product bases.
We now present our first criterion, showing that Sm;d can

be used both to detect the Schmidt number of ρAB and to
bound its entanglement fidelity.
Result 1 (MUBs).—For any bipartite state ρAB of

equal local dimension with Schmidt number at most k it
holds that

Sm;dðρABÞ ≤ 1þ ðm − 1Þk
d

: ð4Þ

Moreover, any observed value Sm;d implies the entangle-
ment fidelity bound

FðρABÞ ≥
Sm;d − 1

m − 1
: ð5Þ

The proof is fully analytical and given in Supplemental
Material [68]. The special case corresponding to
Eq. (4) and separable states (k ¼ 1) was obtained by a
different proof method in [69]. Already m ¼ 2 MUBs
are sufficient to detect the largest possible Schmidt
number. However, by using more MUBs the gap between
Sm;dðϕþ

d Þ and the bound (4) grows, indicating improved
noise robustness of entanglement detection. We return
to the noise analysis later. Complementarily to our
case, lower bounds on Sm;d for small d were explored
in [70] and a modification of Sm;d can detect bound
entanglement [71].
Entanglement criterion via EAMs.—A set of n pure

states fjψaigna¼1 of dimension d is called equiangular if the
modulus overlap between any pair of distinct states is
constant, i.e.,jhψajψa0 ij2 ¼ tn;d for every a ≠ a0. The con-
stant cannot take a value smaller than tn;d ¼ ½ðn − dÞ=
dðn − 1Þ� [72]. The set forms a so-called equiangular
tight frame if and only if this lower bound is saturated,
meaning, in particular, that the subnormalized projectors
fðd=nÞjψaihψajg form an equiangular quantum measure-
ment. Considerable work has been directed at deciding the
existence of EAMs (see, e.g., [73–75]). In particular, when
n ¼ d they reduce to an orthonormal basis. When
n ¼ dþ 1, an EAM is obtained from removing one row
from the (dþ 1)-dimensional Fourier matrix and renorm-
alizing the columns. When n ¼ d2, EAMs are equivalent to
SIC-POVMs. The latter are known to exist in every
dimension up to at least d ¼ 151 [58] and they are
particularly interesting because the size of an EAM is
delimited by d ≤ n ≤ d2.
We now present an entanglement witness based on local

measurement of an EAM. The main idea parallels that
of Result 1. We consider global product projections
jψaihψaj ⊗ jψ�

aihψ�
aj where fjψaigna¼1 can correspond to

any EAM. In analogy with (3), we consider the sum total of

the probabilities that the local outcomes are identical. Up to
a conveninent constant, this is given by

Rn;d ≡ dðn − 1Þ
nðd − 1Þ

Xn

a¼1

hψa;ψ�
ajρABjψa;ψ�

ai: ð6Þ

Again, for a given choice of EAM, this quantity is invariant
under permutations of the outcome label and the maximal
value (when n > d) is obtained from the maximally
entangled state. One has Rn;dðϕþ

d Þ ¼ ½ðn − 1Þ=ðd − 1Þ�.
We now present our second main result; an entanglement
criterion based on Rn;d.
Result 2 (EAM).—For any bipartite state ρAB of equal

local dimension with Schmidt number at most k it holds
that

Rn;dðρABÞ ≤ 1þ k
n − d

dðd − 1Þ : ð7Þ

Moreover, any observed value Rn;d implies the entangle-
ment fidelity bound

FðρABÞ ≥
ðd − 1ÞðRn;d − 1Þ

n − d
: ð8Þ

The proof is given in Supplemental Material [68] and it is
based on ideas that closely parallel those used in the proof
of Result 1. It is interesting to note that already the smallest
nontrivial EAM, namely, n ¼ dþ 1 is sufficient to detect a
maximal Schmidt number. However, in analogy with the
MUB case, using more projections (larger n) leads to a
larger gap between Rn;dðϕþ

d Þ and the bound (7) which
enables better noise robustness. For the special case of
n ¼ d2 and k ¼ 1 our witness recovers the result intro-
duced in [76].
In summary, both entanglement criteria require no

assumption on the state, they apply to states of any local
dimension, they detect both the Schmidt number and the
entanglement fidelity and their resource cost (the number of
bases m and the number of projectors n) can be freely
selected by the experimenter. At this point, the natural
question regards the usefulness of the criteria, i.e., how
good are they at detecting various forms of high-dimen-
sional entanglement as compared to their resource cost.
Next, we investigate this for important noise models.
Entanglement with depolarising noise.—Consider that

the source produces the maximally entangled state but is
subjected to noise of uniform spectral density. The resulting
isotropic state is ρisov ¼ v

�
�ϕþ

d

��
ϕþ
d

�
�þ ½ð1 − vÞ=d2�1, where

v∈ ½0; 1� is the visibility. This state has entanglement
fidelity Fðρisov Þ ¼ vþ ½ð1 − vÞ=d2� and Schmidt number
at least kþ 1 if and only if the visibility exceeds the critical
value vopt ¼ ½ðkd − 1Þ=ðd2 − 1Þ� [54].
Using the MUB criterion in Result 1 on ρisov , the critical

visibility for detecting Schmidt number at least kþ 1
becomes

PHYSICAL REVIEW LETTERS 131, 170201 (2023)

170201-3



vMUB ¼ d − kþmðk − 1Þ
mðd − 1Þ : ð9Þ

As expected, using more MUBs reduces vMUB for any k.
For fixed k and large d, the visibility threshold tends to
vMUB ¼ ð1=mÞ. Importantly, if we use a complete set of
MUBs (m ¼ dþ 1), then the criterion becomes necessary
and sufficient as vMUB ¼ vopt.
The key question is how rapidly vMUB becomes a good

approximation of vopt as we increasem. Following [77], we
quantify this accuracy through the ratio of the relative
gap between the two visibilities, defined as Δ≡
½ð1 − vMUBÞ=ð1 − voptÞ�. Thus, Δ ≈ 1 (Δ ≈ 0) indicates a
good (bad) approximation of the ideal value. One finds that
Δ ¼ ½ðdþ 1Þ=d�½1 − ð1=mÞ�. Interestingly this is indepen-
dent of k. Typically, we want to use a small subset of the
total number of MUBs, i.e., m ≪ d. In this limit, we have
Δ ≈ 1 − ð1=mÞ, which quickly approaches unit. For in-
stance, regardless of d and k, five (20) MUBs are needed to
achieve Δ ¼ 0.8 (Δ ¼ 0.95).
Interestingly, the criterion 2 performs very similarly. The

threshold for Schmidt number at least kþ 1 via EAMs is

vEAM ¼ d − k
n − 1

þ k − 1

d − 1
: ð10Þ

Indeed, using larger EAMs reduces vEAM and using a
maximal EAM (n ¼ d2) gives the ideal value vEAM ¼ vopt.
In fact, by choosing n ¼ mdþ 1 −m, our two criteria
become identical, i.e., vEAM ¼ vMUB. Notably, since d is
significantly larger thanm, we roughly have n ≈md. Thus,
the number of global product projections is roughly the
same for both criteria. The accuracy of the EAM criterion
for the isotropic state is Δ ¼ ½ðdþ 1Þðn − dÞ=dðn − 1Þ�,
which has the same favorable scaling in n as did the MUB
criterion.
Entanglement with dephasing noise.—Let the source

produce a maximally entangled state which is subjected
dephasing noise in the computational basis, ρdephv ¼
v
�
�ϕþ

d

��
ϕþ
d

�
�þ ½ð1 − vÞ=d�Pd−1

i¼0 jiiihiij. The Schmidt num-
ber is at least kþ 1 if and only if the visibility exceeds
vopt ¼ ½ðk − 1Þ=ðd − 1Þ� [38].
Since the noise appears in a specific basis, we must

carefully choose specific MUBs when detecting the
Schmidt number of ρdephv using Result 1. With a good
choice, the minimal number of MUBs, namely, m ¼ 2,
suffices to obtain a necessary and sufficient criterion for all
dimensions and all Schmidt numbers. Specifically, we
choose the pair of MUBs consisting of the computational
basis fjaigd−1a¼0 and its Fourier transform fFjaigd−1a¼0, where
F ¼ ð1= ffiffiffi

d
p ÞPd−1

s;t¼0 e
ð2πi=dÞstjsihtj. When measuring the

separable state φd ¼ ð1=dÞPd−1
i¼0 jiiihiij, the first basis

yields perfect correlations and the second basis yields uni-
formly random outcomes. Hence S2;dðφÞ ¼ 1þ ð1=dÞ.

From Eq. (4), the visibility threshold then becomes the
solution to 2vþ ð1 − vÞS2;dðφÞ ¼ 1þ ðk=dÞ which is
identical to vopt.
Let us now momentarily depart from the local

filter picture and instead consider the case where all
outcomes of a rank-1 measurement are resolved in each
round. In that scenario, an interesting feature of Result 2 is
that it enables entanglement detection using the smallest
number of outcomes. That is, we can detect entanglement
from an EAM with just n ¼ dþ 1. Naturally, it is expected
that this sparse approach gives a correspondingly poor
tolerance to noise. However, it turns out to still be a use-
ful approach for ρdephv in reasonably low dimensions.
We choose the EAM jψai ¼ Fjψ 0

ai, where jψ 0
ai ¼

ð1= ffiffiffi
d

p ÞPd−1
l¼0 e

½2πi=ðdþ1Þ�lða−1Þjli for a ¼ 1;…; dþ 1. We
then consistently find that vEAM ¼ ðd2 − 3ðd − kÞ − 1Þ=
ðd2 − 1Þ. For instance, for d ¼ 8 we can detect entangle-
ment when vEAM > 2

3
and even a maximal Schmidt number

when v≳ 0.95. Qualitatively similar results apply to the
case of depolarizing noise.
Entanglement with the worst-case noise.—Consider a

noisy state ρworstv ¼ v
�
�ϕþ

d

��
ϕþ
d

�
�þ ð1 − vÞσ, where the state

σ is selected so that it has a maximal detrimental impact on
entanglement detection for any given set of MUBs and
EAMs. Thus, we must choose σ so that it minimizes
Sm;dðσÞ and Rn;dðσÞ, respectively. When maximal sets are
used, namely,m ¼ dþ 1 and n ¼ d2, the witness operators
associated to (3) and (6) both simplify to 1þ d

�
�ϕþ

d

��
ϕþ
d

�
�,

which implies Sm;dðσÞ ≥ 1 and Rn;dðσÞ ≥ 1. However,
when m < dþ 1 and n < d2, the witness operators are
not full rank and therefore we can always find a σ such that
Sm;dðσÞ ¼ 0 and Rn;dðσÞ ¼ 0. With these worst-case
choices, for maximal sets, we thus obtain the critical
visibility vMUB ¼ vEAM ¼ ðk=dÞ for Schmidt number
kþ 1, which is identical to the exact fidelity criterion of
Ref. [54]. For nonmaximal sets, we obtain

vMUB ¼ dþ ðm − 1Þk
dm

; ð11Þ

vEAM ¼ d − 1

n − 1
þ kðn − dÞ
dðn − 1Þ : ð12Þ

As compared to the exact fidelity of the worst-case state,
namely, Fðρworstv Þ ¼ v our criteria exhibit similarly fast
convergence properties as seen previously for isotropic
noise. However, many entangled states fundamentally
cannot be detected via fidelity estimation. An extreme
example of such unfaithful entanglement amounts to
choosing σ ¼ j01ih01j. The state ρworstv is entangled for
all v > 0 but the quality of the exact fidelity bound is only
Δ ¼ 1 − ð1=dÞ when m ¼ dþ 1 or n ¼ d2. Naturally, the
unfaithful property of this entanglement cannot be over-
come by any fidelity estimation method.
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Discussion.—We have developed criteria for detection
and quantification of high-dimensional entanglement
which combine several practically useful properties. We
now discuss them one by one.
First, the criteria require no assumption on the state. This

comes with the advantage that they can be reliably applied
without requiring that the experiment accurately follows a
particular noise model, which is often difficult to determine
anyway.
Second, the criteria permit the experimenter to select the

number of measurements used for entanglement detection.
Notably, when the state is expected to feature relatively
little noise, a small number of measurement suffices to
detect high Schmidt numbers. To exemplify this, we have
examined the data reported in [40] from measuring two
global product MUBs on a 19-dimensional state. With our
criterion then implies an entanglement fidelity of at least
92.7% and a Schmidt number of at least 18.
Third, the criteria require only md (MUBs) and n

(EAMs) global product projections, and knowledge of
the count rate so that relative frequencies can be estimated.
For a fixed number of MUBs, this scales only linearly in the
dimension, thus improving significantly on the dðdþ 1Þ
projections needed for exact fidelity estimation with known
count rate. Furthermore, it also improves on the 2d2

projections required in the two-MUB fidelity-based method
of [38] and the d2 þ ðm − 1Þd projections for m MUBs
from [40] where the quadratic term is not used for
determining the count rate but implicitly featured in the
witness construction. For example for m ¼ 5 MUBs in
d ¼ 100, the method used in [40] would amount to 10 400
projections, as compared to our 500. As we have shown,
EAMs offer similar scaling advantages.
Fourth, for relevant types of noise the criteria rapidly

become converge to the theoretically optimal noise rates.
We again exemplify this based on the data of [40] where a
97-dimensional state was measured in two MUBs. The
correlation probability in the two respective bases are
0.6942 and 0.6899. A direct use of our criterion certifies
k ≥ 38. Suppose now that m MUB diagonals would have
been measured in the experiment, and for sake of argument
each achieving a correlation of ½ð0.6942þ 0.6899Þ=2� ¼
0.6920. Measuring already one more MUB-diagonal
(m ¼ 3) would then have implied k ≥ 53, whereas meas-
uring all m ¼ 98 MUBs would only further improve this
to k ≥ 67.
Entanglement witnesses have become a standard tool in

more and more complex experimental settings. While for
each specific noise model and for each specific physical
system, upon being able to find a good characterization,
special entanglement witnesses can be tailored, it is rare to
find a universal criterion that retains a simplicity in both its
evaluation and its use, and more importantly in obtaining
the relvant data. EAMs and especially MUBs are often the
goal of many experiments. In some systems, MUBs are

particularly natural choices, given the mutual unbiasedness
of, for example, position and momemtum observables. The
fact that high-dimensional entanglement can be detected
and quantified in a noise-tolerant way using such common-
place measurements hopefully makes it a versatile tool to
be used across many platforms.
Finally, we note that our method does not straightfor-

wardly extend to multipartite systems. In multipartite
systems there is no counterpart to the Schmidt number
and a unique maximally entangled state, as each entangle-
ment class has a distinct maximally entangled state, so one
must instead consider Schmidt numbers across given cuts
of the system and orient the criterion towards a selected
target state. More crucially, our bipartite criteria are valid
regardless of which MUBs and EAMs are considered, and
they are based on the idea of perfect correlations between
two parties. The former’s level of generality and the
intuition behind the latter idea do not carry over to
multipartite systems. Multipartite entanglement criteria,
in the spirit of our results, require more substantial
innovation and therefore constitute a central open problem.
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