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We study the effects of strain in moiré systems composed of honeycomb lattices. We elucidate the
formation of almost perfect one-dimensional moiré patterns in twisted bilayer systems. The formation of
such patterns is a consequence of an interplay between twist and strain which gives rise to a collapse of the
reciprocal space unit cell. As a criterion for such collapse we find a simple relation between the two
quantities and the material specific Poisson ratio. The induced one-dimensional behavior is characterized
by two, usually incommensurate, periodicities. Our results offer explanations for the complex patterns of
one-dimensional channels observed in low angle twisted bilayer graphene systems and twisted bilayer
dicalcogenides. Our findings can be applied to any hexagonal twisted moiré pattern and can be easily

extended to other geometries.
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Introduction.—Twisted bilayer and multilayer systems
represent two-dimensional materials, where atom-thick
layers of the same or different materials are superimposed
and rotated by an arbitrary twist angle. Twisted bilayer
graphene (TBG) represents arguably the most prominent
physical system of this kind [1-6], the bilayers of transition
metal dicalcogenides (TMD) the other [7—15]. The effect of
twisting two periodic systems with respect to each other
results in the formation of superlattices, the moiré patterns
[16,17]. In TBG such moiré patterns give rise to very narrow
bands at small twist angles, which can host correlated
electronic states and superconductivity [18-20]. In addition,
strains are ubiquitous in moiré systems [21]. The interplay of
electronic and elastic degrees of freedom in moiré systems is
not fully understood [22-24]. The effect of strains in
monolayer graphene and other nontwisted bidimensional
materials has been extensively studied [25-29]. Important
insights on the role of strains in twisted bilayer graphene
were reported in [30,31]. The applied in-plane strain acting
on both sublattices in opposite directions changes the
distance between the nearest lattice atoms within each layer,
and increases correspondingly the electronic hopping ampli-
tude between them. In terms of the effective Dirac descrip-
tion of graphene, this effect creates an additional term which
resembles the conventional vector potential, which however
does not break the time-reversal symmetry of the
Hamiltonian [25,32-37]. This term displaces the Dirac
points from their original positions but does not distort
the shape of the Brillouin zone. This process breaks the Cg
symmetry of the Dirac points and lifts the degeneracy of the
saddle points. At larger strains the system goes through a
Lifshitz transition characterized by a fusion of the Dirac
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points with resulting anisotropic spectrum and different
scaling behavior of the low-energy part of the density of
states [32-37].

Similar effects might be expected for strained twisted
bilayer graphene, such as the appearance of higher Van
Hove singularities [31,38,39]. However the plethora of
observed phenomena in strained twisted bilayer graphene
is much larger than suggested by those analogies. For
instance, the observation of highly anisotropic moiré
patterns in the strained twisted bilayer graphene has been
reported in many experiments [40-52]. With increasing
strain the degree of deformation of the unit cells increases
as well, until they become effectively one-dimensional
stripes.

In this Letter, we show how the deformation of the moiré
superlattice, and the emergence of quasi-1D features are a
consequence of the interplay between twist and strain. As a
criterion for such transition we find a simple relation
between the applied uniaxial strain, the twist angle, and
the material dependent Poisson ratio.

Initially, the moiré Brillouin zone (mBZ) has the form of
a perfect honeycomb cell. With increasing strain it gets
deformed and elongated in a selected direction, until it
reduces to a line at the critical strain value. The selected
direction is determined by the material dependent param-
eters. We construct the strain dependent lattice vectors in
both real and reciprocal spaces and explore the conse-
quences of this transition for the spectra and the density of
states of twisted bilayer graphene within a continuum
model approximation [1,4,53,54]. In the one-dimensional
limit we obtain electronic bands, which are determined by
an interplay of two generally different and incommensurate
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periodicities. These can be fine-tuned to a single periodicity
by varying external applied forces.

Geometry of the deformed mBZ.—We consider the case
of a twisted bilayer honeycomb lattice, following the
approach in [31]. We chose the reciprocal lattice vectors
for each monolayer system as b, = 2za~' (1, F1/v/3),
with lattice constant a (for graphene a = 2.46 A). The
reciprocal lattice vectors of the twisted layers are
obtained by rotating vectors b; by a twist angle, i.e.
G/ =R[T6/2]b;. Here, 1(}) and —(+) refer to the
upper (lower) layer, with R[+-6] being the usual rotation
matrix, cf. Eq. (S4) in the Supplemental Material [55].

The reciprocal lattice vectors of the moiré superlattice are
g = GZT - Gil. Being subject to the geometric deformation
by strain they change to

; =Tb, (1)
where the transformation matrix T is
T=(1-ENR[-0/2] — (1 - ENR[+0/2],  (2)
with the symmetric strain tensor £ = {ef b ={xyh
and Z=1,]). In the experimentally relevant case of
uniaxial heterostrain, in which forces are applied along

one direction one makes a simplification &+ = —&T = £/2
[30]. In particular, the uniaxial heterostrain can be

(b) (c)

FIG. 1.

parametrized in terms of two quantities: the dimensionless
strain magnitude ¢ measured with respect to the lattice
spacing, and the strain direction determined by the angle ¢.
The strain tensor is then a function of €, ¢, and the Poisson
ratio v of the system’s monolayers [55]. For monolayer
graphene this value is roughly v = 0.16. Here we emphasize
that our considerations include but are not restricted to the
only case of the honeycomb uniaxial heterostrain. Note that
when forces along two perpendicular directions are applied,
the strains €| and €, ; can be tuned separately.

Collapse of the mBZ for a critical value of the strain.—In
Fig. 1 we show the real and reciprocal space of a twisted
moiré lattice. As the strain increases, the unit cell in real
space is enlarged and rotated with a tendency toward a
particular spatial direction. In reciprocal space, the mBZ
zone gets progressively squeezed until it collapses at a
certain critical value. This collapse implies that the vectors
g, in Eq. (1) are collinear, which occurs when Th; = a;s,
i=1, 2 for vector s to be determined and real «;.
Combining the equations we get

T{bl —%bz} = 0. (3)

Since b; are linearly independent, number « that ab; = b
for i # j, the above equation is satisfied only if

det{T} = 0. (4)

Strain-induced geometrical effects in a moiré superlattice with twist angle & = 3°. The real space geometry of a twisted

honeycomb bilayer subject to uniaxial heterostrain with Poisson ratio v = 0.165 and strength (a) € = Oe., (b) € = 0.5¢., and
(c) e = 1.0¢.. In (d) € = 1.0e,. and v = 1/3, ¢, referred to as the critical strain value from Eq. (5). In (a)(b) the blue hexagon visualizes
the lattice unit cell. At the bottom of each moiré structure the corresponding reciprocal space is shown. Here, the colored arrows point to
the geometrical positions of the Dirac points. In (d) we show the formation of quasi-1D channels due to a commensurate condition
between the lattice vectors (see the main text). (¢) The formation of an edge domain wall, emphasized by the red arrow,
due to a nonuniform strain. Bright (dark) triangles emphasize the AB (BA) stacking domains. Black arrows indicate the direction
of the strain increasing from zero to a finite value, chosen here as 0.5¢,.. (f) Critical strain scales in real space for two unit cells. For
visualization purposes, the hexagons have been rotated, as indicated by the XJ axes. (g) Stacking domain cells calculated for

e ={0,0.25,0.50,1.3, 1.4, 1.5}¢,, from left to right.
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Equation (4) represents one of our main results. It is very
general and does not assume any specific lattice of the
monolayer (i.e., honeycomb, square, etc.), nor any specific
type of the strain. For the particular case of the uniaxial
heterostrain, the collapse condition, Eq. (4), reduces to

2 0
€, = t——tan—, (5)

N

which is independent of the angle ¢, and ¢, denotes the
critical strain strength. The linearization of Eq. (5) €. =
+6/+/v is reasonable for @ < 10° This result implies that
for a small angle moiré lattice the critical strain should be
within the experimental range. For example, for TBG with
a marginal twist angle 6 < 0.2°, a uniaxial heterostrain
lower than 1.0% is required to collapse the mBZ, and this
creates uni-dimensional channels. Equation (4) can always
be satisfied when the ratio between the interatomic distance
and the moiré unit length tends to zero. The case of
comparable competing length scales, in which additional
patterns like those observed in graphene on black phos-
phorous [26] may occur, is not considered here. Our results
show an impressive accuracy when compared with the
experimental data obtained from the observations of the
uni-dimensional domain formation in multilayer graphene
systems [40,42,50,52], transition metal dicalcohenides
[43,66], and graphene on multilayer black phosphorus
[26]. For instance, Refs. [42] and [66] contain quantitative
estimations for the formation of the sloped quasi-1D
stripes: Ref. [42] reports € = 15% for § = 4°, whilst our
Eq. (5) yields e, = 17.5%. Reference [66] quotes € = 8%
for 6 =2° whilst our model’s prediction is at
€.~ 8% (with v~ 0.19 for TMD [67]).

Geometry of the deformed honeycomb moiré lattice.—
We now explore the consequences of the collapsing
conditions obtained in the previous section. For simplicity
but without loss of generality we assume that the strain
direction is along the x axis, i.e., for ¢ = 0. The six corners
of the zigzag oriented monolayer honeycomb Brillouin
zone

on(Zmaeally) o

and K| =-K;, K,=-K,, and K} =-K,, where
ko = 2m(3a)~'. Thus, the six corners of the deformed
armchair oriented mBZ are obtained via

Expressing the strain strength in terms of its critical value as
€ = xe. where we introduce a strain parameter 0 < x < 1
(cf. Fig. 1),

2
K -7 ﬁ),
! 0(2

where ky = 2k, sin[f/2]. At the critical strain x = 1 all
these vectors are multiples of

(.

which turns out to depend only on the material specific
Poisson ratio and explains the selected direction in the
momentum space clearly visible in Figs. 1 and 2.

The real space unit cell is oriented along a direction
perpendicular to the vector in Eq. (9),

b= <_*1/Z) (10)

Equations (4), (5), (9), and (10) represent central results of
our work, and they are valid for any twisted honeycomb
lattice system. These quantities depend on the geometry of
the twisted moiré lattice only. It suffices to measure only
two of the parameters (i.e., twist angle, strain, or Poisson
ratio); the third follows from these equations.

We chose the reciprocal lattice vectors of the moiré
superlattice to be §, =K;-K,, 8 =K, -K, and

Energy (meV)
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) 0),,
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FIG. 2. The evolution of the bottom middle band of TBG with
the twist angle 6 = 1° as a function of uniaxial heterostrain
with Poisson ratio v =0.165 (¢, %4.4%) and (a) e = Oe,,
(b)e = 0.3¢., (c) € = 0.60¢,, and (d) € = 0.80¢,., with €. denoting
the critical strain value defined in Eq. (5). Green hexagons highlight
the boundaries of the mBZ.
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finally obtained the real space lattice vectors of the distorted

lattice in the form

V3a | —V3+x v
LL=—""—— , 11

" asinf/2]1-2\ g +x\/§ (1)

V3a 1 V34U
L2:4Sin[9/2]1—x2<_1_x\/%>' (12)

Note that the length of the vectors L, L, diverges at the
critical strain, x — 1 as 1/|1 — x|. Below we assume the
twist angle € to be small and keep it to the leading order
only. The area of the real space unit cell is

3V3a? 1
Ao =L Lol = o 2 ~ i =

(13)

close to the critical strain value. We define the length of the
unit cell as

Ly 4Ly 3av1 4 wx? 1
2 20(1=x%) |1 —x

L (14)

and the width of the unit cell as

W:|L1X(L1+L2)|: 3a (15)
|L; + L] 201 + va?

The width of the unit cell remains finite at the critical strain,
x — 1. Notice that for any values of x larger or smaller than
1 the moiré lattice is reconstructed [40] [cf. Fig. 1(d) and
Fig. S3(c) in Ref. [55]].
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Near the critical strain, x — 1, the modulations of the
moiré lattice in the direction normal to the unit cell, Eq. (9),
are determined by the reciprocal lattice vectors, in Eq. (8).
The lengths of these vectors are proportional to 1 — /3
and 1 + v/3v. The ratio between these values is, generally,
incommensurate. Hence, the properties of the material, near
the critical strain, are determined by a unit cell which
diverges in one direction, and by combinations of non-
commensurate periodicities in the other direction.

Other strain combinations.—The analysis so far has
been restricted to uniaxial heterostrains, induced by forces
of opposite sign at both layers and at both ends of the
sample. Other forces applied at the boundaries can lead to
different patterns of strains inside the system. When normal
forces are applied to boundaries rotated by 90°, the relation
€,y/€xy 18 N0 longer fixed by the Poisson ratio v. The pattern
is simplified when the periodicities in Eq. (8) are com-
mensurate. This happens when

3ey,
- e m
_ﬂ:— (16)

€xx

N

1+
where m and n are integers. This equation is satisfied when

— )2
_Sw L”)z (17)
€x  3(m+n)
The simplest solutions are m =0, n=1, giving
—€yy /€ = 1/3, and m =3, n =1, giving —e, /€, =
1/12 [cf. Figs. 3(c) and 3(d). Then, the properties of the
system are determined by a single periodicity, and the
pattern at the critical strain reduces to a one-dimensional

L
0.00 0.01 0.02 0.03
DOS (meV'Ay") K1

(a),(b) Evolution of the band structure and DOS of TBG with the twist angle # = 1.0° as a function of the uniaxial heterostrain

with Poisson ratio v = 0.165 (e, ~ 4.4%) and (a) ¢ = O¢,., (b) € = 0.20¢... The corresponding mBZ is shown underneath each spectrum.
(c),(d) Band structures of the critically strained TBG for # = 1° and different values of the ratio between applied strains:

(©) —€yy /€y = 0.165 and (d) —¢,y /€, =

1/3. The spectra are evaluated along the collapsed mBZ zone depicted in Fig. 1.
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lattice of AA, AB, and BA stripes as shown in Figs. 1(c) and
1(d) (see also Fig. S1 in the Supplemental Material [55]).

Nonhomogeneous strain distributions.—As the size of
the moiré unit cell near the critical strain diverges, small
local variations of the strain can lead to large changes of the
moiré pattern [52]. This is consistent with several recent
experimental studies, where the creation of different types
of moiré lattice defects has been reported. These are for
instance the domain walls between different stacking
domains in TBG [40], hexagonal boron nitride [41], or
transition metal dichalcogenides [43]. In Fig. 1(d) we show
a strain-induced inhomogeneous moiré pattern, where the
strain increases in the direction indicated by the black
arrows. Here, the moiré pattern interpolates continuously
between the minimal and maximal strain. The red arrow
points to the region, where the formation of the edge
domain wall occurs. This particular inhomogeneous pattern
is constructed by a linear combination of the lattice vectors
defined in Egs. (11) and (12). Such inhomogeneous
patterns have a strong resemblance to those reported in
Refs. [41,43,49,52,68].

Electronic spectrum and the density of states of twisted
bilayer graphene with strain.—We now turn our attention
to TBG and focus on the twist angle near the first magical
angle, § = 1°. Because of the vector potential defined in
Eq. (S6) in the Supplemental Material [55], in a strained
TBG the Dirac points no longer reside at the corners of the
mBZ (cf. Fig. 2). As strain increases, the Dirac points of the
middle bottom band shown in Fig. 2 move on an involved
trajectory within the mBZ, which is influenced by several
factors, e.g., the geometry of the deformed mBZ and
interlayer coupling between graphene layers. More details
can be found in the Supplemental Material [55].

Electronic properties of the TBG’s continuum model at
the critical strain.—As mentioned earlier, at the critical
strain the electronic wave functions are determined by the
competition between the two, usually incommensurate,
periodicities shown in Eq. (16) [see also Eq. (S11) in the
Supplemental Material [55]]. The resulting equations
resemble the Harper equation [69], extensively discussed
in connection to lattice electrons in a constant magnetic
field. Systems described by variations of the Harper’s
equation typically show a discontinuous density of states,
and either localized or extended states [56,57,70-74]. We
present results for the electronic states for commensurate
and incommensurate periodicities, and a twist angle 6 = 1°,
in Figs. 3(c) and 3(d) (cf. also Fig. S5 in the Supplemental
Material [55]). The bands are plotted in a mBZ defined by
the sum of the two periodicities. For incommensurate
combinations, the results are consistent with extended,
i.e., dispersive, states [75], and a singular spectrum, with
gaps of different sizes.

Conclusions.—We have presented a general geometry
based approach to the strained bilayer graphene. It can be
easily adopted to the larger class of strained and twisted

bilayer systems. We have found simple expressions for the
critical strain, at which the formation of one-dimensional
striplike moiré patterns occurs. We find that the formation of
such patterns is a consequence of the interplay between twist
and strain which gives rise to a collapsing of the reciprocal
space unit cell. The criterion for this transition appears to be
a very simple relation between the applied uniaxial strain,
the twist angle, and the material dependent Poisson ratio.
Our results offer simple explanations for the complex
patterns of one-dimensional channels observed in low angle
twisted bilayer graphene systems and twisted bilayer dical-
cogenides. The electronic bands in twisted bilayer graphene
in the one-dimensional regime are described by the interplay
between two different, typically incommensurate, periodic-
ities, suggesting similarities with the Harper equation and
with one-dimensional quasicrystals.
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