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We investigate the dynamics of soft sphere liquids through computer simulations for spatial dimensions
from d ¼ 3 to 8, over a wide range of temperatures and densities. Employing a scaling of density-
temperature-dependent relaxation times, we precisely identify the density ϕ0, which marks the ideal glass
transition in the hard sphere limit, and a crossover from sub- to super-Arrhenius temperature dependence.
The difference between ϕ0 and the athermal jamming density ϕJ, small in 3 and 4 dimensions, increases
with dimension, with ϕ0 > ϕJ for d > 4. We compare our results with recent theoretical calculations.
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Introduction.—Fluid states of matter can transform to
rigid, amorphous solids through the glass transition or
the jamming transition. The glass transition describes the
transition to disordered solid states typically in molecular
systems upon a decrease in temperature, whose nature has
been intensely investigated over several decades [1–5]. The
jamming transition has likewise been widely investigated in
athermal systems, typified by granular matter [6–8]. Their
relationship has also been the subject of considerable
research [9]. Whereas molecular glass formers and granular
matter represent cases that exhibit one or the other of these
phenomena, several systems, such as colloidal suspensions,
in principle exhibit both phenomena, and their interplay is
important, e.g., in their rheology [10]. Theoretical inves-
tigations over the last decade, extending the framework of
the random first order transition theory [11–13], have
focused on the hard sphere system in which both phenom-
ena have been investigated in detail, and a unified mean-
field description of both these phenomena has been
developed in the limit of infinite dimensions [9,14–16].
These developments have naturally led to investigations of
how the infinite-dimensional results relate to behavior in
finite dimensions. An appealing and systematic approach to
addressing questions in this regard is to study the effect of
spatial dimensionality on the glass transition and jamming
phenomenology, which have been pursued for hard particle
systems extensively [9,16–23]. In addition to systems of
hard spheres, a small number of other studies have
investigated the role of dimensionality in determining
aspects of glassy dynamics [24–28], such as dynamical
heterogeneity in a binary mixture of the Lennard-Jones
particles as a function of temperature. A more extensive
investigation of the dependence on spatial dimensionality

in systems where both thermal and density effects play a
role is thus of great interest. In this Letter, we study soft
sphere assemblies interacting with a harmonic potential
by investigating the dynamics at different densities and
temperatures.
In the zero temperature limit, the behavior of this system

approaches the density-controlled hard sphere model, while
it is similar to thermally driven fluids at high density and
finite temperature. In the athermal limit, the system jams,
losing the ability to flow, at a critical density, ϕJ, via
the nonequilibrium jamming transition [29,30]. Several
works [30–37] have considered and demonstrated the
scenario that the jamming density is not unique, but can
occur over a range of densities, above ϕJ. In turn, the range
of jamming densities is associated with a line of glass
transition densities (kinetically determined or otherwise, as
in mean-field results [9,15]) ending with a Kauzmann
density ϕ0, which may be expected to be the relevant
density for the divergence of relaxation times. The relation-
ship between the jamming and Kauzmann densities have
been investigated, with varying conclusions regarding
the relative values of ϕJ and ϕ0 [17,38–42]. Several studies
[9,16,34,41,43,44] also indicate that the relationship
between these two transition densities depends on
dimensionality.
In [39,40], the relaxation times were studied for the same

model we consider in three dimensions. With increasing
density, relaxation times exhibit a crossover from sub-
Arrhenius to super-Arrhenius temperature dependence.
Relaxation times were analyzed through a scaling function
that assumes a divergence for the hard sphere systems
at a density ϕ0, and by defining an effective hard sphere
diameter at finite temperatures [45], to obtain two distinct
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scaling collapses across ϕ0. The estimate of ϕ0 thus
obtained is very close to ϕJ, the jamming point, although
the meaning of the two densities was clearly distinguished.
Subsequently, the same scaling analysis was revisited

in [46], where it was observed that good scaling collapse
of comparable quality to [39,40] could be obtained for
significantly different sets of parameter values ϕ0, δ and μ.
Further, the parameters used to obtain scaling collapse
[39,40] do not lead to an Arrhenius temperature depend-
ence one may expect at ϕ ¼ ϕ0, as we explain below. To
address these issues, we propose a new scaling analysis that
ensures an Arrhenius temperature dependence at ϕ ¼ ϕ0,
and employ a systematic procedure to estimate the density
ϕ0 reliably.
We perform extensive molecular dynamics simulations

for a wide range of ϕ, T values in different spatial
dimensions ranging from d ¼ 3 to 8. We perform a scaling
analysis similar to [39,40] but with a newly proposed
scaling function to obtain ϕ0 as a function of d. We obtain
jamming densities following the analysis in [29,30]. Our
results clearly demonstrate that ϕ0 > ϕJ for d > 4, with
ϕ0=ϕJ increasing with d, as may be expected from mean-
field results [9,15,16].
Simulation details.—We study a 50∶50 binary mixture

of spheres of size ratio 1.4, interacting with a harmonic
potential as a model glass former [47]:

VαβðrÞ ¼
ϵαβ
2

�
1 −

r
σαβ

�
2

; rαβ ≤ σαβ; ð1Þ

and VαβðrÞ ¼ 0 for rαβ > σαβ, where α; β∈ ðA;BÞ, indi-
cates the type of particle. Particle diameters σAA and σBB
obey σBB=σAA ¼ 1.4, and σAB ¼ ðσAA þ σBBÞ=2. The sys-
tem size varies from 1000 to 5000 depending on the spatial
dimension, with the linear extent of the simulated volume,
L > 2σBB in all dimensions. We investigate the dynamics at
10–14 densities (with 1–2 independent samples each)
around the jamming density. The volume fraction, or
density, ϕ ¼ ρVd, where Vd ¼ 2−dfπd=2=Γ½1þ ðd=2Þ�g×
ðcAσdAA þ cBσdBBÞ, cA ¼ cB ¼ 1=2, is the average volume
per sphere in d dimensions, ρ ¼ ðN=VÞ is the number
density, N is the number of particles, and V is the volume.
Molecular dynamics simulations are performed in a
cubic box with the periodic boundary conditions,
employing the constant temperature integration in [48],
with time step dt ¼ 0.01. Each independent run is of
length > 100τα where relaxation time τα, is computed
from the overlap function qðtÞ (for B particles) as
hqðt ¼ ταÞi ¼ 1=e, with

qðtÞ ¼ 1
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FIG. 1. Relaxation times as a function of inverse temperature are plotted in a semilog scale for several densities in different
dimensions. Data shown with (yellow) filled triangles correspond to densities across which super-Arrhenius dependence is observed.
Error bars (evaluated as standard deviations from independent estimates) are shown for selected densities for d ¼ 4.
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where wðxÞ ¼ 1 if x < a and 0 otherwise. The parameter
“a” is chosen so that particle displacements from
vibrational motion do not contribute to a reduction of
overlap [49]. In Fig. 1, the relaxation time is plotted as a
function of temperature for various densities for 3–8
dimensions. Additional details are provided in the
Supplemental Material (SM) [50].
Results.—Considering an expression for relaxation

times for hard sphere fluids of the form
ffiffiffiffi
T

p
τhsα ∼

exp ½A=ðϕ0 − ϕÞδ�, Berthier and Witten [39] analyzed
relaxation times for soft spheres by defining a temper-
ature-dependent effective volume fraction of the form
ϕeff ¼ ϕ − aTμ=2, which leads to the scaling form

ffiffiffiffi
T

p
ταðϕ; TÞ ∼ exp

��
A

jϕ0 − ϕjδ
�
F�

�jϕ0 − ϕj2μ
T

��
: ð3Þ

F�ðxÞ are unknown scaling functions that capture the
distinct (super-Arrhenius, for ϕ > ϕ0 and sub-Arrhenius,
for ϕ < ϕ0) temperature dependence of τα. Scaling collapse
of ταðϕ; TÞ is used to determine the parameters μ, δ, and ϕ0.
Plotting jϕ0 − ϕjδ logð ffiffiffiffi

T
p

ταÞ against jϕ0 − ϕjð2=μÞ=T,
with suitable choices of the parameters, a data collapse

on to two branches above and below ϕ0 is obtained. The
values of ϕ0 ¼ 0.635 and δ ¼ 2.2 (in d ¼ 3) were deter-
mined from such a procedure, with the δ value being in
close agreement with experimental and simulation results
for colloidal hard spheres and theoretical results [51–53].
The estimated ϕ0 is close to but distinct from the jamming
density of ϕJ ¼ 0.648 estimated for the binary mixture
studied in [29,30,39] and here.
The continuity of the functions Fþ and F− in the scaling

form in Eq. (3) suggests that FþðxÞ ¼ F−ðxÞ ∼ xμδ=2 as
x → 0 (i.e., ϕ → ϕ0). Further, it is necessary to have
μδ=2 ¼ 1 in order to obtain the expected Arrhenius form,
τ ∼ expðA=kBTÞ, at density ϕ0 [as explained in the SM
(S3.A)]. Imposing such a constraint, however, does not lead
to the best data collapse [39], as we independently verify. It
is thus desirable to explore alternate scaling functions,
which we do in this work based on the evaluation of an
effective diameter following the prescription in [54]. We
compare our results to analysis employing Eq. (3), and
obtain consistent estimates of ϕ0.
Following [54], the expression for the effective diameter

with only temperature-dependent corrections can be
written as σeff ¼

R
σ
0 ½1 − expð−uðrÞ=kBTÞ�dr, leading to
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FIG. 2. Scaling plot of relaxation times for 3–8 spatial dimension. As explained in the text, coefficients a, b and exponent β describe
the effective volume fraction ϕeff . Of these, we use fixed values of a ¼ d

ffiffiffi
π

p
=2 (see SM) and vary b, β > 0.5 to obtain collapse of

pressures onto a single curve, P=ρT ¼ fðϕeffÞ (shown in the insets). Best data collapse is obtained around β ¼ 0.7 (which we keep
fixed), and the b values are indicated in the legends. Keeping δ ¼ 2 fixed, we vary ϕ0 as the single fit parameter to obtain scaling plots of
relaxation times τα shown.
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σeff ≈ σ½1 − 1
2

ffiffiffiffiffiffiffiffiffiffiffi
πkBT

p �, as explained in the SM (S3.B). In
turn, the effective volume fraction in dimension d can be
approximated as

ϕeff ≈ ϕ
�
1 − a

ffiffiffiffi
T

p
þ bTβ

�
; ð4Þ

where a ¼ d
ffiffiffi
π

p
=2, and the term bTβ approximates terms

of OðTÞ and higher. Employing the effective ϕ in the
expression for the hard sphere relaxation times, we write

ffiffiffiffi
T

p
ταðϕ; TÞ ∼ exp

�
A

jϕ0 − ϕjδ F�

� j ϕ0

ϕ − 1j
a

ffiffiffiffi
T

p
− bTβ
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: ð5Þ

An Arrhenius form of the relaxation times at finite T and
ϕ ¼ ϕ0 requires δ to be 2. The choice of δ ¼ 2, which we
employ, is justified by the analysis provided in the SM
(S5.A). Rather than estimate b, β, and ϕ0 through a scaling
analysis of τα, we first require that P=ρT where P is the
pressure is a unique function of ϕeff and estimate b and β
from the data collapse of P=ρT (shown in the insets of
Fig. 2). Scaling collapse of τα through Eq. (5), shown in
Fig. 2, is used to estimate the remaining parameter ϕ0.
Additional details regarding the data collapse procedure
including error analysis are provided in the SM.
We next estimate the jamming densities following

the protocol employed in [30], wherein initially random
configurations are compressed till the energy reaches 10−5,
and decompressed till the energy decreases below 10−16, at
the jamming density (see SM for additional details).
Figure 3(a) illustrates the protocol for d ¼ 5 (correspond-
ing data for all dimensions are shown in the SM). Based on
the initial configuration used, the ϕJ we estimate corre-
sponds to the low density limit of the range over which
jamming can take place [29,30]. The procedure is applied
to 1000 independent initial configurations, and the histo-
gram of jamming densities obtained is shown in Fig. 3(b).
The average jamming density ϕJ is shown in Fig. 3(c) (also
tabulated in Table I), along with estimates of ϕ0 obtained
above. The ratio ϕ0=ϕJ, shown in the inset, increases with
d, with ϕ0 > ϕJ for d > 4, whereas for d ¼ 3, 4, ϕ0 < ϕJ,
with the two values being very close. The jamming
densities ϕJ we obtain are very similar to, but slightly
larger than, those obtained for monodisperse spheres
in [21,55]. In Fig. 3(d), we compare the scaled jamming
densities we obtain with those in [55]. We also show the
recent theoretical calculations in [16] for the correspond-
ing quantity ϕth, which shows the same trend as our ϕJ
data, but are smaller. There is no accurate theoretical
prediction for ϕJ for reasons discussed in Ref. [56], and
the ϕth values computed in [16] can only be used as rough
estimates, which underestimate our results of ϕJ as well
as those in [21,55]. We further show the ϕ0 values we
obtain, along with the corresponding calculated values
(Kauzmann density ϕK) in [16]. Although we are not

able to verify quantitatively the prediction that ϕ0

increases as log d [15,16], we note that the values of
ϕ0 calculated in [16] are in near quantitative agreement
with our results.
Finally, we compute the temperature at which the

relaxation times show an apparent divergence by
fitting the data at each density above ϕ0, for each
dimension, to the Vogel-Fulcher-Tammann (VFT) form,
τα ¼ τ0 exp f1=KVFT½ðT=TVFTÞ − 1�g. In Fig. 4, we show
the density-temperature diagram for d ¼ 3 and d ¼ 7
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FIG. 3. (a) The energies during compression-decompression
cycles of energy-minimized configurations plotted as a function
of volume fraction for d ¼ 5. Data are shown for 50 independent
samples. (b) The histogram of jamming densities for d ¼ 5.
(c) The jamming density, ϕJ , and the glass transition density, ϕ0,
plotted as a function of spatial dimension. Inset: ratio of ϕ0 and
ϕJ , plotted as a function of spatial dimension. (d) Comparison of
ϕ0 and ϕJ values from the present work (AKS) with previous
simulation [55] (MC) and theoretical calculations [16] (MZ)
using the Percus-Yevick closure.

TABLE I. Jamming and glass transition densities ϕJ and ϕ0 for
dimensions d from 3 to 8. Error bars for ϕ0 are obtained by
considering an increase in the error χ2τ (defined in SM) by 20% of
the lowest value. The error bars of ϕJ are computed from half
width at half maximum of the distribution of ϕJ [shown Fig. 3(b)
and the SM]. For comparison, we have shown theoretical values
ϕ0 values from Ref. [16].

D ϕJ (AKS) ϕ0 (AKS) ϕ0 (MZ [16])

3 0.648� 0.0014 0.644� 0.003 0.624414
4 0.467� 0.0015 0.462� 0.004 0.480302
5 0.320� 0.0008 0.325� 0.003 0.325298
6 0.209� 0.0006 0.214� 0.002 0.203008
7 0.1345� 0.0004 0.140� 0.002 0.126974
8 0.0824� 0.0003 0.0870� 0.001 0.0777626

PHYSICAL REVIEW LETTERS 131, 168202 (2023)

168202-4



(results for other dimensions are shown in the SM), which
shows ϕ0 and ϕJ along with the density dependent TVFT.
The results shown illustrate the manner in which the
relationship between ϕ0 and ϕJ changes with spatial
dimension. The TVFT values shown extrapolate to zero at
ϕ → ϕ0, illustrating that ϕ0 is the relevant limit density for
the density-dependent glass transition.
Conclusion.—To summarize, we have studied the

dynamics of model glass forming liquids consisting of
soft (harmonic) spheres by measuring relaxation times as a
function of temperature for several densities for spatial
dimensions 3–8. The temperature dependence exhibits a
crossover from sub-Arrhenius to super-Arrhenius behavior
as density increases. We perform a new scaling analysis
of the relaxation times to identify a density ϕ0, which
corresponds to the ideal glass transition density for the hard
sphere (or zero temperature) limit. We also estimate the
(lowest) jamming density ϕJ, and show that for d > 4,
ϕ0 > ϕJ, which clearly demonstrates that the jamming and
glass transitions are distinct in all dimensions. Comparing
with theoretical calculations in [16], we find near quanti-
tative agreement with our estimated ϕ0 values (albeit with a
steeper d dependence for the ϕ0 we obtain), whereas the ϕJ
values we obtain are underestimated by the ϕth computed
in [16], the reasons for which are discussed in [56]. Our
results thus provide a useful benchmark for future efforts in
developing quantitative theories of the glass and jamming
transitions.
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