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Triboelectrification mechanism is still not understood, despite centuries of investigations. Here, we
propose a model showing that mechanochemistry is key to elucidate triboelectrification fundamental
properties. Studying contact between gold and silicate glasses, we observe that the experimental
triboelectric output is subject to large variations and polarity inversions. First principles analysis shows
that electronic transfer is activated by mechanochemistry and the tribopolarity is determined by the
termination exposed to contact, depending on the material composition, which can result in different
charging at the macroscale. The electron transfer mechanism is driven by the interface barrier dynamics,
regulated by mechanical forces. The model provides a unified framework to explain several experimental
observations, including the systematic variations in the triboelectric output and the mixed positive-negative
“mosaic” charging patterns, and paves the way to the theoretical prediction of the triboelectric properties.
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Triboelectrification (TE), the transfer of electrostatic
charges between two materials in contact, is one of the
longest studied physical problems. Despite being inves-
tigated since the eighteenth century [1,2], very little
conclusive understanding has been achieved on its under-
lying mechanism. For a long time, scientists believed that
materials had an inherent tendency to charge more or less
positively or negatively, and they devised the so-called
triboelectric series to order materials according to their
triboelectric charging [3–5]. However, several experimental
observations conflict with the very idea of such ordering.
Triboelectric series have proved uncertain and hard to
reproduce [6]. Distinct samples of the same materials can
change their positions on the triboelectric series, and
triboelectric charging can change even on the same sample
after consecutive experiments [5–10]. For instance, glasses
and silicates are a major example of this irreproducibility,
as they systematically show different charging in different
experiments [4,5,11–14].
The reasons for this systematic irreproducibility have not

been fully understood to date. In general, different charge
carriers may govern the physics of TE, electrons [15–18],

ions [19–21], and tiny fragments of material transferred in
the contact [22–24]. Theoretical models have mostly
focused on electron transfer, especially after recent exper-
imental findings suggested that solid-solid TE is mainly
caused by electrons [16,17]. For example, the surface state
model [25,26], the effective work function model [27–29],
and the interface potential barrier model [30] have been
proposed to explain electron-driven TE. However, these
models often fail to reproduce the experimental observa-
tions. Themore recent backflow-stuck charges (BSC)model
proposed a more successful explanation [31], establishing a
positive correlation between electron-driven triboelectric
charging and the electrostatic potential barrier existing at the
contact interface. A schematic defining the electrostatic
barrier is shown in the Supplemental Material (SM), Note
S1 [32]. According to the model, electron transfer is caused
by mechanical forces upon contact, but some charges flow
back to their original material through tunneling. Hence,
only electrons remaining stuck after transfer contribute to
TE. A higher electrostatic barrier thus prevents larger elec-
tron backflow and results in a higher TE. The BSC model
has been able to capture some features of metal-dielectric
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TE, successfully describing the triboelectric series of
tribopositive oxides.
However, even the most refined models based only on

electron transfer cannot grasp the full complexity of the
experimental measurements. First, in the tribology com-
munity it is universally accepted that mechanochemical
reactions are ubiquitous in frictional contact, causing bond
ruptures and ionic transfer [65–71]. Second, atomic force
microscopy measurements have showed that nanoscale
charging is always found in a mosaic of both positive
and negative charged regions. Therefore, the net macro-
scopic charge is given by the balance between these mixed
island of positive and negative charges [33,72]. These
measurements have been reproduced several times [73–75],
showing that this feature is universal and might be
inherently related to ion transfer [22], whose mechanism
has not been described yet.
In this letter, combining experimental measurements

and first principles calculations,we demonstrate thatmecha-
nochemistry and ion transfer are indeed key to trigger
electron-driven TE. We analyzed a selected set of gold-
silicates pairs, chosen for their especially unclear
triboelectric behavior, and confirmed the inherent irrepro-
ducibility of the measurements, applying a statistical
approach. To elucidate the underlying mechanism, we
employed first principles calculations to devise the first
theoretical mechanochemistry-based model of TE, general-
izing the BSC model to include ionic transfer. The model
shows that (i) mechanochemistry can be crucial to prompt
electron-driven TE, and that (ii) tribopolarity is determined
by the chemical properties of the surface terminations
exposed by mechanochemistry, implying that only certain
materials can switch polarity depending on their surface
terminations’ chemical composition. Additionally, we tested
our model on TiO2, corroborating our results. Importantly,
the model does not involve ions as charge carriers, but
highlights how mechanochemical ion transfer can enable
electron transfer. Hence, the model can be coherently
combined with other recent models involving flexoelec-
tricity and thermoelectricity [76–79]. Our findings explain a
broad range of experimental observations, from the mosaic
charge patterns to the irreproducible triboelectric series,
including them in a unified theoretical framework.
Figure 1 shows our triboelectric measurements for the

selected materials, namely quartz, fused silica, and boro-
silicate glass. The choice of these materials allows us to
evaluate the contribution to TE played by chemical
composition and crystallinity. Figure 1(a) schematically
represents the triboelectric generator employed for the
measurements. Triboelectric generators can be designed
in different operation modes that can collect tribocharges
either by sliding or by vertical contact-separation (CS)
motion [80]. We employed a CS configuration, schemati-
cally depicted in Fig. 1(a), to exclude complications arising
from sliding motion, such as shear effects, for a better

comparison with theoretical calculations. Contact with
gold, chemically inert and triboelectrically neutral, guar-
antees a reliable evaluation of the triboelectric output.
Further details are provided in the Methods 1 section of
the SM.
According to previous reports [4,5,11–14], while fused

and quartz silica occupy well-defined positions on the
triboelectric series, borosilicate glass can switch polarity.
Figure 1(b) shows a qualitative comparison between
previously reported series. Our measurement distributions
show that the actual triboelectric signal can significantly
vary at every measurement, spanning a wide range of
voltages and currents, respectively displayed in the violin
plots in Figs. 1(c) and 1(d). For all three types of material,
the distributions have long tails deviating from the bulk of
the distribution, which demonstrates a wide uncertainty of
the results. However, both fused silica and quartz reveal a
steadily negative triboelectric charging and a similar
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FIG. 1. Triboelectrification experimental measurements of
silica and borosilicate glass. (a) Schematics of the experimental
apparatus for the vertical CS mode. (b) Qualitative triboelectric
series extracted from references [4,5,11,13]. (c),(d) Violin plots
showing, respectively, the highly variable distribution of the
measured voltages and currents. (e) Snapshots of the borosilicate,
fused silica, and quartz structures as employed for the density-
functional theory calculations. Blue: Si, Red: O, Green: B.
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distribution, while borosilicate shows a bimodal distribu-
tion, with two distinct peaks with opposite polarities. A
complete list of references is in the SM, Note S2 [32]. Since
the measurement distributions can be multimodal, like for
borosilicate, the triboelectric series cannot be defined using
the distribution average. This would fail to capture the
triboelectric behavior, as it would predict an almost neutral
output, instead of a triboelectric charge fluctuating between
negative and positive. This is highlighted by the white dots
representing the average of the distributions in Figs. 1(b)
and 1(c).
To understand the systematic uncertainty observed in the

measurements, we investigated nanoscale contact by means
of first principles calculations. The employed structures are
shown in Fig. 1(e) and described accurately in the SM,
Methods 3. First, we tested the BSC model, investigating
the triboelectric behavior of the hydroxylated surfaces of
the selected materials [34,81,82], involving only electron
transfer [32]. Analyzing the partial charges by means of
Bader analysis, we found a negligible triboelectric charging
of 10−2 e and, coherently with the BSC model [31], a very
low barrier at the gold-silicate interface. However, as this
clearly contradicts the experimental measurements, elec-
tron transfer alone cannot explain TE, meaning that transfer
of chemical species must be involved.
Therefore, we modeled silicate-gold contact under pres-

sure to study the activation of hydrogen transfer by
mechanical forces and to evaluate the effect on TE of
the newly formed dangling bond. We applied a method-
ology first introduced to describe mechanochemical reac-
tions from first principles [35]. In this method, the effect of
pressure on chemistry is investigated by applying a
quasistatic indentation of the silicates against gold. As
shown in Fig. 2(a), we started from a fixed interface
separation and relaxed the configuration before (initial

configuration) and after (final configuration) ionic transfer.
Using the calculated energies, we computed the reaction
energy as Er ¼ Efinal − Einitial. After relaxation we moved
the silicate closer to the gold, relaxed again both the initial
and the final configuration, re-computed the reaction
energy, and iterated the process. More details on the
procedure can be found in the SM, Note S5 [32].
Figures 2(b) and 2(c) show the reaction energy Er against
the applied pressure for the hydrogen transfer from fused
silica and quartz, respectively. The reaction becomes
energetically favorable at very high pressures, in the order
of the GPa, 4 orders of magnitude larger than the nominal
experimental pressure of 105 Pa. However, it is known that
nominally flat surfaces are comprised of multiple nano-
asperities [83] and the local pressure on single asperities
can be up to 105 times higher than the macroscopic pressure
applied experimentally, as shown in the SM, Fig. S6
[32,36,37,84–87]. The calculated pressure range is indeed
consistent with previous measurements of single asperity
contact [88]. In a real-life situation, flash temperatures and
kinetic effects should contribute to further reducing the
pressure needed to activate the mechanochemical reaction
[89]. It should be noted that gold deforms plastically, which
is in agreement with previous reports where it has been
observed even to a very large extent [38].
Figures 2(d) and 2(e) show the evolution of the interface

barrier as the indentation proceeds, before (unfilled circles)
and after (filled circles) hydrogen transfer. Two major
points emerge from these results. First, the barrier rises
significantly after the mechanochemical reaction. This
immediately points out to an increase in the triboelectric
charging, according to the BSC model. Electronic transfer
is indeed confirmed by calculations performed at the
equilibrium. Note S7 in the SM shows that different

(a) (b)

(d) (e)

(c)

FIG. 2. Effect of indentation on reaction energy and electrostatic barrier. (a) Silica on gold indentation is modeled ab initio simulating
the initial (before mechanochemistry) and the final state (after) at a fixed interface distance, and then progressively reducing this distance
to increase the pressure quasistatically. (b),(d) Reaction energy at every indentation step, respectively, for fused silica and quartz.
(c),(e) Interface barrier before (unfilled circles) and after (filled circles) hydrogen transfer, respectively, for fused silica and quartz.
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terminations exposed by mechanochemical reactions
acquire a large charge, demonstrating that TE is enabled
by mechanochemistry. This charge is fully electronic, with
no ionic contribution, as shown in the SM, Note S8 [32].
Moreover, we find that the calculated electrostatic barrier
and triboelectric charging are proportional, further cor-
roborating the BSC model. Secondly, as silica and gold are
pressed against each other, the interfacial barrier reduces by
as much as 50%. This barrier drop is significant because it
facilitates electron transfer, as we have shown with a
numerical simulation of the tunneling probability across
the quantum barrier in the SM, Note S9. Experimentally,
kinetic effects due to the nonequilibrium nature of contact,
not present in the simulations, are likely to further con-
tribute to the transfer [90]. Based on this consideration, we
propose a mechanism to include mechanochemistry in the
description of the microscopic TE process.
Figure 3 shows the scheme of our proposed model. We

conceptually schematize the contact in three stages:
approach, full contact, and separation. In the approaching
stage [Fig. 3(a)] the silicate gets closer to gold under the
effect of external mechanical stresses. Initially, pressure is
low, and no chemical reaction occurs. Since the barrier is
low, any transferred charge is free to flow back to the more
stable state on its original material. This stage corresponds
to the unfilled dots in Figs. 2(d) and 2(e). As indentation
proceeds, mechanical stresses activate mechanochemical

reactions. This generates dangling bonds on the silicate
surface that allow electronic transfer, resulting in a sudden
barrier hike [the filled dots in Figs. 2(d) and 2(e)], in
agreement with the BSC model. Under increasing pressure,
interface separation continues to narrow, lowering again the
barrier and enabling additional charge transfer—the for-
ward flow. This process shows that TE is indeed activated
by mechanical stresses, an assumption of the BSC model
that is demonstrated here.
At full contact stage [Fig. 3(b)], triboelectric charging

reaches its maximum value. First, the Fermi levels of gold
and the silicate in contact are aligned, implying that the
highest-occupied states in gold are energetically unfavor-
able with respect to defect states in the silicate, inducing a
flow of electrons toward the more stable states.
During separation [Fig. 3(c)] the excess charges captured

by the silicate start to experience a drive to flow back to
their original state due to the relief of pressure and the
inversion of the kinetic motion. As pressure is relieved,
electron backflow is activated by tunneling or lattice
vibrations [31]. Backflow is stronger when the barrier is
still low but, with increasing separation, the barrier pro-
gressively raises and the backflow slows down until it
eventually stops, as shown in the last step, Fig. 3(c). The
height of the barrier governs how quickly the backflow
completely stops and determines the final quantity of stuck
charges. The mechanism here proposed improves and
generalizes the BSC model to a much wider class of

FIG. 3. Mechanism of triboelectrification due to mechanochemical ion transfer. (a) In the approaching stage initially tribo-
electrification is prevented by the absence of dangling bonds. As the pressure increases, mechanochemical ion transfer is activated and
charge transfer begins (forward flow). The increasing pressure lowers the interface barrier and favors a larger charge transfer. (b) At full
contact the maximum amount of charge is transferred. (c) During separation a fraction of the transferred charges flows back to gold,
tunneling the barrier (backflow), until it becomes too high to be tunneled.

PHYSICAL REVIEW LETTERS 131, 166201 (2023)

166201-4



situations, describing the effect of mechanochemistry on
TE in metal-dielectric contact.
Once we explained the mechanochemical process, we

investigated the influence of different terminations on
tribopolarity. We considered two possible mechanochem-
ical reactions leading to ionic transfer and to the exposure
of dangling bonds to contact:

Auþ silicate-OH → Au-Hþ silicate-O- ð1Þ

Auþ silicate-OH → Au-OHþ silicate- ð2Þ

Reaction (1) breaks the O─H bond and exposes the oxygen
anion to contact. Reaction (2) severs the bond between
oxygen and the cation, leaving a dangling bond on silicon
in fused silica and quartz, and on silicon or boron in
borosilicate. Figure 4(a) shows the possible terminations
for each considered material and their calculated tribo-
electric charging at the equilibrium interface distance.
Borosilicate has four possible terminations (Si─, B─,
SiO─, and BO─), while fused silica and quartz have only
Si─ and SiO─. In both fused silica and quartz the
calculated triboelectric charging is negative for each
termination, consistent with previous studies performed
by means of high-accuracy first principles investigations
[91–93], supported by experimental evidence [94,95].
These reports have demonstrated that both SiO─ and
Si─ surface defects act as deep electron traps, consistent
with our finding that both terminations contribute to
negative TE. Borosilicate can instead switch tribopolarity
depending on the termination. As shown in Fig. 4(a),
cationic Si─ and B─ acquire positive tribocharge, while the
anionic SiO─ and BO─ charge negatively.
Figure 4(b) shows a schematic of the mechanism leading

to different TE observed between pure silica and borosili-
cate. This can be related to their different chemical
composition. In pure silica, both anionic (O─) and cationic
(Si─) terminations contribute to negative triboelectric
charging, while in borosilicate they switch polarity. This
suggests an explanation for the high variability observed in

the experiments. Experimentally, the macroscopic TE
output will be determined by the charge balance induced
by the occurrence of multiple mechanochemical reactions.
Several anionic and cationic terminations will be exposed,
each contributing to triboelectric charging. The effect of
plastic deformation will then promote the local conver-
gence of positive or negative terminations, forming separate
positive and negative areas [33,39]. This arrangement
breaks the equiprobability between asperities of opposite
polarities, leading to a non-neutral macroscopic charging,
depending on the details and history of contact and on the
environmental conditions (SM, Note S10). Thus, borosili-
cate charging can oscillate between tribopositivity and
tribonegativity, depending on whether positive or negative
areas come to be dominant at the interface. On the other
hand, because silica terminations are always tribonegative,
its macroscopic TE output will always be negative, even
though it can change in magnitude with the number of
actual mechanochemical events. In this case, the different
number of mechanochemical events occurring at every
measurement can also explain the distribution of the silica
triboelectric output, as more reactions induce a larger
charging and vice versa. Finally, borosilicate samples often
contain concentrations of sodium oxide (Na2O) that can
contribute to TE, as shown in the SM, Note S11 [96]. The
mechanism is corroborated by the results on the additional
test material TiO2, shown in Note S12.
In conclusion, we have proposed a mechanochemical

model for TE to explain the systematic uncertainty
observed in the experimental measurements. By investigat-
ing the contact between selected silicates and gold as a
notable case study, we have shown that electronic transfer is
enabled by the mechanochemical reactions occurring at the
nanoasperities in contact. We have further generalized the
BSC model, showing that the dynamics of electronic
transfer is regulated by the variation of the interface barrier
in the contact-separation motion. Through the model we
have demonstrated that the tribopolarity of a material is
determined by what terminations are exposed to contact.
For example, cationic terminations are tribonegative in pure
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silica but tribopositive in borosilicate. The macroscopic
triboelectric output will be then governed by the surface
balance between the positive and negative terminations.
These findings explain several experimental observations,
from the uncertain triboelectric output to the mosaic
charging patterns, unifying them in a comprehensive
theoretical framework. Moreover, our model is comple-
mentary to other models that have recently tried to explain
TE based on the high stresses at the nanoasperity contact,
highlighting the role of flexoelectricity or thermoelectricity
[75–78]. Relating TE to the chemical properties of the
species composing a material, we pave the way for the
theoretical prediction of TE.
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