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We report and characterize the emergence of a noise-induced state of quenched disorder in a generic
model describing a dense sheet of active polar disks. In this state, self-propelled disks become jammed with
random orientations, only displaying small fluctuations about their mean positions and headings. The
quenched disorder phase appears at intermediate noise levels, between moving polar order and standard
dynamic disorder. We show that it results from retrograde forces produced by angular fluctuations with
Ornstein-Uhlenbeck dynamics, compute its critical noise, and argue that it could emerge in a variety of
systems.
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Active agents convert stored or ambient energy into
mechanical work, injecting it at the smallest scales of the
system [1–5]. They typically introduce activity through
some form of self-propulsion, interact with neighbors via
alignment or attraction-repulsion forces, and can be
affected by noise. Many different models of active systems
have been studied in recent years, with multiple parameter
combinations, which could have potentially resulted in a
variety of regimes and nonequilibrium phases. Only a few
have been identified up to now, however, corresponding to
self-organized states with various forms of (polar or
nematic) orientational order [6–8], clustering [9–12], or
phase separation [13,14]; as well as to disordered states
where agents move in randomly changing directions.
One of the most studied phases displaying orientational

order is characterized by collective motion, a state in which
all agents are aligned and head in a common direction
[15,16]. Examples of collective motion can be found in
different types of biological systems, including cytoskeleton-
motor proteins [17–19], bacterial colonies [20–22], insect
swarms [23,24], bird flocks [25,26], and fish schools
[27–30]. It can also develop in artificial systems, such as
active colloidal suspensions [11], colloidal rollers [31,32],
vibrated polar disks [33,34], or robot swarms [35–42]. This
type of self-organization was originally thought to require
local alignment interactions [43], but has now been shown
to also emerge from a local coupling between attraction-
repulsion forces and heading directions [44,45]. Regardless
of the underlyingmechanism, collective motion corresponds
in all these cases to an ordered phase of aligned agents that
emerges from a disordered phase. Additionally, both phases
are sometimes subdivided into parameter regions with differ-
ent density distributions [9,10,12,14,46–51].
Beyond collective motion, other collective states have

been identified more recently in elastic or jammed active

solids [52–56]. Here, attraction-repulsion forces or steric
interactions between densely packed agents can result in
different forms of collective oscillations and disordered
dynamics. Despite some initial studies, very little is still
known about the spatiotemporal states that can develop in
these cases.
In this Letter, we report the emergence of a noise-induced

state of quenched disorder (QD) in densely packed active
systems, in which agents become jammed with random
orientations. The QD phase appears at intermediate noise
levels. For lower noise, the systems self-organize into a state
of collective motion that we will refer to as moving order
(MO); for higher noise, they reach a standard state of
dynamic disorder (DD) where all heading are randomly
changing. We characterize the QD phase in a generic,
minimal model (that represents a natural extension of
existing experiments), consisting of a set of densely packed
self-propelled disks with off-centered rotation and repulsive
interactions. These are similar to the active polar disks and
robots with steric interactions introduced in [33,34] and [57],
but with linear repulsive forces and anisotropic translational
damping, as in [56]. Using this model, we identify the
mechanism that leads to QD, describe it analytically, and
show that it could develop in a broad range of active systems.
We consider self-propelled polar disks with rotation axes

located behind their centroids (geometrical centers), inter-
acting through linear repulsive forces. These can be viewed
as a minimal representation of self-propelled agents that
are nonaxisymmetric about their centers of rotation,
which results in tangential forces that introduce torques.
Figure 1(a) illustrates the interaction between two such
disks, i and j, with radii l0=2 and self-propulsion heading
directions n̂i and n̂j. Their axes of rotation r⃗i and r⃗j are
positioned at a distance 0 ≤ R ≤ l0=2 behind their centroids,
so R controls the degree of eccentricity of their rotational
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motion. This implies that, for small R, the interactions will
mainly affect disk positions, whereas for large R, they will
mainly affect their headings.
We define the interaction between two disks as a linear

repulsive central force, given by f⃗ij ¼ kðj⃗lijj − l0Þ⃗lij=j⃗lijj if
j⃗lijj ≤ l0, and by f⃗ij ¼ 0 otherwise. Here, k determines the

repulsion strength and ⃗lij is the vector that joins both
centroids, which can be expressed in terms of the headings
and the axes positions as ⃗lij ¼ ðr⃗j − r⃗iÞ þ Rðn̂j − n̂iÞ. The
total force over disk i is the sum of pairwise interactions
F⃗i ¼

P
j f⃗ij, where j∈ Si is the set of all disks with

j⃗lijj ≤ l0. Note that, if we added linear attraction forces

between neighbors for j⃗lijj > l0, this model would describe
the active elastic sheet introduced in [54], formed by an
hexagonal array of self-propelled rods with front tips
permanently linked by linear springs.
By decomposing the effect of the total interactions F⃗i

over the centroid of each disk i into displacement forces
and torques about its axis of rotation, we can write the
following overdamped dynamical equations [58]

˙r⃗i ¼ v0n̂i þ n̂in̂Ti ðαkF⃗i þ
ffiffiffiffiffiffiffiffiffi
2Dk

q
ζ⃗iÞ

þ ðI − n̂in̂Ti Þðα⊥F⃗i þ
ffiffiffiffiffiffiffiffiffi
2D⊥

p
ζ⃗iÞ; ð1Þ

˙̂ni ¼ βðI − n̂in̂Ti ÞF⃗i þ
ffiffiffiffiffiffiffiffiffi
2Dθ

p
ηiðtÞn̂⊥i : ð2Þ

Here, v0 is the self-propulsion speed and n̂⊥i is a unit vector
perpendicular to n̂i. Note that, in order to consider a more
general model, we included the possibility of having
different damping and noise levels for the disk rotation
and its front-back and sideways motion, introducing
anisotropies in the translational dynamics. Rotation is
controlled by the inverse rotational damping coefficient
β and the angular diffusion constant Dθ, whereas trans-
lation is controlled by the inverse damping coefficients αk,
α⊥ and the diffusion constants Dk, D⊥ (along n̂i, n̂⊥i ,
respectively) [37,54]. Angular noise is added through a
delta-correlated Gaussian random variable ηi, with hηii ¼ 0
and hηiðtÞηjðt0Þi ¼ δijδðt − t0Þ. Positional noise, through a

delta-correlated Gaussian random vector ζ⃗i ¼ ðζxi ; ζyi Þ,
where hζ⃗ii ¼ 0, hζki ðtÞζljðt0Þi ¼ δijδklδðt − t0Þ, and indexes
k and l represent x or y.
We carried out simulations of N self-propelled polar

disks, using the stochastic Euler method to integrate
Eqs. (1) and (2) synchronously for all disks in a periodic
rectangular arena of size l0

ffiffiffiffi
N

p
× l0

ffiffiffiffiffiffiffi
3N

p
=2. For N even,

this fits exactly
ffiffiffiffi
N

p
×

ffiffiffiffi
N

p
disks in a perfect hexagonal

lattice with distance l0 between the centroids of all
neighbors. This spatial configuration was used as initial
condition, with all angles either aligned in the x direction or
selected at random. As we explored the phase space, we
found three possible steady states: MO, DD, and QD. States
MO and DD have been well documented in the literature, as
they correspond to the standard order-disorder (flocking)
transition in collective motion. Instead, state QD had not
been previously reported and will be the focus of what
remains of this Letter.
Figures 1(b) and 1(c) display examples of the QD states

obtained in our simulations. Panel (b) is a snapshot of the
stationary state reached starting from random initial angles
and panel (c) is the corresponding snapshot starting with all
headings aligned. The latter presents larger domains of
locally aligned agents, showing that the final spatial
distribution depends on the initial condition. In both cases,
all disks are jammed when the QD state is reached,
presenting fixed mean positions and orientations. Note,
however, that we sometimes observe localized disk rear-
rangements, especially in smaller systems, but only at very
long timescales.
Our phase space explorations found that QD appears for a

significant range of parameter combinations, as shown in the
Supplemental Material [58], but not in the often studied case
with fully isotropic damping (αk ¼ α⊥), or in cases with no
angular noise (Dθ ¼ 0) or no rotational anisotropy (R ¼ 0).
In order to study the emergence of QD in the simplest
possible context, we will thus focus on a limit case with
α⊥ ¼ Dk ¼ D⊥ ¼ 0, but where αk > 0 and Dθ > 0. In
addition, we will set most parameters in all simulations
below, usingv0 ¼ 0.002,αk ¼ 0.02, β ¼ 1.2, k ¼ 5, l0 ¼ 1,
N ¼ 1600, and timestep dt ¼ 0.01, while varyingDθ andR.

(a)

(b) (c)

FIG. 1. Top: Schematic representation of the interaction be-
tween two self-propelled disks (a) with repulsion radii l0=2 and
headings n̂i, n̂j that can rotate about axes r⃗i, r⃗j, located a distance

R behind each centroid. The repulsion is proportional to j⃗lijj − l0
and projected onto each centroid, resulting in forces and torques
about r⃗i and r⃗j. Bottom: Snapshots of typical quenched disorder
states obtained in a periodic arena, starting from randomly
oriented (b) or fully aligned (c) headings. Each disk is represented
by an arrow that starts at its centroid, points in its heading
direction, and is colored by heading angle as shown in the inset.
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To analyze our results, we introduce 2 order parameters
that allow us to discriminate between the collective states.
The first one corresponds to the standard polarization ψ ¼
hkPN

i¼1 n̂ikit=N (where h·it is the average over time after
reaching a steady state). It determines the degree of
alignment between agents, with ψ ¼ 1 if all are perfectly
aligned and ψ ¼ 0 if they are randomly oriented. The
second one evaluates the persistence of the orientation of
each agent over time, averaged over all agents, and is
defined by ϕ ¼ P

N
i¼1 khn̂iitk=N. If all orientations are

fluctuating about fixed mean values, we have ϕ ¼ 1; if they
are rotating, ϕ ¼ 0.
Figure 2 presents the three phases obtained in our

simulations, as a function of Dθ for fixed R ¼ 0.3 (a),
(b), and of R for fixed Dθ ¼ 0.2 (c),(d). Panels (a) and
(c) show the steady state values of ψ (circles) and ϕ
(diamonds), starting from either aligned (open symbols) or
random (solid symbols) headings. In panel (a), we find the
MO phase at lowDθ, where agents display long-range polar
order and persistent orientation (ψ ≈ ϕ ≈ 1). At high Dθ,
for either low or high R values, we find the DD phase, with
continuously changing random headings and positions
(ψ ≈ ϕ ≈ 0). Finally, at intermediate Dθ and R values,
we find the QD phase, where agents are jammed and have
orientations that fluctuate about constant random angles
(ψ ≈ 0 and ϕ ≈ 1). Panels (b) and (d) display the respective
variances, ψ2 (circles) and ϕ2 (diamonds). We define the
boundaries between phases as their maxima, finding that

the transition between MO and DD occurs at a slightly
lower critical Dθ when starting from randomly oriented,
rather than aligned, initial conditions.
We nowdescribe themechanism that leads to theQD state

and postulate an approximate representation of its dynamics
that will allow us to describe it analytically. We begin by
noting that, in a densely packed system and for large enough
R, the disks will be blocked from rotating by neighboring
agents. This implies that the angular fluctuations generated
by noise will be constrained by forces resulting from the
repulsive potential between disks. The tangential compo-
nents of these forces will become restitution forces that
oppose angular fluctuations, while most of their radial
components will become retrograde forces towards −n̂i.
We will show below that the angular dynamics are well
described by an Ornstein-Uhlenbeck process [64] and that
the transition from theMO phase to the QD phasewill occur
when these retrograde forces match self-propulsion.
First, we compute the effective angular restitution force

that results from the repulsion of neighboring disks. For
small angular fluctuations ΔθðtÞ about the equilibrium
orientationΔθ ¼ 0, the arc followed by the centroid of each
disk can be approximated by a linear displacement
Δx ¼ RΔθ. In the packed case considered here, the agents
will thus feel an effective mean restitution force approx-
imately given by f⃗ · n̂⊥ ≈ −ðk=cÞΔx, where c is a propor-
tionality constant that results from averaging over all
configurations of neighbor positions and angular fluctua-
tions. If we then replace this expression into the Eq. (2), we
find that, at first order in Δθ ≪ 1, the disks’ mean-
field angular dynamics reduce to an Ornstein-Uhlenbeck
process [64] described by

Δ̇θ ¼ −
βkR
c

Δθ þ
ffiffiffiffiffiffiffiffiffi
2Dθ

p
ηðtÞ; ð3Þ

where ηðtÞ is a random variable equivalent to the ηiðtÞ of all
disks. The mean-square fluctuations of the orientations
over time will thus be equal to [64]

hΔθ2iðtÞ ¼ cDθ

βkR
ð1 − e−2βkRt=cÞ: ð4Þ

Figure 3(a) confirms that, in the QD state, the evolution
of the angular fluctuations observed in simulations follows
our analytical description. The symbols display the
hΔθ2iðtÞ fluctuations computed numerically over time,
whereas the curves correspond to plots of Eq. (4), setting
c ¼ 4 to match their asymptotic values. Both solutions
agree well for the three noise levels that we display, despite
the fact that, in the course of these simulations, these
systems transition from a perfect hexagonal lattice of fully
aligned disks to a jammed state with random orientations.
At short timescales, the angular fluctuations present a
diffusive behavior with hΔθ2i ≃ 2Dθt, since they have

MO QD DD
(a)

(b)

DD QD DD
(c)

(d)

FIG. 2. Order parameters (a),(c) and respective variances (b),
(d), as a function of the angular noiseDθ for fixed R ¼ 0.3 (a),(b),
and of the degree of rotational eccentricity R for fixed Dθ ¼ 0.2
(c),(d). We display the standard polarization ψ (circle) and the
orientation persistence ϕ (diamond), using solid or open symbols
for randomly oriented or aligned initial conditions, respectively.
We identify three regimes: a high ψ , high ϕ moving order (MO)
state; a low ψ, high ϕ quenched disorder (QD) state; and a low ψ,
low ϕ dynamic disorder (DD) state. Each point is the average of
the last 2 × 106 time steps (of 2 × 107 total), after reaching the
steady state.
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not yet been constrained by neighboring disks. At long
timescales, they saturate at

hΔθ2is ¼
cDθ

βkR
; ð5Þ

with characteristic crossover time τ ∼ c=ðβkRÞ, as the
retrograde forces that we will describe below drive the
system to the quenched state.
Figure 3(b) compares the numerical hΔθ2is values after

reaching the QD steady state, as a function of Dθ for fixed
R ¼ 0.3 (circles) and as a function of R for fixedDθ ¼ 0.15
(diamonds), to the analytical expression in Eq. (5) vs Dθ

(solid lines) and vs R (dashed lines). We find an excellent
match for hΔθ2is ≲ 0.5 but strong deviations for higher
hΔθ2is, as expected given our small angle approximations.
Using the results above, we can determine the transition

between the MO and QD phases analytically. To do this, we
must first note that the repulsive forces that constrain
angular fluctuations not only affect Δ̇θ, but also have a
component in the −n̂ direction. Defining the mean heading
of a given disk as ŷ ¼ hn̂i, we can use Eq. (1) to compute
the mean force along ŷ as

hFŷi ¼ v0hn̂ · ŷi þ αkhðf⃗ · n̂Þðn̂ · ŷÞi: ð6Þ

Since f⃗ · n̂ ≈ −ðk=cÞΔxΔθ and n̂ · ŷ ¼ cos ðΔθÞ ≈ 1 at
leading order in Δθ, we find that hFŷi ≈ v0 −
ð2v0 þ αkkRÞhΔθ2is=4 for small angles. Using Eq. (5),
we therefore obtain

hFŷi ≈ v0 − ð2v0 þ αkkRÞ
Dθ

βkR
: ð7Þ

This expression shows that a larger angular noise Dθ leads
to stronger retrograde forces, which will eventually surpass
the self-propulsion term v0 and produce backward motion.
When this occurs, the collisions generate anti-alignment
forces that result in the quenched state. Hence, the critical
noiseD�

θ can be computed by imposing hFŷi ¼ 0 in Eq. (7),
which yields

D�
θ ¼

v0βkR
2v0 þ αkkR

: ð8Þ

Figure 3(c) shows that the critical noise curveD�
θðRÞmatches

very well the numerical boundary between the MO and QD
phases in the ðR;DθÞ plane, thus validating our assumptions.
The diagram also shows that QD emerges between the MO
andDDphases for allR≳ 0.08 in these simulations, and that
there is an optimal R ≈ 2.26 at which the QD state remains
stable for the highest noise values. At intermediate
Dθ ∼ 0.25, we observe a reentrant transition as a function
of R, with DD for low R (where angles are not strongly
confined), QD for intermediate R, and again DD for large R
(where angular fluctuations disrupt the jammed QD state).
To explore how common the QD state may be, we

carried out simulations beyond the limit case with only
angular noise and no sideways displacements considered
above, finding a QD phase for a range of anisotropic
translational damping and nonzero positional noise ratios.
We also searched for the QD phase in other existing models
of active agents with repulsive forces that can lead to self-
organization [44,55,65,66], which rely on self-alignment
towards the displacement direction instead of the mechani-
cal torques considered here. We found that QD also
emerges in this type of models for a range of parameters
in cases where the angular dynamics are nonlinear [55,66],
but not if they are linear [44,65]. The phase diagrams
resulting from these explorations are included in the
Supplemental Material [58].
In conclusion, our results demonstrate and explain the

emergence of a novel, noise-induced QD phase that could
appear in a broad range of simulated and experimental dense
active systems. Indeed, we have shown that the QD state is
produced by a simplemechanicalmechanism that only relies
on having active components with angular noise, nonax-
isymmetric rotation, and anisotropic translational damping.
We emphasize that these conditions are expected to bemet in
many real-world systems, where self-propelled agents will
typically display heading fluctuations and nonaxisymmetric

(a)

(b) (c) MO
QD
DD

FIG. 3. (a) Mean-square fluctuations of disk orientations hΔθ2i
as a function of time t, for R ¼ 0.3 and three different values of
Dθ. The numerical simulations (symbols) are well matched by
our analytical predictions (curves) expressed in Eq. (4), especially
in the asymptotic regimes. (b) Steady state of the mean-square
orientation fluctuations hΔθ2is as a function of angular noise Dθ

for fixed R ¼ 0.3, and of degree of rotational eccentricity R for
fixed Dθ ¼ 0.15. The numerical simulations and analytical result
in Eq. (5) match very well, but only for low hΔθ2is, as expected.
(c) Phase diagram in the R-Dθ plane, where the symbols indicate
the simulation results after reaching a steady state. The analytical
prediction (solid black curve) for the transition from moving
order to quenched disorder, given by Eq. (8), matches well the
numerical results. All simulations were performed with randomly
oriented initial conditions.
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features, while presenting anisotropic damping interactions
with the substrate due to their polar nature. In fact, angular
noise and anisotropic damping have already been included
in the description of a number of experimental active
systems [33,37,56,67–69]. As a consequence, we expect
theQD state to emerge in a variety of experiments (including
dense, modified versions of [33,34,57]) and encourage the
design of setups that could detect it.
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