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Unlike the well-knownMott’s argument that extended and localized states should not coexist at the same
energy in a generic random potential, we formulate the main principles and provide an example of a
nearest-neighbor tight-binding disordered model which carries both localized and extended states without
forming the mobility edge. Unexpectedly, this example appears to be given by a well-studied β ensemble
with independently distributed random diagonal potential and inhomogeneous kinetic hopping terms. In
order to analytically tackle the problem, we locally map the above model to the 1D Anderson model with
matrix-size- and position-dependent hopping and confirm the coexistence of localized and extended states,
which is shown to be robust to the perturbations of both potential and kinetic terms due to the separation of
the above states in space. In addition, the mapping shows that the extended states are nonergodic and allows
one to analytically estimate their fractal dimensions.
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A mobility edge (ME) [1], separating localized and
extended states in disordered systems, has been established
and studied for decades. Known to be present in various
semiconductors, amorphous media, and even in disordered
liquid metals, ME has become a hallmark of the Anderson
[2] and many-body [3] localization transitions. It is com-
monly believed that in any short-range model, with random
uncorrelated entries, just below the localization transition
ME separates the localized and extended states in the
energy spectrum. Therefore, eigenstates with different
localization properties cannot coexist at the same energy
for the same system parameter values. The argument
behind this, given by Nevill F. Mott [1], is straightforward:
if extended and localized states coexist at the same energy,
any perturbation of the disorder potential immediately
hybridizes them, making both extended. The main result
of this Letter is the formulation of the main ingredients,
necessary to realize both extended or localized states to
emerge at a given energy, present in any realization, and
provide a corresponding example of one-dimensional (1D)
disordered short-range model, demonstrating this. Hence,
disorder averaging forbids the ME formation.

The first of these ingredients is that the system should
avoid level degeneracy or attraction, i.e., it should possess
some (residual) level repulsion. Indeed, any resonance in the
energy levels, corresponding to localized and extended
states, should be suppressed in order to observe their
coexistence without hybridization. Among short-range
uncorrelated models, the natural ensemble for tunable and
controllable level repulsion is the so-called β ensemble,
represented by real symmetric tridiagonal matrices, with
independent random elements [4]. Such an ensemble is
parametrized by the Dyson’s index β and has the same joint
probability distribution of eigenvalues like in thewell-known
Gaussian random-matrix ensembles [5], but for any real β
along with β ¼ 1, 2, 4. The limit β → 0 yields uncorrelated
eigenvalues as observed in integrable systems [6], whereas
β ≥ 1 produces correlated spectra as in chaotic systems [7].
Second, to suppress the overlap of the localized and

extended states, the latter ones should be nonergodic, with a
support set smaller than the entire Hilbert space. It is known
that the presence of disorder may break ergodicity in some
quantum systems, while they remain nonintegrable, thus,
delocalized [8–14]. Such a nonergodic extended (NEE)
phase is associated with a nontrivial scaling of the
eigenstate fluctuations [15] and can be captured by various
random matrix models [16–26], hierarchical graphs [27],
and many-body disordered systems [3,12,28]. Quite sur-
prisingly, it has been recently shown that the above
mentioned β ensemble also hosts the NEE phase over a
finite parameter range [29].
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Last, but not least, the NEE states should be separated in
space from the localized ones. The construction of the β
ensemble [4] introduces inhomogeneity, where the distri-
butions of hopping matrix elements yn significantly depend
on the lattice coordinate n; see Fig. 1(a) and Eq. (2).
Consequently the eigenstates of β ensemble become
spatially separated.
In this Letter, we show that by fulfilling all of the above

three crucial ingredients, β ensemble provides an ideal
platform for realizing coexistent localized and extended
eigenstates. We numerically confirm that Oðβ−1Þ localized
states coexist along with the extended states within the
middle of the spectral band without forming any ME. In
addition, the NEE phase of β ensemble is shown to exhibit
anomalies in the spectral statistics [29]: nearby eigenvalues
remain uncorrelated, while two distant eigenvalues, sepa-
rated byΔE > ðNβÞ−1

2, can be correlated.Here and further,N
is the system size. Such a feature is in sharp distinction from
the NEE states observed in a paradigmatic Rosenzweig-
Porter ensemble (RPE) [16,19,30]. This last aspect unveils
the origin of the absence of theME.We analytically explain it
by locallymapping β ensemble to a 1DAndersonmodelwith
N-dependent hopping strength. This mapping demonstrates
that β ensemble separates into nearly independent blocks,
where localized and (nonergodic) extended eigenstates
appear to be located in spatially separated blocks, but share
nearly the same spectral energies.

The β-ensemble is composed of the matrices H, with the
following nonzero elements [4]:

Hn;n ¼ xn; Hn;nþ1¼Hnþ1;n ¼ yn

xn∼N ð0;1Þ;
ffiffiffi
2

p
yn∼χnβ; ð1Þ

where N ð0; 1Þ is the normal distribution and χk is the chi
distribution with a degree of freedom k. H represents a 1D
lattice with an open boundary, where a particle can
randomly hop to the nearest neighbors under disordered
on-site potentials [Fig. 1(a)]. The relative strengths of on
site potentials fxng and the hopping amplitudes fyng make
it convenient to reparametrize β as β ¼ N−γ [29,31],
leading to the typical behavior of hopping amplitudes, as
shown in the Supplemental Material [32],

ytypn ∼

8<
:

exp
�
− Nγ

n

�
; n < Nγ

ffiffiffiffi
n
Nγ

p
; n > Nγ

: ð2Þ

Thus, on average yn increases across the lattice and
presents a highly inhomogeneous system. As we will show,
it is this inhomogeneity which makes the β ensemble host
three distinct phases: ergodic (γ ≤ 0), NEE (0 < γ < 1),
and localized (γ ≥ 1), reported earlier [29]. In the localized
phase, γ > 1, all the levels are uncorrelated and Poisson-
distributed as the eigenstates are localized with a finite
support in the thermodynamic limit (N → ∞); see the left
state in Fig. 1(a). Contrarily in the ergodic phase, all
energies are correlated irrespective of their distance, and the
bulk eigenstates are extended over the entire Hilbert space.
NEE phase in β ensemble appears at 0 < γ < 1 due to its
inhomogeneous hopping terms; otherwise phase transition
is absent in generic 1D systems with uncorrelated short-
range hopping [35,36]. Inhomogeneity of the β ensemble
is formed by the transformation from the Gaussian ensem-
ble [4] and shows a particular case of the Krylov-basis
representation of any generic Hamiltonian [37]. The β
ensemble can be realized in ultracold atoms with the
tunable location of optical tweezers [38–42] or in photonic
systems of optical waveguides [43–47].
As known from [29], the NEE phase, characterized by

the scaling with the system size N of the inverse partici-
pation ratio (IPR), Ij ¼

P
N
n¼1 jΨjðnÞj4 of the eigenstate at

the energy Ej having nth component ΨjðnÞ, shows the
typical fractal dimension Dtyp

2 ≈ 1 − γ, extracted from the
spectral average hlog Iji ≃ −Dtyp

2 logN [Fig. 1(b)]. Hence
most of the eigenstates occupy an extensive number, but a
vanishing fraction of the Hilbert space in the NEE phase.
However, here we see the first unexpected feature that the
density of IPR shows a peak around I ¼ 1 indicating the
presence of strongly localized states, jΨloci, along with a
finite fraction of extended states with I ≪ 1 [32]. We
consider a small tolerance value δI ≪ 1 and identify jΨloci

(a)

(b) (c)

FIG. 1. (a) Schematic of β ensemble, given by 1D lattice in
Eq. (1). The hopping increases along the lattice (thickness, color
of links) and yields localized (left) and extended (right) states,
coexisting at the same energy, but living in spatially different
system parts. (b) Phase diagram of the β ensemble, with three
distinct phases along with typical fractal dimension in the NEE
phase, Dtyp

2 ≈ 1 − γ, and the number Nloc ∼ Nγ of strongly
localized states, jΨloci. (c) Joint density PðI; E0Þ of IPR, I and
the energy, E0 ¼ E=ϵβ, rescaled to the bandwidth ϵβ for γ ¼ 0.7.
The colorbar indicates the values of joint density in logN scale,
and ð−E0

G; E
0
GÞ is the rescaled energy band for coexistent states.

Numerical results are for N ¼ 8192 and 128 realizations.
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as a state with I > 1 − δI. In Fig. 1(b), we show the
ensemble-averaged number of strongly localized states,
Nloc ∝ Nγ coexisting with the finite fraction of NEE states.
Looking at the joint density of IPR and energy, Fig. 1(c),

we unveil the spectral structure of jΨloci. In the NEE phase
of the β ensemble, jΨloci appears only within an energy
window ð−EG; EGÞ, centered around midspectrum (E ¼ 0).
The ensemble average hEGi ∝ NαG is nearly N indepen-
dent, with αG ≪ 1, irrespective of δI ≪ 1 [32].
Importantly, Fig. 2(c) indicates that within ð−EG; EGÞ,
IPR takes a wide range of values from Oð1Þ to N−D2 ,
convincingly demonstrating the coexistence of localized
and extended states.
Does this coexistence form a ME? ME has been

observed in the Lévy ensemble [20,48], quasiperiodic
lattice [11,46,47,49–55], 3D Anderson model [56], quan-
tum random energy model [57], and many-body localiza-
tion [3]. In order to search for ME in the β ensemble, first,
we compute the energy-dependent IPR,

IðEÞ ¼ 1

NρðEÞ
XN
j¼1

IjδðE − EjÞ; ð3Þ

where ρðEÞ is the global density of states (DOS). For a
given energy IðEÞ → 0 [≃Oð1Þ] for extended [localized]
states. Hence, an existence of a ME would have implied
IðEÞ exhibiting an energy-dependent crossover from 0 to
Oð1Þ within ð−EG; EGÞ. Figure 2(a), showing IPR in the
γ-E0 plane of the energy E0 ¼ E=ϵβ, rescaled by the global

energy bandwidth ϵβ ¼ 2
ffiffiffiffiffiffiffiffiffi
hE2i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2N1−γ

p
, provides

no evidence of ME at any value of γ.
However, as IPR in the β ensemble is fat-tail distributed

and may not be a self-averaging quantity [29], we extract
the energy-dependent fractal dimension D2ðEÞ from the

system-size scaling of median(I) within small windows
across the energy spectrum. Figure 2(b) shows that D2ðEÞ
is energy independent in ð−EG; EGÞ irrespective of γ. This
convincingly shows that the ME is absent in the NEE phase
of the β ensemble despite the coexistence of OðNγÞ
localized states around E ¼ 0.
In addition to the spectral homogeneity of the eigenstate

properties, in Fig. 2(c) we show it in energy-level corre-
lations across the spectrum. The ensemble- and spectral-
averaged level-spacing ratio hri [33,58] exhibits criticality
only around γ ¼ 0, implying that the neighboring eigen-
values are typically uncorrelated in the NEE phase [29] in
the thermodynamic limit, having some residual level
repulsion β ¼ N−γ at finite sizes. To uncover the energy-
resolved short-range spacing correlations, we compute

rðEÞ¼ 1

NρðEÞ
XN
n¼1

rnδðE−EnÞ

rn ¼min

�
r̃n;

1

r̃n

�
; r̃n¼

Enþ1−En

En−En−1
: ð4Þ

The ensemble-averaged r in the γ-E0 plane, Fig. 2(c), also
shows no energy-dependent crossover from Poisson,
hri≈0.38, to Wigner-Dyson, hri≈0.53, statistics [33,58],
for all γ. Thus, short-range energy correlations are also
homogeneous over the bulk energy spectrum.
Unlike short-range spectral statistics, the long-range

two-level correlations can be characterized by the power
spectrum PðωÞ of the fluctuations of the nth unfolded
energy level En [59] around its mean position, n vs
frequency ω, Fourier dual to n. For Poisson (Wigner-
Dyson) statistics, the power spectrum of the fluctuations
δn ≡ En − n decays as ω−2 (ω−1) [34,60,61]. In the β
ensemble, PðωÞ is known to show a crossover in the
frequency domain [29] (see Fig. 3):

PðωÞ ∝
�
ω−1; ω < ωc

ω−2; ω > ωc

; ωc ¼
π

Nγ : ð5Þ

The critical frequency, ωc, corresponds to the unfolded
energy scale Nγ such that two unfolded energy levels E1;2

are correlated if jE1 − E2j > Nγ , and uncorrelated other-
wise. Therefore, in an energy window ½E − ðΔE=2Þ; E þ
ðΔE=2Þ�, PEðωÞ ∼ ω−2 shows only Poisson behavior for
ΔE < Nγ irrespective of E. Such a long-range correlation is
unusual and complimentary to the energy correlations
typically observed in various models like RPE [16,62,63],
deformed Poisson ensemble [21], or driven Aubry-André
models [10]. Usually the eigenstates hybridize below the
Thouless energy, EThouless [64], while distant eigenvalues,
separated by ΔE > EThouless, remain uncorrelated [23,65].
The spectral homogeneity of unusual PEðωÞ of the β
ensemble is related to the ME absence and can be under-
stood from the following analytical consideration.

(a)

(b)

(c)

FIG. 2. (a) IPR, (b) fractal dimension D2, (c) mean level-
spacing ratio r for N ¼ 8192 in the γ-E0 plane. Solid black lines
indicate ð−E0

G; E
0
GÞ, the energy band of localized states.
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The above numerical results unambiguously show that
the coexistence of localized and extended states fails to
form any ME. All this can be analytically understood from
a spatially local mapping of the β ensemble to an Anderson
model. Indeed, in the β ensemble, the hopping amplitudes
over the first OðNγÞ sites are much smaller in magnitude in
comparison to the typical on-site potentials xtypn ∼Oð1Þ.
Hence the sites 1; 2;…; n≲ Nγ can be considered to be
effectively disconnected from the rest of the lattice and
hosts jΨloci. Corresponding DOS follows the normal
distribution, while both short- and long-range energy
correlations are given by the Poisson statistics [32].
The structure of the eigenstates at the remaining sites can

be understood as follows. The hopping amplitudes for
lattice sites n > Nγ , given by Eq. (2), are self-averaging and
homogeneous with small relative fluctuations jynþδn −
ynj ≪ yn for δn ≪ n. So, we can formally separate the
lattice into the spatial blocks n∈Δl, where hopping is
approximately the same and

Δl ≡ ½Nγþζl ; cNγþζl �: ð6Þ

Here ζlþ1 − ζl ≡ δζ ¼ ðlog c= logNÞ, c ∼Oð1Þ, and
Nγþζlmax ¼ N. The number of sites in Δl is Nl ∼ Nγþζl ,
and the hopping amplitudes are asymptotically constant
and given by ytypl ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNγþζl=NγÞ

p
¼ Nðζl=2Þ. Thus, the β

ensemble within Δl is equivalent to the 1D Anderson
model, with uncorrelated diagonal disorder Oð1Þ and
homogeneous N-dependent hopping Nζl=2. As the locali-
zation length in the 1D Anderson model is given by ξl ∼
hy2ni=hx2ni ¼ Nζl [66,67] within each Δl, the eigenstates
exponentially decay, jΨðjÞj ∼ expð−jj − jlocj=ξlÞ, and
localization centers jloc randomly distributed in Δl.
Furthermore, as each sub-block of length ξl ≪ Nl has
Nζl eigenstates, each block Δl can accommodate Nl=ξl ≈
Nγ sub-blocks. The eigenstates within each sub-block
hybridize, but not across sub-blocks. This local mapping
implies that each sub-block has Gaussian DOS with the
bandwidth [68]

ΔEl ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nζl

X
il ∈Δl

Nζl

s
¼ N

ζl
2 ð7Þ

and the mean level spacing δl ¼ ΔEl=Nζl ¼ N−ζl=2. The
above mapping explains all the NEE-phase properties of
the β ensemble as shown below.
First, OðNγÞ states, confined in the first spatial block Δ0

are all localized with ξ0 ∼ Nδζ ∼Oð1Þ. Equation (7) also
justifies that such δ-localized states have an energy band-
width EG ≈Oð1Þ, not scaling with N [32].
Second, the eigenstates in the largest block are the least

localized with a localization length ξlmax
∼ N1−γ . This block

contains a finite fraction of all sites, Nlmax
∼OðNÞ and then

defines the typical fractal dimension Dtyp
2 ¼ 1 − γ in the

NEE phase of the β ensemble [29]. As both the number of
eigenstates, with localization length 1 ≤ ξl ≤ N1−γ , and the
bandwidth, Eq. (7), increase with l, the distribution of any
localization measure exhibits a fat tail [32]. Thus, within
ð−EG; EGÞ, where bands from all l overlap, all the
localization lengths are possible. This structure of spa-
tial-separated states with different ξl explains the ME
absence and the coexistence of localized and extended
states in the β ensemble.
Third, the above mapping explains the anomalous long-

range energy correlations in the NEE phase of the β
ensemble. The eigenvalues from all blocks constitute the
global DOS; hence the bandwidth ϵβ is given by that of
the largest block at lmax ≃ ð1 − γÞ=δζ with a bandwidth
Nð1−γÞ=2. Thus, global mean level spacing is given by
δ ∼ Nð1−γÞ=2=N ¼ N−ð1þγÞ=2. Contrarily, the smallest level
spacing, locally in a sub-block is δmin ¼ δlmax

∼ N−ð1−γÞ=2.
As δmin > δ, neighboring eigenvalues come from different
sub-blocks and are, thus, uncorrelated, while the correlated
ones have at least the energy difference δmin. The unfolding
procedure rescales δ → 1, setting a critical dimensionless
energy δmin=δ ¼ Nγ, in agreement with numerics. Any two
unfolded energy levels E1;2 are uncorrelated if jE1 − E2j ≲
Nγ being from different sub-blocks, while for jE1 − E2j ≳
Nγ (actual level spacing≳Nðγ−1Þ=2), they may belong to the
same sub-block and be correlated. This explains the origin
of the anomalous behavior in the power spectrum of the
energy fluctuations in the β ensemble [Eq. (5)].
Finally, we numerically confirm that the eigenstates of

the β ensemble in the NEE phase are exponentially
decaying using the metric defined in [32,69]. Therefore
we can order the eigenstates according to their localization
centers instead of energy. To understand the correlation
among such spatially ordered eigenstates, we look at the
covariance matrix

Mij ¼
XN
k¼1

jΨiðkÞΨjðkÞj ¼

8><
>:

1; i ¼ j
2
π ; ergodic

→ 0; localized

: ð8Þ

FIG. 3. Ensemble-averaged power spectrum vs dimensionless
frequency for γ ¼ 0.4 in a randomly chosen energy window with
width ΔE ¼ ðN=8Þ. Dashed (dotted) lines show ω−1 (ω−2) fits,
and the star denotes the critical frequency.
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The covariance matrix gives a rather complete idea about
the Hilbert space structure. By plotting the threshold-
filtered covariance matrix M̃ij ¼ ΘðMij − δMÞ, with the
Heaviside step function ΘðxÞ and a threshold δM < ð2=πÞ,
we unveil the eigenstate spatial correlation structure. M̃ij ¼
1 implies that the ith and jth states have a high degree of
overlap, i.e., they are hybridizing and vice versa. In the
ergodic phase M̃ is a dense matrix, while it is sparse in the
localized regime. In the β ensemble (see Fig. 4), M̃ shows a
banded structure with the spatial band, increasing with the
indices i, j, confirming the analytical picture of the block
Δl. We have also shown the energy levels of the spatially
ordered eigenstates. This further shows that in the β
ensemble the localized and the NEE states can appear at
nearly same energy eventually leading to coexistence in the
thermodynamic limit.
To sum up, in this Letter, we provide the set of main

principles on how to avoid the mobility-edge emergence in
short-range disordered models and illustrate them in a well-
known example of the β ensemble. With various spectral
and localization measures, we uncover the structure of the
coexistence of localized and extended states in such a
model and confirm these results analytically by the spa-
tially local mapping to the 1D Anderson model with
system-size-dependent hopping. The general principles,
formulated in this work and verified on the β ensemble,
allow one to realize the coexistence of the localized and
extended states in the same energy interval without fine-
tuning which is robust against perturbations and disorder
realizations. Such systems can be used for quantum
memory and fault-tolerant quantum calculations, where
the localized states, decoupled from the extended modes of
the bath, are free from decoherence. As an outlook, it would
be of particular interest to find many-body realizations of
the above concepts.
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