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Applications of active particles require a method for controlling their dynamics. While this is typically
achieved via direct interventions, indirect interventions based, e.g., on an orientation-dependent self-
propulsion speed of the particles, become increasingly popular. In this Letter, we investigate systems of
interacting active Brownian spheres in two spatial dimensions with orientation-dependent propulsion using
analytical modeling and Brownian dynamics simulations. It is found that the orientation dependence leads
to self-advection, circulating currents, and programmable cluster shapes.
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Active Brownian particles (ABPs) [1–4] combine
Brownian motion with directed self-propulsion, leading
to an inherently nonequilibrium dynamics. They are a
prime model system for active particles, which have great
potential for future applications including nanobots for
medical applications like microsurgery [5] or drug delivery
[6–8] and programmable materials for industrial applica-
tions [9–11]. Almost all applications have in common that
general features of the dynamics of active particles, such as
their collective dynamics, have to be controlled. This is
often achieved using direct interventions [4,12], where an
external force or torque acts on the particles. Recently,
methods based on indirect interventions, where one instead
changes the way the particles perceive their environment,
have become very popular. Previous work on such
approaches focuses on motility maps, where the particles’
propulsion speed becomes space dependent [13–26]. Such
systems have already been realized, e.g., via light-propelled
particles in complex light fields [14,27]. Less well under-
stood are indirect interventions with respect to the particles’
orientations, as given, e.g., by an orientation-dependent
propulsion force. Such forces arise, e.g., when particles are
propelled by ultrasound [28] or light [29].
There exists theoretical as well as experimental work

on single particles with an orientation-dependent self-
propulsion [30,31], but many-particle systems of interact-
ing ABPs with an orientation-dependent propulsion have
not been investigated so far. Of particular importance in this
context are the effects of such an indirect intervention on
the collective dynamics of ABPs and their intriguing
nonequilibrium effects, such as non-state-function pressure
[32,33], reversed Ostwald ripening [34], and motility-
induced phase separation (MIPS) [35].
In this Letter, we address this issue by investigating

systems of interacting spherical ABPs with an orientation-
dependent propulsion velocity in two spatial dimensions

using analytical modeling and computer simulations.
We derive a predictive field-theoretical model that describes
the collective dynamics of such systems and find novel
contributions that depend on the symmetry properties of the
orientation-dependent propulsion. The model provides an
analytical prediction for the spinodal corresponding to the
onset of MIPS, which we compare to state diagrams
obtained by Brownian dynamics simulations. Further-
more, we show that the orientation dependence of the
propulsion gives rise to the self-assembly of deformed
MIPS clusters with, e.g., elliptical, triangular, and rectan-
gular shapes.
The considered system consists of N spherical, inter-

acting ABPs in two spatial dimensions with center-
of-mass positions ri ¼ ðxi; yiÞT, orientations ûðϕiÞ ¼
ðcosðϕiÞ; sinðϕiÞÞT, and polar orientation angles ϕi, where
i ¼ 1;…; N. To model the microscopic dynamics of the
particles, we use the Langevin equations

ṙi ¼ vAðϕiÞûðϕiÞ þ vint;iðfrigÞ þ
ffiffiffiffiffiffiffiffiffi
2DT

p
ΛT;i; ð1Þ

ϕ̇i ¼
ffiffiffiffiffiffiffiffiffi
2DR

p
ΛR;i; ð2Þ

where an overdot denotes a derivative with respect to time t.
Equations (1) and (2) are overdamped (no momentum
conservation). They differ from the standard Langevin
equations for ABPs [2,3,12,33,36,37] by the orientation
dependence of the propulsion speed vAðϕÞ. Particle inter-
actions are incorporated using the term vint;iðfrigÞ ¼
−βDT

P
N
j¼1;j≠i ∇riU2ðkri − rjkÞ. Here, β ¼ 1=ðkBTÞ is

the thermodynamic beta with Boltzmann constant kB and
temperature T, DT the translational diffusion coefficient,
∇ri ¼ ð∂xi ; ∂yiÞT the del operator with respect to ri, U2 a
two-particle interaction potential, k · k the Euclidean norm,
DR ¼ 3DT=a2 the rotational diffusion coefficient, and a the
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particle diameter. Thermal fluctuations are modeled via
zero-mean, unit-variance statistical white noises ΛT;iðtÞ
and ΛR;iðtÞ.
Using the interaction-expansion method [36–41], we

derived from Eqs. (1) and (2) an advection-diffusion model
that describes the time evolution of the number density
ρðr; tÞ of the particles, depending on position r ¼ ðx; yÞT
and time. The derivation (see the Supplemental Material
[42]) assumes short-ranged interactions and a dependence
of vAðϕÞ on ϕ that can be well approximated with few
Fourier modes. The resulting model reads as

ρ̇ ¼ −∇ · ðμð1ÞρÞ þ ∇ · ðDðρÞ∇ρÞ; ð3Þ

where DðρÞ is a density-dependent diffusion tensor with
elements

DijðρÞ ¼ ðDT þ c1ρþ c2ρ2Þδij þ c3ρμ
ð2Þ
ij þ μð2Þik μ

ð2Þ
kj

2DR
: ð4Þ

(We sum over repeated lower indices from here on.) The
coefficients ci are given in the Supplemental Material [42].
Moreover, δij denotes the Kronecker delta, μð1Þ ¼R
2π
0 dϕvAðϕÞûðϕÞ=ð2πÞ the particles’ orientation-averaged
propulsion velocity, and μð2Þij the elements of the symmetric

velocity tensor μð2Þ ¼ R
2π
0 dϕvAðϕÞûðϕÞ ⊗ ûðϕÞ=π with

the dyadic product⊗. Formally, μð1Þ and μð2Þ are the zeroth-
and first-order contributions, respectively, of the orienta-
tional expansion of the propulsion velocity vðϕÞ ¼
vAðϕÞûðϕÞ into Cartesian tensors [47,48]: vðϕÞ ¼ μð1Þþ
ûðϕÞ · μð2Þ þOðû2Þ. Including the Oðû2Þ contributions
would not lead to additional terms in Eq. (3) unless we also
includehigher orders in derivatives. For the special case of an
isotropic propulsion speed, we recover the purely diffusive
model from Ref. [36]. In this case (i.e., vA ¼ v̄ with a

constant v̄), wegetμð1Þ ¼ 0 andμð2Þij ¼ v̄δij such that vðϕÞ ¼
v̄ ûðϕÞ as required. Equation (3) is our first main result.
The orientational contributions μð1Þ and μð2Þ are the novel

features of this model compared with the model derived in
Ref. [36] for isotropic propulsion. A nonvanishing μð1Þ
corresponds to an internal polarization of the propulsion
velocity that, similar to an external field [12], gives rise to
(self-)advection. This is easily seen from the fact that the
first term on the right-hand side of Eq. (3) can be eliminated
using the Galilei transformation r → r − μð1Þt. The self-
advection results, like the motility of individual active
particles [49–51], from an ðr ↔ −rÞ-symmetry breaking.
In contrast, μð2Þ breaks the (x ↔ y) symmetry of the
diffusion tensor (4). This also occurs in systems with
chirality such as circle swimmer systems [37,52].
For what follows, we specify the orientation-dependent

propulsion speed vAðϕÞ as

vA;nðϕÞ ¼ v̄
�
1 − νþ 2νsin2ðnϕ=2Þ�; ð5Þ

which involves an n-fold symmetry and is parametrized by
the orientation-averaged propulsion speed v̄ and the dimen-
sionless angular modulation amplitude ν. In Ref. [31],
active magnetic dumbbells with an orientation-dependent
propulsion speed similar to (5) were realized experimen-
tally. Therefore, the phenomena predicted in this Letter can
be observed experimentally in systems of such dumbbells
(and presumably also in many other systems). As was the
case in the experiments from Ref. [31] (and as is common
in active matter physics), the self-propulsion is imple-
mented on the single-particle level. What we are interested
in is the many-particle behavior resulting from Eq. (5).
We focus on the cases n ¼ 1;…; 4. Using Eq. (5), we

obtain

μð1Þ ¼ −v̄δn;1
1

2
ðν; 0ÞT; ð6Þ

μð2Þ ¼ v̄

�
1 − σ3δn;2

ν

2

�
; ð7Þ

where 1 is the identity matrix and σ3 is the third Pauli
matrix. Physically, this result means that for n ¼ 1 (the only
case with nonzero μð1Þ) there is a constant mean force in the
x direction with an amplitude proportional to ν. For n ¼ 2,

μð2Þ11 is decreased and μð2Þ22 increased, implying that the
diffusivity is different for the x and y direction.
To investigate the system further, we performed

Brownian dynamics simulations [53] based on the
Langevin equations (1) and (2). For the interactions, we
chose the Weeks-Chandler-Andersen potential U2ðrÞ ¼
ð4ε½ða=rÞ12 − ða=rÞ6� þ εÞΘð21=6a − rÞ [54] with inter-
action strength ε, particle distance r, and Heaviside step
function Θ. The particle diameter a, Lennard-Jones time-
scale τLJ ¼ a2=ðεβDTÞ, and interaction strength ε are
chosen as units of length, time, and energy, respectively.
Nondimensionalization of Eqs. (1) and (2) leads to the
Péclet number Pe ¼ v̄a=DT, which is a measure for the
activity of the particles, and the overall packing density
Φ0 ¼ πρ̄a2=4, where ρ̄ is the spatially averaged number
density of the particles. We fixed the average propulsion
speed to v̄ ¼ 24a=τLJ and changed Pe via the temperature
T. If not stated otherwise, we chose Pe ¼ 150 and
Φ0 ¼ 0.4. Additional details on the computer simulations
can be found in the Supplemental Material [42].
Equation (6) predicts the self-advection velocity μð1Þ of

MIPS clusters for n ¼ 1. We confirmed this by comparing
Eq. (6) with the velocity vc ¼ ðvc;x; vc;yÞT of macroscopic
MIPS clusters of ABPs that we observed in Brownian
dynamics simulations. Figure 1 shows that our analytical
prediction and the velocity of the clusters are in excellent
agreement, demonstrating that our theory is applicable
also to self-organized structures. The x component of vc
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decreases linearly for increasing ν, and the y component is
zero since vA;1ðϕÞ ¼ vA;1ð−ϕÞ. Our results suggest that, by
changing the first Fourier mode of vAðϕÞ, one can steer
many-particle structures of ABPs in arbitrary directions.
This effect can be useful for applications where one wants,
e.g., to steer clusters of ABPs through a maze or into or out
of a trap, including active carrier particles that need to swim
to certain regions and release their cargo there [6–8]. The
ability to steer ABPs collectively is relevant, e.g., for drug
delivery [55] and active microstructures [15].
For n ¼ 2, no self-advection arises, but the diffusion

tensor has no longer identical diagonal elements: Dij ∝
fðρÞδij − v̄νðc3ρþ v̄=DRÞσ3;ij with a scalar function fðρÞ.
Since the diffusion tensor determines the spinodal for the
onset of MIPS [36], the spinodal differs from the standard
case. A linear stability analysis yields the spinodal con-
dition D22ðρÞ ¼ 0. This condition becomes equal to
the one presented in Ref. [36] for standard ABPs with
isotropic propulsion when one replaces the ordinary
Péclet number there by a new effective Péclet number

Peeff ¼ amaxðμð2Þ11 ; μ
ð2Þ
22 Þ=DT ¼ ð1þ ν=2ÞPe. To confirm

the spinodal condition and this mapping, we obtained,

for different angular modulation amplitudes ν, state dia-
grams by Brownian dynamics simulations. We chose the
standard deviation of the reduced interaction energy
σðEint=εÞ [37] as a quantity for the identification of clusters.
The analytical prediction and simulation results for the
spinodal are shown in Fig. 2.
For ν ¼ 0, which corresponds to standard MIPS, the

state diagram [see Fig. 2(a)] shows a homogeneous state for
low Φ0, a solid state for small Pe and large Φ0, and MIPS
clusters for large Pe and moderate or large Φ0. Both of the
latter two states have a higher standard deviation of the
reduced interaction energy σðEint=εÞ than the homogeneous
state. For increasing ν, the state diagram gradually changes
and the MIPS clusters emerge at lower Pe [see Figs. 2(b)
and 2(c)]. The analytical prediction exhibits the same
qualitative behavior and is in very good agreement with
the simulation data even for large modulation amplitudes
ν ¼ 1. As shown in Fig. 2(d), while the value Pec of Pe at
the critical point decreases with ν, the critical value Peeff;c
of Peeff remains (like the critical value Φ0;c of Φ0)
unchanged. In addition, we determined the critical point
directly from the simulations via the improved finite-size
scaling method developed in Ref. [56] (see the
Supplemental Material [42] for details). The results, which
are plotted in Fig. 2(d), are in good agreement with the
theoretical prediction. This confirms our claim that one can
map the phase-separation behavior onto that of standard
ABPs by making use of an effective Péclet number. What is
not captured by the analytical prediction is the fact that the
spinodal is numerically found to move upward for larger ν.
This effect can be understood by noting that for larger ν, the
particles are fast for ϕ ≈ 0; π and slow for ϕ ≈ π=2, 3π=2,
and can therefore be thought of as a mixture of active and
passive particles. For such mixtures, it has been found that
the spinodal is shifted upward in the Pe −Φ0 diagram
compared with the purely active case [38]. The spinodal for
MIPS is our second main result.

FIG. 1. Comparison of our analytical results for the self-
advection velocity μð1Þ ¼ ðμð1Þx ; μð1Þy ÞT [see Eq. (6)] with the
time-averaged velocity of particle clusters vc ¼ ðvc;x; vc;yÞT that
we obtained from six Brownian dynamics simulations for each
considered value of the angular modulation amplitude ν.

(a) (b) (c) (d)

FIG. 2. (a)–(c) State diagrams for ABPs with orientation-dependent propulsion speed vA;2ðϕÞ [see Eq. (5)] showing the standard
deviation of the reduced interaction energy σðEint=εÞ as a function of the particles’ Péclet number Pe and overall packing densityΦ0 for
different values of the angular modulation amplitude ν. The state diagrams include a homogeneous state, MIPS, and a solid state. The
green line is a guide to the eye of the border between MIPS and homogeneous distribution. Our analytical prediction for the spinodal
corresponding to the onset of MIPS, the binodals estimated from Fx and Fy, and the critical point are indicated by light blue curves, dark
blue curves, and light blue cross marks, respectively. (d) Predicted values of Pe, Peeff , and Φ0 at the critical point (denoted Pec, Peeff;c,
and Φ0;c) and critical Péclet number obtained from the simulations (denoted Pes;c and indicated by gray crosses with error bars) as a
function of ν.
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We also consider the binodal. For ν ¼ 2, Eq. (3) can be
written as

ρ̇ ¼ ∂x

�
ρ∂x

δFx

δρ

�
þ ∂y

�
ρ∂y

δFy

δρ

�
ð8Þ

with free energies Fx and Fy (see the Supplemental
Material [42]). For Fx ¼ Fy, Eq. (8) would constitute an
effective passive model and the binodal could be inferred
from the free energy. In the present case, the orientation-
dependent propulsion breaks this structure. We can never-
theless calculate the binodals for both Fx and Fy, which are
plotted in Fig. 2. (Their relation to the actual binodal is
discussed in the Supplemental Material [42].) Owing to
strong approximations involved in their derivation (see the
Supplemental Material [42]), the binodals are not quanti-
tatively accurate (and not fully consistent with our accurate
spinodal, which cannot lie outside the binodals in practice).
Nevertheless, it is clear that they change as a function of vA.

For n ¼ 2, but not for n ¼ 1, we also observed a
deformation of MIPS clusters from (standard) circular
[35] to elliptic shapes. This effect is captured in Fig. 3,
where the width wc, height hc, and aspect ratio wc=hc of the
clusters are shown. Interestingly, width and height change
in such a way that the aspect ratio increases approximately
linearly with ν, as shown by a linear fit in Fig. 3. This
increase can be explained by the fact that, if vAðϕÞ is given
by Eq. (5) with n ¼ 2, the difference between the magni-
tudes of the active forces from the y direction [proportional
to vAðπ=2Þ] and x direction [proportional to vAð0Þ] grows
linearly with ν. A possible explanation for the elliptical
shape is based on the fact that clusters in phase separation
processes are usually spherical because this minimizes the
total energy in a system of particles with attractive
interactions. Such attractive interactions are present, on
an effective level, in ABPs [57]. In the present case, the
activity and therefore the attractive interactions are stronger
for ϕ ≈ π=2, 3π=2 than for ϕ ≈ 0; π, implying that the
system has a stronger tendency to minimize its surface
curvature for ϕ ≈ π=2, 3π=2.
This leads to the question of whether one can use

orientation-dependent propulsion speeds to induce clusters
of arbitrary intended shapes in ABP systems. To follow this
idea, we investigated also the cases n ¼ 3 and n ¼ 4,
choosing ν ¼ 0.25 for n ¼ 2 to avoid unreasonably large
aspect ratios of the clusters and ν ¼ 1 otherwise to
maximize the deformation phenomenon. The results are
shown in Fig. 4. We observed elliptic clusters for n ¼ 2
[see Fig. 4(a)], triangular clusters for n ¼ 3 [see Fig. 4(b)],
and rectangular clusters for n ¼ 4 [see Fig. 4(c)]. The
elliptic and triangular clusters occur so reliably that they are
also clearly visible when averaging the particle distribution
in the stationary state over 11 simulation runs and over time

FIG. 3. Width wc, height hc, and aspect ratio wc=hc of MIPS
clusters consisting of ABPs with propulsion speed vA;2ðϕÞ [see
Eq. (5)] as functions of the angular modulation amplitude ν.

(a) (b) (c)

FIG. 4. Observed nonspherical cluster shapes that are self-assembled by ABPs with orientation-dependent propulsion speed vA;nðϕÞ
(see Eq. (5) for different values of the symmetry order n and angular modulation amplitude ν. Snapshots of particle-based simulations
(top), performed by solving Eqs. (1), (2), and (5), and local packing densities Φðx; yÞ, obtained by averaging over these simulations and
over time, (bottom) are shown for (a) elliptic, (b) triangular, and (c) rectangular clusters.
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(bottom row of Fig. 4). In contrast, the rectangular clusters
occur with their edges oriented either parallel to the
coordinate axes or tilted by an angle π=4, such that this
cluster shape is blurred by the averaging. The shape
becomes rounder (and more like that of a system with
isotropic propulsion) for larger n; see the Supplemental
Material [42] for details. Clusters with more complex
shapes can be realized by a more complex dependence
of vA on ϕ (and possibly r).
These interesting findings may be utilized for the

realization of programmable materials [15,58]. If the
orientation-dependent propulsion can be controlled suffi-
ciently well, the observed effect can make systems of active
particles self-assemble into desired patterns. For example,
electrically conducting ABPs may assemble switches
where the elliptic clusters are used as bridges with certain
orientations. The investigation of the programmable MIPS
cluster shapes is our third main result.
Interestingly, the model (3) allows for circulating particle

currents for μð2Þ ≠ 0 since the curl of the current does not
generally vanish in this case. Such currents are a central
feature of active matter [59]. For vA ¼ vA;2, Eq. (3)
involves terms ∝ ð∂2x − ∂

2
yÞρ2, which imply fluxes toward

the denser region in the y direction and out of it in the x
direction. This is related to the unusual MIPS cluster
formation, since MIPS arises once particle fluxes point
toward denser regions [60]. We therefore measured the
current JðrÞ and the polarization PðrÞ (see the
Supplemental Material [42] for definitions) in simulations
for n ¼ 2 to check whether circulating currents do in fact
exist in the elliptic steady state. The results, which confirm
this expectation, are shown in Fig. 5. Particles flow into the
cluster from the y direction (large vA) and out of it in the x
direction (small vA). This behavior is in stark contrast to the
one known from standard ABPs, where there is no particle
current through the interface in steady state [33,34].
Notably, P does always point inward at the boundary of
the ellipse, such that J and P have opposite directions for
ϕ∈ f0; πg (see inset in Fig. 5). The particles on the left- and
right-hand side are therefore pushed out of the cluster by
interaction forces even though their self-propulsion force

(parallel to P) points toward the cluster. A video of the
cluster formation and the resulting steady state (including
circulating currents) can be found in Ref. [61]. The
circulating currents are our fourth main result.
In summary, we have shown that the collective behavior

of ABPs with orientation-dependent propulsion gives rise
to fascinating effects including tunable self-advection and
circulating particle currents. An effective Péclet number
allows one to map the spinodal for the anomalous MIPS
observed here onto that of standard MIPS. The orientation-
dependent propulsion can be employed to induce self-
assembly of nonspherical clusters. Our findings provide
new insights into the intriguing nonequilibrium dynamics
of active particles and constitute an important step toward
the realization of programmable materials by active soft
matter.

The supporting data for this Letter, including the raw
data for all figures, are openly available from [61].
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