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Entanglement entropies of two-dimensional gapped ground states are expected to satisfy an area law,
with a constant correction term known as the topological entanglement entropy (TEE). In many models, the
TEE takes a universal value that characterizes the underlying topological phase. However, the TEE is not
truly universal: it can differ even for two states related by constant-depth circuits, which are necessarily in
the same phase. The difference between the TEE and the value predicted by the anyon theory is often called
the “spurious” topological entanglement entropy. We show that this spurious contribution is always non-
negative, thus the value predicted by the anyon theory provides a universal lower bound. This observation
also leads to a definition of TEE that is invariant under constant-depth quantum circuits.
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Ground states of 2D gapped Hamiltonians are believed to
satisfy an area law: the entanglement entropy of a region
cannot increase faster than its perimeter. In many examples,
the entropy of the reduced density matrix on a disk A takes
the form

SðσAÞ ¼ αj∂Aj − γ þ � � � ; ð1Þ

where αj∂Aj is the leading “area law” term proportional to
the boundary length, γ is a constant term, and the ellipsis
represents terms that vanish for large regions.
The constant term γ, under natural assumptions, was

argued to be universal, i.e., the same for all gapped ground
states in a given phase [1,2]. In particular, γ takes a form
determined solely by the underlying anyon theory of the
phase, γ ¼ logD, whereD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
a d

2
a

p
is the total quantum

dimension of the anyons and da is the quantum dimension of
theanyona.Given its connection to anyons, the constant γ has
been termed the “topological entanglement entropy” (TEE).
The TEE can be computed in both nonsolvable [3,4] and
solvable models [5–9], and it is often used as a smoking gun
signature of topological order or to distinguish two phases.
A common way to extract the TEE is to use a judicious

linear combination of entropies of adjacent regions. We
focus on the definition in Ref. [2], where the TEE γ
is defined using the conditional mutual information
IðA∶CjBÞσ ≔ SðσABÞ þ SðσBCÞ − SðσBÞ − SðσABCÞ of
regions A, B, and C forming an annulus as in Fig. 1(a),

IðA∶CjBÞσ ≡ 2γ; ð2Þ

where σ is a ground state.

While the TEE is a useful diagnostic of topological
order, it was soon observed [10] that it is not a genuine
invariant of the topological phase, unlike, e.g., [11,12]. Two
ground states are in the same phase if they are connected by
a constant-depth circuit consisting of local gates. However,
γ as defined by Eq. (2) can change under such a circuit.
In fact, a shallow circuit acting on a product state may
achieve a nonzero value of IðA∶CjBÞ for arbitrarily large
regions [13–15]. Deviations of γ from the purportedly
universal value logD have been called spurious contribu-
tions or the spurious TEE. States with spurious TEE exist
in both trivial and nontrivial topological phases. These
examples often arise from symmetry-protected topological
phases [14–18], but perhaps not always [19].
Our main result partially restores the universality of the

TEE by showing the spurious contribution is always non-
negative. Thus, logD provides a universal lower bound for
the TEE γ,

γ ≥ logD: ð3Þ

FIG. 1. (a) The partition used to calculate the TEE. (b) Support
of the unitary U considered. (c) String operator Va creates an
anyon a in the interior of the annulus and its antiparticle in the
exterior.
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This observation leads directly to a definition of TEE on
infinite systems that is invariant under constant-depth
circuits, by minimizing the ordinary TEE over such
circuits. More specifically, for a state ρ defined on the
infinite 2D plane, the following quantity

γmin ¼ lim
R→∞

min
U

1

2
IðAR∶ CRjBRÞUρU† ; ð4Þ

yields logD (for a class of states elaborated below), where
the regions AR, BR, CR have a radius and thickness of
order R, and the minimum is taken over circuits U of depth
d < cR for some fixed constant c∈ ð0; 1Þ.
Our result in Eq. (3) helps restore the TEE as a rigorous

diagnostic to distinguish topological phases, albeit with
limitations. For instance, if a state has IðA∶CjBÞ ¼ log 2
for some large regions, it may still be in the trivial phase
(where 2 logD ¼ 0), and indeed such examples exist.
However, it cannot be in the same phase as the toric code,
which has 2 logD ¼ 2 log 2; the latter would require a
negative spurious TEE, which we rule out.
Setup.—We now explain our main result more precisely.

We consider a special class of bosonic quantum many-body
states, defined on infinite two-dimensional lattices, which
we refer to as “reference states,” closely related to the states
considered in Ref. [20].
Definition 1.—A state σ is a reference state if (i) the TEE

calculated as γ0 ¼ 1
2
IðA∶CjBÞσ is the same for any choice

of regions topologically equivalent to Fig. 1(a), and (ii) the
mutual information between two subsystems is zero for any
two nonadjacent subsystems.
Our main technical result is the following inequality,

which holds for any reference state σ and for any circuit U
whose depth is small compared to the radius and thickness
of the annulus ABC:

IðA∶CjBÞUσU† ≥ IðA∶CjBÞσ ≡ 2γ0: ð5Þ

In other words, we show that constant-depth circuits can
never decrease the TEE, when acting on a reference state.
To understand the implications of this result, note that the

set of reference states includes all ground states of string-
net [7–9] and quantum double models [6] and, more
generally, any state satisfying the entanglement bootstrap
axioms [20]. For all of these examples, the rhs of Eq. (5) is
known to equal 2 logD [1,2,20]. Therefore, (5) implies the
claimed lower bound (3) for any state obtained by a
constant-depth circuit acting on a string-net, quantum
double, or entanglement bootstrap state. [We discuss a
generalization of (3) to general 2D gapped ground states in
the Supplemental Material [21], Appendix G.] Similarly,
we deduce (4) with γmin ¼ logD for any state ρ given by a
finite-depth circuit V applied to a reference state, where the
minimum is achieved by the circuit U ¼ V−1.

While we work in the plane for concreteness, our proof
also applies to the TEE defined on any disklike region
embedded in an arbitrary manifold.
Example: Toric code.—To explain the key idea behind

our proof, it is instructive to first focus on a concrete
reference state σ, namely, the toric code ground state [6]
on a plane. (Our argument herewill rely on special properties
of the toric code state, but later we will generalize the proof
to all states satisfying Definition 1.) For this state,
IðA∶CjBÞσ ¼ 2 log 2 so that γ0 ¼ log 2 [5]. If we now apply
a constant-depth quantum circuitU, defining σ̃ ¼ UσU†, in
general, IðA∶CjBÞσ̃ ≠ 2 log 2. Nevertheless, we will show
that, for a sufficiently large annulus ABC, we still have the
lower bound

IðA∶CjBÞσ̃ ≥ 2 log 2: ð6Þ

We first prove the bound (6) for a special class of
constant-depth circuits U, namely, those that are supported
within a constant distance of BC [Fig. 1(b)]. Later, we will
extend this result to general constant-depth circuits.
Our basic strategy is to construct a state λ̃ that is “locally

indistinguishable” from σ̃. More precisely, we will con-
struct a state λ̃ that is indistinguishable from σ̃ over AB and
BC; that is, λ̃AB ¼ σ̃AB and λ̃BC ¼ σ̃BC. We can then express
IðA∶CjBÞσ̃ in terms of IðA∶CjBÞλ̃ using the identity

IðA∶CjBÞσ̃ ¼ IðA∶CjBÞλ̃ þ Sðλ̃ABCÞ − Sðσ̃ABCÞ: ð7Þ

By the strong subadditivity of the entropy (SSA) [27],
IðA∶CjBÞλ̃ ≥ 0, so

IðA∶CjBÞσ̃ ≥ Sðλ̃ABCÞ − Sðσ̃ABCÞ: ð8Þ

Wewill obtain the desired lower bound (6) from a judicious
choice of λ̃.
The easiest way to construct an appropriate λ̃ is to first

find a state λ that is locally indistinguishable from the toric
code ground state σ. More precisely, we need a λ that is
indistinguishable from σ over the past light cone of AB and
BC (with respect to U). Once we find such a λ, we can then
set λ̃ ¼ UλU†.
We construct such a λ using a probabilistic mixture of

toric code excited states. (Later, we use a more general
approach.) For each anyon type a∈ C ¼ f1; e; m; ϵg, we
define a corresponding excited state ρðaÞ by ρðaÞ ¼ VaσV

†
a,

where Va is a unitary (open) string operator that places an
anyon excitation a in the interior of the annulus and its
antiparticle in the exterior [Fig. 1(c)]. We then define λ ¼P

a paρ
ðaÞ for some probability distribution fpa∶ a∈ Cg.

Note that λ has the requisite indistinguishability property as
long as the end points of the string operators Va (where the
anyons are created) are far enough away from the annulus
to lie outside the past light cones of AB and BC.
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To proceed, we must evaluate the entropy difference
Sðλ̃ABCÞ − Sðσ̃ABCÞ. Here it is convenient to choose the path
of the string operators Va so that they avoid the region of
support of the constant-depth circuit U (which by
assumption is supported near BC). Then Va commutes
with U so λ̃ can be written as a probabilistic mixture of the
form

λ̃¼
X

a

paρ̃
ðaÞ; ρ̃ðaÞ ¼Vaσ̃V

†
a: ð9Þ

Crucially, the ρ̃ðaÞ states have two simplifying properties:

(i) different ρ̃ðaÞABC are orthogonal, and (ii) Sðρ̃ðaÞABCÞ ¼
Sðσ̃ABCÞ. Intuitively, property (i) follows from the fact that

each ρ̃ðaÞABC belongs to a different anyon sector on the
annulus. More formally, (i) follows from the existence of
a collection of (closed) string operators supported within

ABC that take on different eigenvalues in each state ρ̃ðaÞABC.
(These string operators are simply the closed versions of
UVaU†; they can be drawn within ABC whenever ABC is
wider than twice the circuit depth of U). Meanwhile,
property (ii) follows from the fact that the Va are products
of single-site unitaries; in particular, each Va can be written
as a product of a unitary acting entirely within ABC and a
unitary acting entirely outside ABC, neither of which
changes the entanglement entropy of ABC.
Given properties (i) and (ii) of ρ̃ðaÞ, the entropy differ-

ence can be computed as

Sðλ̃ABCÞ − Sðσ̃ABCÞ ¼ HðfpagÞ; ð10Þ

where HðfpagÞ¼−
P

apa logðpaÞ is the Shannon entropy
of the probability distribution fpag. Substituting (10)
into (8), we obtain

IðA∶CjBÞσ̃ ≥ HðfpagÞ: ð11Þ

To get the best bound, we choose the probability distribu-
tion that maximizes HðfpagÞ, namely, the uniform pa ¼ 1

4
.

Then HðfpagÞ ¼ 2 log 2, yielding the desired bound (6).
To complete the argument, we extend the bound (11) to

general constant-depth circuits U. First, recall the entan-
glement entropy of a subsystem is invariant under unitaries
acting exclusively within the subsystem or its complement.
Thus, we can make the replacement

IðA∶CjBÞUσU† ¼ IðA∶CjBÞU0σU0† ; ð12Þ

where U0 is a constant-depth quantum circuit that acts
trivially deep in the interior of A and also trivially far
outsideABC [Fig. 3(a)]. Here, we are using the fact thatU is
a constant-depth quantum circuit, and therefore we can
“cancel out” its action in a subsystem S bymultiplying by an
appropriate unitary supported in the light cone of S (Fig. 2).

By SSA, IðA∶CjBÞ cannot increase when A shrinks.
Therefore,

IðA∶CjBÞU0σU0† ≥ IðA0∶ CjBÞU0σU0† ; ð13Þ

where A0 ⊂ A is shown in Fig. 3(b). Finally, applying the
same reasoning as in (12), we can replace

IðA0∶ CjBÞU0σU0† ¼ IðA0∶CjBÞU00σU00† ; ð14Þ

where U00 is a constant-depth circuit acting on the region
shown in Fig. 3(c). Combining (12)–(14), we deduce that

IðA∶CjBÞUσU† ≥ IðA0∶ CjBÞU00σU00† : ð15Þ

The lower bound (15) is useful because it allows us to
leverage our results from the first part of the proof.
In particular, U00 is precisely the kind of constant-
depth quantum circuit that we analyzed above, so
IðA0∶ CjBÞU00σU00† ≥ 2 log 2 for any sufficiently large annu-
lus A0BC. Substituting this inequality into (15), we obtain
the desired bound (6).
General case.—Our proof for the toric code proceeded

in three steps. First, we derived a lower bound (8) for
IðA∶CjBÞσ̃ in terms of the entropy difference Sðλ̃ABCÞ−
Sðσ̃ABCÞ, where λ̃ is any state that is indistinguishable from
σ̃ over AB andBC. Second, we constructed an appropriate λ̃
and computed the desired entropy difference (10) in the
special case where U is a constant-depth circuit supported
within a constant distance of BC [Fig. 1(b)]. Combining
these two results, we obtained the desired lower bound, but
only for this special class of circuitsU. In the third and final
step, we extended this bound to arbitrary constant-depth
circuits U using the inequality (15).

FIG. 2. For any constant-depth circuit U, for any subsystem S,
we can obtain a circuit U0 of same depth acting trivially on S, by
removing from U the “light cone” (white gates) of S.

FIG. 3. (a) We first remove gates from U on a “hole” within A;
we call the new circuit U0. (b) We then deform A to A0 ⊂ A such
that the boundary of the annulus A0BC is only partially covered.
(c) We then further remove some of the gates in the vicinity of A0,
obtaining U00.
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Conveniently, the first and third steps of our proof
immediately generalize to any reference state σ since they
do not use any properties of the toric code. On the other
hand, in the second step, we used the specific structure of
the toric code string operators [28], so we need a different
argument for this step in the general case. In particular,
instead of defining λ̃ in terms of a mixture of excited states,
we will now define it in terms of the “maximum-entropy
state.” Consider a larger annulus Y ¼ ABC ∪ SuppðUÞ,
with U again as in Fig. 1(b). Define a density matrix λ to be
the maximum-entropy state consistent with the reduced
density matrices of σ over the past light cones of AB and
BC. We then define λ̃ ¼ UλU†.
By construction, λ̃ is indistinguishable from σ̃ over AB

and BC and therefore the lower bound (8) still holds. The
only remaining question is the value of the entropy
difference on the right-hand side. We claim that

Sðλ̃ABCÞ − Sðσ̃ABCÞ ¼ SðλYÞ − SðσYÞ ð16Þ

and, in turn,

SðλYÞ − SðσYÞ ¼ 2γ0; ð17Þ

provided that A, B, and C are sufficiently large compared
to the circuit depth. See Eq. (E1) in the Supplemental
Material [21] for a self-contained derivation of Eq. (17)
starting from Definition 1. We are finished once we
prove Eq. (16).
We now present the proof of (16). Our main tool is the

following lemma about entropy differences under revers-
ible channels, proven in the Supplemental Material [21].
Lemma 1.—Let ρ and ρ0 be density matrices over PQ

such that ρ0Q ¼ ρQ and ρ0P ¼ ρP. Let R, T be a pair of

quantum channels R∶Q → Q̂ and T ∶Q̂ → Q. If

T ̊ RðρPQÞ ¼ ρPQ;

T ̊ Rðρ0PQÞ ¼ ρ0PQ; ð18Þ

then

SðρPQÞ − Sðρ0PQÞ ¼ S½RðρPQÞ� − S½Rðρ0PQÞ�: ð19Þ

To apply Lemma 1 to our setup, we let ρ ¼ λ̄ and ρ0 ¼ σ̄,
where λ̄ ¼ ŪλŪ† and σ̄ ¼ ŪσŪ† and where Ū is a unitary
obtained by removing the gates in U that are deep in the
interior of the annulusABC [Figs. 4(a) and 4(b)].We then let
P,Q be a partition of the annulus ABC of the form shown in
Fig. 4, such that P ⊂ A is sufficiently far away from the
support of Ū (see Fig. 9 in the Supplemental Material [21]
and Ref. [30]). By construction, λ̄ and σ̄ are indistinguish-
able on P. In the Supplemental Material [21], Appendix E,
we show that the two states are indistinguishable on Q as
well [Eq. (E2)], thus fulfilling the premise of Lemma 1.

Below we will construct quantum channels R∶Q → Q̂
and T ∶Q̂ → Q, with Q̂≡Q ∪ ū, where ū is the support
of Ū. These will obey (18) with Rðλ̄PQÞ ¼ λPQ∪ū
and Rðσ̄PQÞ ¼ σPQ∪ū. Because PQ ∪ ū ¼ Y and also
Sðλ̄PQÞ ¼ Sðλ̃PQÞ and Sðσ̄PQÞ ¼ Sðσ̃PQÞ, once we construct
these channels, we can immediately deduce Eq. (16)
from Lemma 1. This will then complete our proof of the
bound (5), as explained earlier.
Now let us discuss our construction of R and T . These

maps are constructed from compositions of Ū, partial trace,
and the Petz map [31].
To clearly render the construction ofR and T , we depict

ū as two disks of smaller sizes, as in Fig. 4(c). Loosely
speaking, R removes the circuits in the disks and T
restores them.
The map R is constructed by applying a partial trace

followed by a Petz map, best described by Fig. 5. In the first
step, we trace out the region Q ∩ ū. This step effectively
removes the circuit Ū, mapping λ̄PQ to λPQnū and σ̄PQ to
σPQnū. In the second step, we apply the Petz map Φσ

v→vū.
We show in the Supplemental Material [21], Eq. (E3), that
this step extends λPQnū to λPQ∪ū and σPQnū to σPQ∪ū,

FIG. 4. Using the procedure in Fig. 2, we remove the gates inU
that act deep in the interior of the annulus without changing the
entropy; starting from U, whose support is depicted as the blue
region in (a), we obtain a unitary Ū, whose support is shown in
(b). Then the support of Ū becomes a union of two disks, which is
topologically equivalent to (c) after regrouping sites.

FIG. 5. The construction of R. The first step is the partial trace
Trū over the support of Ū, and the second step applies the Petz
map Φσ

v→vū, where v ¼ v1v2 and ū ¼ ū1ū2. The blue subsystem
is ū, the support of Ū.
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λPQ∪ū¼Φσ
v→vūðλPQnūÞ; σPQ∪ū¼Φσ

v→vūðσPQnūÞ: ð20Þ

Combining the two steps, we see thatR maps λ̄PQ to λPQ∪ū
and σ̄PQ to σPQ∪ū, as required. As for the map T , this can be
constructed by simply applying Ū and tracing out ūnQ.
Clearly, these operations map λPQ∪ū to λ̄PQ and σPQ∪ū to
σ̄PQ, as required.
Discussion.—The lower bound (5) can be generalized to

the case that σ contains an anyon in the interior of the
annulus, because the proof only required the invariance of
the TEE under deformations of the annulus. The lower
bound then becomes γ0 ¼ logðD=daÞ [20] for anyon a in
the interior. We expect similar lower bounds can be derived
in a variety of setups, including systems with defects or
higher-dimensional systems.
Although we have only proven the lower bound (3) for

states obtained by constant-depth circuits acting on refer-
ence states, we expect that (3) holds more generally. In fact,
we argue heuristically in the Supplemental Material [21],
Appendix G, that (3) holds for any 2D gapped bosonic
ground state. The key idea is to use the fact that reference
states can already realize all “doubled” 2D topological
phases obtained by stacking a bosonic topological phase
onto its time-reversed partner [2,8,9].
Our Definition 1 and bound (5) actually apply beyond

area law states. For instance, coupling an area law reference
state to a hot surface (modeled by an identity density
matrix) for a short period of time cannot decrease the TEE
of the joint system. We speculate that similar arguments
may apply to the 3D toric code at finite temperature [32].
An interesting open question is whether our bounds

apply to the TEE defined using the alternative partition in
Ref. [1]. It would also be interesting to know whether
similar results hold for a TEE defined via Rényi entropies,
which are easier to measure in quantum simulators [33].
A final question is to understand how generically our

bound (3) is saturated.Howmuch fine-tuning is required to
obtain a spurious TEE that does not decay with distance?
Despite hints in this direction [14,15,18,34], the general
question remains open.
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