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The failure of observing the eþe− → J=ψJ=ψ events at B factories to date is often attributed to the
significant negative order-αs correction. In this work we compute the Oðα2sÞ correction to this process for
the first time. The magnitude of the next-to-next-to-leading order (NNLO) perturbative correction is
substantially negative so that the standard nonrelativistic QCD prediction would suffer from an unphysical,
negative cross section. This dilemma may be traced in the fact that the bulk contribution of the fixed-order
radiative corrections stems from the perturbative corrections to the J=ψ decay constant. We thus implement
an improved nonrelativistic QCD factorization framework, by decomposing the amplitude into the photon-
fragmentation piece and the nonfragmentation piece. With the measured J=ψ decay constant as input,
which amounts to resumming a specific class of radiative and relativistic corrections to all orders, the
fragmentation-induced production rate can be predicted accurately and serves a benchmark prediction. The
nonfragmentation type of the amplitude is then computed through NNLO in αs and at lowest order in
velocity. Both the OðαsÞ and Oðα2sÞ corrections in the interference term become positive and exhibit a
decent convergence behavior. Our finest prediction is σðeþe− → J=ψJ=ψÞ ¼ 2.13þ0.30

−0.06 fb atffiffiffi
s

p ¼ 10.58 GeV. With the projected integrated luminosity of 50 ab−1, the prospect to observe this
exclusive process at Belle 2 experiment appears to be bright.

DOI: 10.1103/PhysRevLett.131.161904

Introduction.—In 2006 the BarBar Collaboration
reported two exclusive processes about production of two
neutral vector mesons, and the measured production rates
are σðeþe− → ρ0ρ0Þ¼ 20.7�0.7ðstatÞ�2.7ðsystÞ fb and
σðeþe− → ρ0ϕÞ ¼ 5.7� 0.5ðstatÞ � 0.8ðsystÞ fb, with a
cut j cos θj < 0.8 imposed [1]. Since the final state has
net positiveC parity, these exclusive processesmust proceed
via eþe− annihilation into two photons. The suppression
caused by extra QED coupling constants can be largely
compensated by the significant enhancement brought by the
small photon virtuality once the vector mesons are produced
through two photon independent fragmentation, hence the
production rates can be surprisingly larger than naively
expected. Shortly after, Davier et al. [2] (see also Bodwin
et al. [3]) considered these processes in the vector domi-
nance model (VMD). Including the finite width of ρ0,
these authors obtained σðeþe− → ρ0ρ0Þ ¼ 21.4� 0.7 and

σðeþe− → ρ0ϕÞ ¼ 6.15� 0.22 fb with j cos θj < 0.8, in
satisfactory agreement with the BarBarmeasurements [1].
One naturally speculates whether the similar yet

much cleaner double J=ψ production process can be
observed at B factories or not. In fact, as early as in
2003, the Belle experiment had already looked for this
channel and not found a clear signal [4]. Instead an upper
limit is placed, σðeþe− → J=ψJ=ψÞB>2 < 9.1 fb at the
90% confidence level, where B>2 signifies the branching
fraction for final states including more than two charged
tracks.
On the theoretical side, the eþe− → J=ψJ=ψ process has

already been investigated by several different groups over the
years. In 2002 Bodwin et al. studied this process at lowest
order in the nonrelativistic QCD (NRQCD) approach and
predicted the cross section to be around 8.7 fb [5], which is
even greater than the leading-order (LO) NRQCD prediction
for eþe− → J=ψηc [6–8]. Shortly after, this prediction was
updated to 6.65 fb by the same authors [9].With the aid of the
VMD, Davier et al. considered the photon fragmentation
contribution only and predicted the total cross section to be
about 2.38 fb [2]. Besides the photon fragmentation con-
tribution, Bodwin et al. further took into account the non-
fragmentation contribution within the NRQCD factorization
framework, and found a sizable destructive interference
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effect, with the cross section predicted to be about 1.69�
0.35 fb [3].
Important progress was made by Gong andWang in 2008

[10], who computed theOðαsÞ correction to this process, yet
at the lowest order in velocity. The NLO perturbative
correction turns out to be negative and significant. By
including the radiative correction, Gong et al. found that
the LO prediction about 7.4–9.1 fb reduces to −3.4–2.3 fb
[10]. Later the combined NLO perturbative and relativistic
corrections were investigated by Fan et al. [11]. They found
the fixed-order NRQCD prediction for the cross section
ranges from −12 to −0.43 fb, which is negative and
sensitive to the charm quark mass and renormalization
scale. On the other hand, following the recipe practiced
in [3], splitting the amplitude into the photon-fragmentation
and nonfragmentation parts, Fan et al. found the predicted
cross section boosted to the positive range 1–1.5 fb [11].
The predicted double-J=ψ cross sections at B factories

are scattered in a wide range. To provide useful guidance
for experimentalists to search for this channel, it is crucial
to make the most precise theoretical prediction, which is the

chief motivation of this work. Since theOðαsÞ correction is
quite important, one naturally wonders what is the impact
ofOðα2sÞ correction. It is the goal of this work to investigate
the two-loop QCD correction to this double-J=ψ produc-
tion process, which turns out to be an exceedingly
formidable task.
Two photon independent fragmentation.—Since the

double J=ψ in the final state has the even C parity, this
production process must proceed through eþe− annihilation
into two virtual photons. The dominant production mecha-
nism is via two photon independent fragmentation into
J=ψ , as shown in Fig. 1. According to VMD, the photon-
to-J=ψ coupling strength is governed by eecMJ=ψfJ=ψ,
where fJ=ψ denotes the J=ψ decay constant and is defined
by hJ=ψ jc̄γμcj0i ¼ −fJ=ψMJ=ψε

�μ
J=ψ. The value of the

decay constant can be determined from the precisely
measured leptonic width of J=ψ , i.e., ΓðJ=ψ → lþl−Þ ¼
4πe2cα2f2J=ψ=3MJ=ψ .
The differential unpolarized cross section for eþe− →

J=ψJ=ψ through photon fragmentation reads [2]

dσfrðeþe− → J=ψJ=ψÞ
d cos θ

¼
�
eecfJ=ψ
MJ=ψ

�
4 πα2

s
β
ðt2 þ u2Þðtu −M4

J=ψÞ þ 4stuM2
J=ψ

t2u2
; ð1Þ

with β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

J=ψ=s
q

representing the velocity of the

outgoing J=ψ .
Integrating (1) over cos θ (one should cover only the

hemisphere of the solid angle since two J=ψ are indis-
tinguishable bosons.), one obtains

σfr ¼
32π3e4cα4f4J=ψ

M4
J=ψ

1

s

�
4þð1−β2Þ2

1þβ2
ln

�
1þβ

1−β

�
−2β

�
: ð2Þ

Note the fragmentation-initiated total cross section exhibits
the asymptotic 1=s decrease, which is identical to the
scaling behavior of eþe− → hadrons and in sharp contrast
with the 1=s4 scaling associated with the exclusive process
eþe− → J=ψ þ ηcðχc1Þ and the 1=s3 scaling affiliated with
eþe− → J=ψ þ χc0;2 [6].

Traditional NRQCD factorization.—The mainstream
theoretical tool to account for the exclusive char-
monium production nowadays is the NRQCD factorization
approach [12]. This approach allows one to express the
cross section as a double expansion in αs and v, the typical
charm quark velocity inside J=ψ . Concretely speaking, at
lowest order in v, the NRQCD prediction for the production
rate of eþe− → J=ψJ=ψ can be cast in the following form:

dσ
d cos θ

¼ 1

2s
β

16π

e8e4c
4

�
F ð0Þ þ αs

π
F ð1Þ

þ
�
αs
π

�
2

F ð2Þ þ � � �
� jhOiJ=ψ j2

m2
c

; ð3Þ

where F ðiÞ (i ¼ 0, 1, 2) represent the short-distance
coefficients (SDCs) at various perturbative order, and

FIG. 1. Illustration of the eþe− → J=ψJ=ψ process through two photon independent fragmentation.
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hOiJ=ψ is the abbreviation of the following NRQCD matrix
element: hOiJ=ψ ≡ jhJ=ψðλÞjψ†σ · εðλÞχj0ij2.
Improved NRQCD factorization prediction.—At any

prescribed order in αs, the double-J=ψ production from
eþe− annihilation proceeds through either the photon
fragmentation or nonfragmentation channel, where the
former always dominates the latter. Following [3], we split
the production amplitude into the fragmentation and non-
fragmentation pieces:

dσ
d cos θ

¼ 1

2s
β

16π

1

4

X
spin

jMfr þMnfrj2: ð4Þ

One then applies NRQCD factorization to the nonfrag-
mentation part of the amplitude, which is expressed in
terms of the charm quark mass and hOiJ=ψ , instead ofMJ=ψ

and fJ=ψ . After squaring the amplitude in (4) and summing
over spins, we decompose the differential cross section into
the fragmentation part, interference part and the nonfrag-
mentation part:

dσ
d cos θ

¼ 1

2s
β

16π

e8e4c
4

�
Cfrf4J=ψ þ Cintf2J=ψ

hOiJ=ψ
mc

þ Cnfr

�hOiJ=ψ
mc

�
2
�
: ð5Þ

The coefficient affiliated with the fragmentation piece
can be read off from (1):

Cfr ¼
8
�
ðt2 þ u2Þðtu −M4

J=ψÞ þ 4stuM2
J=ψ

�
t2u2M4

J=ψ

: ð6Þ

The interference and nonfragmentation terms can be
tackled in NRQCD factorization approach. At lowest order
in v but through α2s , the coefficients can be parametrized as

Cint ¼ Cð0Þint

�
1þ αs

π
ĉð1Þint þ

�
αs
π

�
2
�
β0
4
ln

μ2R
m2

c
ĉð1Þint

þ 2γJ=ψ ln
μ2Λ
m2

c
þ ĉð2Þint

�
þ � � �

�
; ð7aÞ

Cnfr ¼ Cð0Þnfr

�
1þ αs

π
ĉð1Þnfr þ

�
αs
π

�
2
�
β0
4
ln

μ2R
m2

c
ĉð1Þnfr

þ 4γJ=ψ ln
μ2Λ
m2

c
þ ĉð2Þnfr

�
þ � � �

�
; ð7bÞ

where μR and μΛ refer to renormalization scale and
NRQCD factorization scale. β0 ¼ 11CA=3 − 2nf=3, with
nf ¼ 4 signifying the number of active quark flavors. The
occurrence of the β0 ln μR term is dictated by the renorm-
alization group invariance. γJ=ψ ¼ −ðπ2=12ÞCFð2CF þ
3CAÞ is the two-loop anomalous dimension of the
NRQCD vector current [13,14]. The occurrence of
the γJ=ψ ln μΛ term at two-loop order is demanded by the
NRQCD factorization. ĉðiÞ (i ¼ 1, 2) represent the
μ-independent order-αs and order-α2s corrections.
Both fJ=ψ and hOiJ=ψ enter the improved NRQCD

factorization formula (5). fJ=ψ is not an entirely non-
perturbative object and rather encapsulates some perturba-
tive effect. NRQCD factorization allows one to further
factorize the J=ψ decay constant as SDCs multiplied with
the NRQCD matrix element hOiJ=ψ :

fJ=ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hOiJ=ψ
MJ=ψ

s �
1þ fð1Þ

αs
π
þ
�
αs
π

�
2
�
fð1Þ

β0
4
ln

μ2R
m2

c

þ γJ=ψ ln
μ2Λ
m2

c
þ fð2Þ

�
þ � � �

�
þOðv2Þ; ð8Þ

with fð1Þ ¼ −2CF, fð2Þ ¼ −43.3288 [13,14], and nf ¼ 4.
The Oðα3sÞ correction [15,16] and Oðαisv2Þ (i ¼ 0, 1)
corrections [17,18] have also been available. We adopt
the measured value fJ=ψ in (5). This implies that we have
resummed infinite towers of perturbative and relativistic
corrections to all orders. Actually, one can easily obtain
various SDCs in the traditional NRQCD framework (3)
from the improved factorization formula (5) by employing
(8) and setting MJ=ψ ¼ 2mc.
There are two tree-level nonfragmentation diagrams, as

depicted in Figs. 2(a) and 2(b). A straightforward calcu-
lation yields the tree-level coefficients for the interference
and the nonfragmentation terms in (7):

Cð0Þint ¼ −
128

�
tuðt2 þ u2Þ þ 20m2

cstuþ 16m4
cs2 − 64m6

cs − 512m8
c

�
3m2

ctus3
; ð9aÞ

Cð0Þnfr ¼ 2048

�
−12tuðtu − 32m4

c þ 4m2
csÞ þ 5s2tu

9s6
þ 16m2

cðs3 − 5m2
cs2 þ 48m4

cs − 192m6
cÞ

9s6

�
: ð9bÞ
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Substituting (6) and (9) into (5), integrating over cos θ
from 0 to 1, we reproduce the fragmentation-initiated
integrated cross section (2), and obtain the following
interference and nonfragmentation contributions to the
integrated cross section:

σint¼−
16π3e4cα4f2J=ψ hOiJ=ψ

3m3
cs2

�
ð5−β2Þð1−β2Þ2 ln

�
1þβ

1−β

�

þ22β−
40

3
β3þ2β5

�
; ð10aÞ

σnfr ¼
2048π3α4e4cjhOiJ=ψ j2

45m2
cs3

β

�
10 −

20

3
β2 þ β4

�
: ð10bÞ

Here the J=ψ velocity β is evaluated by replacing MJ=ψ

with 2mc.
In contrast with the fragmentation part that asymptoti-

cally scales as 1=s, the interference part of the cross section
exhibits a 1=s2 asymptotic decrease, while the non-
fragmentation part exhibits a 1=s3 scaling. Adding (2)

and (10), setting fJ=ψ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hOiJ=ψ=mc

q
and MJ=ψ ≈ 2mc

everywhere, we reproduce the analytic expression of the
tree-level integrated cross section [10].

Higher-order radiative corrections.—We proceed to
compute the OðαsÞ and Oðα2sÞ corrections to the unpolar-
ized cross section. We begin with the quark-level amplitude

for eþe− → γ�γ� → cc̄ð3Sð1Þ1 Þ þ cc̄ð3Sð1Þ1 Þ. About 24 one-
loop and 506 nonvanishing two-loop diagrams of non-
fragmentation type, together with the corresponding
amplitudes are generated by QGraf/FeynArts [19,20].
Some representative nonfragmentation types of one-loop
and two-loop diagrams are shown in Figs. 2 and 3. [For
simplicity, we have neglected those “light-by-light”-type
diagrams exemplified by Fig. 3(h), which generally yield
very tiny contributions to higher-order perturbative correc-
tions in various quarkonium production and decay proc-
esses [16,21–27].] We use the packages FeynCalc/
FormLink [28,29] to conduct Dirac algebra. At lowest
order in v, we neglect the relative momentum in each cc̄
pair prior to carrying out the loop integration, which
amounts to directly extracting the NRQCD SDCs from
the hard loop region [30]. After the integration-by-parts
reduction with the aid of Apart [31] and FIRE [32], we
end up with about 2400 two-loop master integrals (MIs).
We utilize the package AMFlow [33–36] to compute the
MIs with high numerical accuracy. Note that the encoun-
tered two-loop diagrams bear the genuine 2 → 4 topology
and represent the cutting-edge problem in the area of

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Some representative two-loop diagrams of nonfragmentation origin for eþe− → J=ψJ=ψ.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Nonfragmentation type of tree-level Feynman diagrams [(a) and (b)], together with some sample one-loop nonfragmentation
diagrams [(c) through (h)].
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multiloop calculation. The IBP reduction and computation
of the MIs turn out to be rather time consuming.
Performing the field-strength and mass renormalization,

with two-loop expressions of Z2 and Zm taken from [37],
and renormalizing the strong coupling constant under
the MS scheme to one-loop order, we eliminate the UV
divergences. Nevertheless, the renormalized two-loop
corrections to Cint and Cnfr still contain uncancelled single

IR poles equal to Cð0Þint γJ=ψ and to 2Cð0Þnfr γJ=ψ , respectively.
This pattern is exactly what is required by NRQCD
factorization for double-J=ψ production at Oðα2sÞ, as
reflected in (7). These IR poles can be factored into the
NRQCDmatrix element hOiJ=ψ under the MS prescription,
which then becomes scale-dependent quantity. Note that
the γJ=ψ ln μΛ terms in (7) exactly cancel the μΛ dependence
of the NRQCD matrix element, so that the predicted cross
section is independent of μΛ. Finally we are able to identify

the desired nonlogarithmic piece in the two-loop SDCs, ĉð2Þint

and ĉð2Þnfr .
Although we adopt the Feynman gauge throughout this

work, it is important to stress that our decomposition in (5)
explicitly preserves the QED and QCD gauge invariance.
QED gauge invariance simply arises from current con-
servation. Note the fragmentation-type diagrams are
essentially the process eþe− → γ�γ� dressed with two
independent photon-to-J=ψ fragmentation processes,
which encode the gauge-invariant QCD corrections to
J=ψ decay constant. Since the full amplitude must be
gauge invariant, the nonfragmentation part of the amplitude
ought to be gauge invariant. Certainly it will be desirable to
explicitly verify the QCD gauge invariance in a general Rξ

gauge. To expedite the future check, we provide
Supplemental Material [38] which tabulates the values of
various SDCs in each part in both optimized and traditional

NRQCD approaches, for ten different values of scattering
angles.
In our numerical analysis, we have fixed

ffiffiffi
s

p ¼ 10.58,
MJ=ψ ¼ 3.0969, and mc ¼ 1.5 GeV. With ΓðJ=ψ →
lþl−Þ ¼ 5.56 keV [39], and the running QED coupling
αðMJ=ψÞ ¼ 1=132.6 [40], one obtains fJ=ψ ¼ 403 MeV.
In the phenomenological analysis, we approximate
the NRQCD matrix element hOiJ=ψðμΛ ¼ 1 GeVÞ≈
ð3=2πÞR2

J=ψð0Þ ¼ 0.387 GeV3, where the radial
Schrödinger wave function at the origin is evaluated from
Buchmüller-Tye potential model [41].
In Fig. 4 we plot the angular distribution of J=ψ at

various perturbative order within both the improved
NRQCD factorization and the traditional NRQCD factori-
zation. For the traditional NRQCD prediction, the LO
prediction is considerably greater than the fragmentation
contribution. Nevertheless, both OðαsÞ and Oðα2sÞ correc-
tions significantly decrease the LO prediction. We have
confirmed the significant negative OðαsÞ correction first
discovered by Gong et al. [10]. Remarkably, the next-to-
next-to-leading order (NNLO) perturbative correction is
also very substantial, which brings the predicted cross
section down to unphysical, negative value. The symptom
can be attributed to the fact that the bulk contribution of the
fixed-order radiative corrections actually originates from
the negative and significant perturbative corrections to the
J=ψ decay constant (8).
On the other hand, for the improved NRQCD prediction,

due to the destructive interference between the tree-level
nonfragmentation amplitude [Figs. 2(a) and 2(b)] and
fragmentation amplitude, the LO prediction is considerably
smaller than the fragmentation cross section. Nevertheless,
both OðαsÞ and Oðα2sÞ corrections become positive, which
exhibit decent convergence behavior. In spite of large
uncertainty, the finest prediction at NNLO accuracy already

FIG. 4. Differential cross sections for eþe− → J=ψJ=ψ against cos θ at various perturbative accuracy from traditional NRQCD
factorization (left panel) and improved NRQCD approach (right panel). We have fixed μΛ ¼ 1 GeV, and taken the central value of μR to
be

ffiffiffi
s

p
=2. The package RunDec [42] is utilized to compute the running QCD coupling to two-loop accuracy. The error bands of the

NLO and NNLO predictions are estimated by sliding μR from mc to
ffiffiffi
s

p
.
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gets quite close to the fragmentation prediction in (1). One
also sees that when the outgoing J=ψ is collinear to the
electron beam direction, the fragmentation contribution
dominates the cross section. As θ deviates from 0, the
interference term starts to play some notable role.
The nonfragmentation term appears to be insignificant in
the entire range of θ.
Finally, in Table I we enumerate our predictions at

various perturbative accuracy for the integrated cross
section. The NNLO prediction from the improved
NRQCD approach is predicted to 2.13þ0.30

−0.06 fb. In contrast
with the negative cross section predicted by the traditional
NRQCD approach, we believe that our prediction
based on optimized NRQCD approach is robust and
reliable.
To date the Belle and the Belle 2 experiments have

accumulated about 1500 fb−1 data, so we expect about
3105–3645 exclusive double J=ψ events. Taking into
account BðJ=ψ → lþl−Þ ¼ 12%, about 45–52 four-lepton
events from double J=ψ can be produced. Assuming 40%
reconstruction efficiency, we expect about 18–21 signal
events may be reconstructed. With the designed 50 ab−1

integrated luminosity at Belle 2, it seems that the
observation prospects of exclusive double J=ψ production
is promising in the foreseeable future.
Nontrivial examination of NRQCD factorization at two

loop.—The validity of NRQCD factorization proves to be
rather intriguing at two-loop order by exchange of gluons
between double J=ψ . Had these IR poles not been
canceled, the NRQCD factorization would break down.
Since these IR divergences cannot be affiliated with an
individual J=ψ , let alone to be factored into the respective
NRQCD matrix element. We pick up a specific non-
fragmentation type of two-loop diagram, Fig. 3(e), to
illustrate this point. This Abelian two-loop diagram,
together with additional 17 similar diagrams, can be
obtained by dressing the photon-fragmentation diagram
in Fig. 1(a) with two gluon exchanges between two
cc̄ pairs.
A simplifying situation arises as cos θ ¼ 0, that the

leading IR pole starts at order 1=ϵ2IR. The origin of this
double IR pole stems from the loop regions where both
gluons become simultaneously soft. After making eikonal
approximation, we find

MFig: 3ðeÞ
				
θ¼π

2

¼ 1

ϵ2IR

CFα
2

2Nc

ðm2
c þ 2P2Þ2

16P2ð4m2
c þ P2Þ

×

�
ln
1þ β

1 − β
− iπ

�
2

MFig: 1ðaÞ
fr;0

				
θ¼π

2

þOð1=ϵIRÞ; ð11Þ

where jPj denotes the magnitude of the J=ψ momentum.
Summing up 18 diagrams, these double IR poles exactly
cancel. The pattern of the cancelation of the single IR poles
become much more involved.
When cos θ ≠ 0, Fig. 3(e) exhibits severe IR divergences

which start at 1=ϵ3IR, with complex-valued coefficients.
Fortunately, all the IR poles, from Oð1=ϵ3IRÞ to Oð1=ϵIRÞ,
exactly cancel upon summing 18 two-gluon exchange
diagrams together. The cancellation of IR poles implies
that the NRQCD factorization is fulfilled in a highly
nontrivial manner.
Summary.—Complementary to the well-studied double

charmonium production processes eþe− → J=ψ þ ηcðχcJÞ,
a better understanding of double-J=ψ production process
can enrich our knowledge about charmonium production
mechanisms and test the applicability of the NRQCD
factorization approach. An accurate theoretical account
for the cross section offers crucial guidance for experi-
mental search of this process.
In this work we calculate the Oðα2sÞ correction to this

process for the first time. It is found that the traditional
NRQCD approach would result in a substantially negative
perturbative correction, and inevitably lead to the unphys-
ical negative cross section. The symptom may be attributed
to the observation that the bulk contribution of the fixed-
order radiative corrections actually stems from the negative
and significant perturbative corrections to the J=ψ decay
constant. Motivated by this observation, we implement an
improved NRQCD factorization approach, in which the
amplitude is split into the photon-fragmentation piece and
the nonfragmentation piece. The fragmentation-induced
production rate can be predicted unambiguously with the
measured J=ψ decay constant as input. The interference
part and the nonfragmentation part are then computed
through NNLO in αs. In this optimized scheme, we
find that both the OðαsÞ and Oðα2sÞ corrections in the
interference part become positive and exhibit a reasonable
convergence. The nonfragmentation part turns out to be
insignificant numerically. Our most accurate prediction in
the optimized NRQCD approach is σðeþe− → J=ψJ=ψÞ ¼
2.13þ0.30

−0.06 fb at
ffiffiffi
s

p ¼ 10.58 GeV. We believe that this
NNLO prediction is much more meaningful and trust-
worthy than that from the traditional NRQCD approach.
Based on the current 1500 fb−1 data accumulated in

Belle and Belle 2, and the projected 50 ab−1 full
dataset at Belle 2, the observation prospect of the

TABLE I. Integrated cross section of eþe− → J=ψJ=ψ at
various perturbative accuracy. The uncertainties are estimated
by varying μR from mc to

ffiffiffi
s

p
.

σ (fb) Fragmentation LO NLO NNLO

Optimized NRQCD
2.52

1.85 1.93þ0.05
−0.01 2.13þ0.30

−0.06

Traditional NRQCD 6.12 1.56þ0.73
−2.95 −2.38þ1.27

−5.35
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exclusive double-J=ψ production process looks very
bright.
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