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Macroscopic properties of the strong interaction near its chiral phase transition exhibit scaling behaviors,
which are the same as those observed close to the magnetic transition in a three-dimensional classical spin
system with O(4) symmetry. We show that the universal scaling properties of the chiral phase transition in
quantum chromodynamics (QCD) at the macroscale are, in fact, encoded within the microscopic energy
levels of its fundamental constituents, the quarks. We establish a connection between the cumulants of the
chiral order parameter, i.e., the chiral condensate, and the correlations among the energy levels of quarks,
i.e., the eigenspectra of the massless QCD Dirac operator. This relation elucidates how the fluctuations of
the chiral condensate arise from the correlations within the infrared part of the energy spectra of quarks, and
naturally leads to a generalization of the Banks-Casher relation for the cumulants of the chiral condensate.
Then, through (2þ 1)-flavor lattice QCD calculations with varying light quark masses near the QCD chiral
transition, we demonstrate that the correlations among the infrared part of the Dirac eigenvalue spectra
exhibit same universal scaling behaviors as expected of the cumulants of the chiral condensate. We find that
these universal scaling behaviors extend up to the physical values of the up and down quark masses. Our
study reveals how the hidden scaling features at the microscale give rise to the macroscopic universal
properties of QCD.
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Introduction.—Critical phenomena exhibited in the vicin-
ity of continuous second order phase transition are ubiqui-
tous in nature [1]. Phase transitions at high temperatures
involving the electroweak and strong forces of nature have
given rise to the Universe as we experience today. Lattice-
regularized field theory calculations have shown that the
high temperature transitions in matters governed by the
electroweak (see, e.g., discussions in [2]) and strong
interactions [3–6] are rapid crossovers. But for small enough
Higgs mass [7–12] and in the massless (chiral) limit of up
and down quarks [13] the electroweak and strong forces,
respectively, are expected to undergo true phase transitions.
In the vicinity of a second order phase transition macro-

scopic quantities related to the order parameter exhibit
telltale scaling behaviors that are uniquely characterized by
the dimensionality and global symmetries of the system,
irrespective of the details of its microscopic degrees of
freedom and interactions. Based on the global symmetries
of quantum chromodynamics (QCD), the theory of strong

interaction, the second order QCD chiral transition can be
in the three-dimensional O(4) universality class [13,14].
For lattice-regularized QCD using costly chiral fermions,
e.g., overlap fermions, the chiral symmetry of QCD is
strictly preserved for any finite value of the regulator, i.e.,
for nonvanishing lattice spacing, the universality class is
three-dimensional O(4); while for the case using staggered
fermions the chiral symmetry is only partially preserved
and the universality class falls into three-dimensional O(2)
[19–22]. With present computational resources it is only
feasible to carry out large scale lattice QCD simulations
toward a chiral limit of up and down quarks using the
staggered fermions. Thus, lattice QCD studies of chiral
phase transition using staggered fermion discretizations are
expected to observe the same macroscopic scaling behav-
iors as that in the vicinity of the liquid to superfluid λ
transition in 4He [23]; notwithstanding, the microscopic
degrees of freedom for QCD are quarks and gluons
governed by the strong force while for 4He are electrons
and photons interacting via the electromagnetism. Because
of this universal feature, to understand and predict macro-
scopic properties of a system close a second order phase
transition one, most often, resorts to a simplified effective
theory possessing the same dimensionality and global
symmetries of the original theory, ignoring its microscopic
complexities [23].
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However, it is unclear if and how the macroscopic
universal scaling properties of the strong interaction in
the vicinity of the chiral phase transition are concealed
within the microscopic energy spectrum of its elementary
degrees of freedom, quarks. The goal of this work is lattice
QCD-based understanding of possible connections
between the universal features at the macroscopic and
microscopic scales of QCD. An analogous goal for quan-
tum electrodynamics will be to comprehend how the
macroscopic scaling properties near the λ transition of
4He arise from the energy levels of electrons without
resorting to an effective theory.
In this Letter, first, we will establish theoretical relations

between the cumulants of the chiral condensate and
correlations among the eigenvalue spectrum of the massless
Dirac operator. We will then demonstrate how the O(2)
scaling properties of the cumulants of the chiral condensate
are reflected within the correlations of the Dirac eigenvalue
spectrum through the state-of-the-art lattice QCD calcu-
lations in the staggered discretization scheme.
Theoretical developments.—For the lattice QCD calcu-

lations we will use (2þ 1)-flavor QCD with degenerate
light up (u) and down (d) quarks having masses ml ¼
mu ¼ md and a heavier strange quark with physical mass
ms. Since the physical strange quark plays no significant
role in the discussion of the O(2) critical behavior, for
simplicity in this subsection we develop the main theo-
retical idea by considering QCD with two degenerate light
quarks.
Consider the Euclidean-time QCD action S½U; ml� ¼

Sg½U� þ ψ̄=D½U�ψ þmlψ̄ψ , where ψ̄ψ ¼ ψ̄uψu þ ψ̄dψd,
Sg½U� is the pure gauge action, and =D½U� is the massless
QCD Dirac operator for given background SU(3) gauge
field U. To probe the system in chiral limit, ml → 0, we
introduce a probe operator, ψ̄ψðϵÞ≡ 2Trð=D½U� þ ϵÞ−1,
with the background U distributed according to
exp f−S½U; 0�g. The valance quark mass, ϵ > 0, is intro-
duced to facilitate the evaluation of the probe operator.
Traces over the color, spin and space-time indices are
denoted by Tr.
The nth order cumulants, Kn, of the order parameter

ψ̄ψðmlÞ can be obtained from the generating functional

Gðml; ϵÞ ¼ ln hexp f−mlψ̄ψðϵÞgi0; ð1Þ

as

Kn½ψ̄ψ � ¼
T
V
ð−1Þn∂

nGðml; ϵÞ
∂mn

l

�
�
�
�
ϵ¼ml

: ð2Þ

Hereafter, T is the temperature and V is the spatial volume
of the system, and h·i0 denotes expectation value with
respect to the QCD partition function in the chiral limit,
Zð0Þ ¼ R

expf−S½U; 0�gD½U�. With h·i the expectation
value with respect to the QCD partition function

ZðmlÞ ¼
R

expf−S½U; ml�gD½U�, and recognizing hOi ¼
hO expf−mlψ̄ψðmlÞgi0=hexpf−mlψ̄ψðmlÞgi0 and ZðmlÞ=
Zð0Þ ¼ hexpf−mlψ̄ψðmlÞgi0, it is easy to see that Kn are
the standard cumulants of ψ̄ψðmlÞ; e.g., K1½ψ̄ψ � ¼
Thψ̄ψðmlÞi=V, K2½ψ̄ψ � ¼ Th½ψ̄ψðmlÞ − hψ̄ψðmlÞi�2i=V,
K3½ψ̄ψ � ¼ Th½ψ̄ψðmlÞ − hψ̄ψðmlÞi�3i=V, etc.
Energy levels of a massless quark in the background

of U are given by the eigenvalues, λj½U�, of =D½U�. In terms
of λj½U� the probe operator can be expressed as
ψ̄ψðϵÞ≡2Trð=D½U�þ ϵÞ−1¼ 2

P

jðiλjþ ϵÞ−1. Thus, Eq. (1)
becomes

Gðml; ϵÞ ¼ ln

�

exp

�

−ml

Z
∞

0

PUðλ; ϵÞdλ
��

0

; ð3Þ

where

PUðλ;ϵÞ¼
4ϵρUðλÞ
λ2þ ϵ2

and ρUðλÞ¼
X

j

δðλ−λjÞ: ð4Þ

From Eq. (2) it is straightforward to obtain

Kn½ψ̄ψ � ¼
Z

∞

0

PnðλÞdλ; ð5Þ

where P1ðλÞ ¼ K1½PUðλ;mlÞ� for n ¼ 1, and for n ≥ 2

PnðλÞ ¼
Z

∞

0

K1½PUðλ;mlÞ; PUðλ2;mlÞ;…; PUðλn;mlÞ�

×
Yn

i¼2

dλi: ð6Þ

Here, K1 is the first order joint cumulant of n variables (Xi)
defined as

K1ðX1;…;XnÞ ¼
T
V
ð−1Þn∂

n lnhQn
i¼1 e

−tiXii
∂t1 � � �∂tn

�
�
�
�
t1;…;tn¼0

: ð7Þ

Equation (5) is our main theoretical result connecting the
cumulants of the order parameter to the n-point correlations
of the quark energy levels ρUðλÞ. The explicit expressions
of K1½ψ̄ψ �, K2½ψ̄ψ �, and K3½ψ̄ψ � in terms of ρUðλÞ are
provided in Eq. S2 of Supplemental Material [24].
The chiral phase transition in the staggered lattice QCD

at nonvanishing lattice spacings is expected to be in the
three-dimensional O(2) universality class. Following the
expectations for a three-dimensional O(2) spin model near
criticality [25], in the vicinity of the chiral transition

Kn½ψ̄ψ � ¼
Z

∞

0

PnðλÞdλ ∼m1=δ−nþ1
l fnðzÞ: ð8Þ

The scaling variable z ∝ z0m
−1=βδ
l ðT − TcÞ=Tc, where Tc is

the chiral phase transition temperature and z0 is a scale
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parameter; both are system specific. β and δ are the
universal critical exponents, and fnþ1ðzÞ ¼ ð1=δ − nþ
1ÞfnðzÞ − zf0nðzÞ=βδ are the universal scaling functions
of three-dimensional O(2) universality class. Here, n ≥ 1
and the superscript prime denotes derivative with respect to
z [26]. In our work we adopted β ¼ 0.349, δ ¼ 4.78 and for
consistency the scaling functions fnðzÞ of the O(2) uni-
versality class determined from Refs. [20,25].
Equation (8) indicates that universal scaling properties

of the macroscopic observables Kn½ψ̄ψ � arise from the
correlations among the microscopic energy levels PnðλÞ.
To elucidate this point, consider ml → 0. Then from
Eq. (4) one finds PUðλ; ϵ → 0Þ ¼ 2πρUðλÞδðλÞ, giving
limml→0P1ðλÞ ¼ 2πK1½ρUðλÞ�δðλÞ and limml→0PnðλÞ ¼
ð2πÞnK1½ρUðλÞ; ½ρUð0Þ�n−1�δðλÞ for n ≥ 2 [from Eq. (6)].
Noting that K1 of n identical variables is equivalent to Kn,
in the chiral limit Eq. (5) thus becomes a generalization of
the Banks-Casher relation [27] expressed as follows:

lim
ml→0

Kn½ψ̄ψ � ¼ ð2πÞnKn½ρUð0Þ�: ð9Þ

To the best of our knowledge this generalized relation
between the higher order cumulants of chiral condensate in
the chiral limit and density of the deep infrared energies of
quarks is new in literature.
In the chiral limit and close to Tc, Kn½ψ̄ψ � should

manifest universal scaling, e.g., K1½ψ̄ψ � ∼ jðT − TcÞ=Tcjβ
and K2½ψ̄ψ � ∼ jðT − TcÞ=Tcjβð1−δÞ. According to Eq. (9)
this must arise from the universal behaviors of the λ-
independent Kn½ρUð0Þ�. Thus, it is natural to expect that for
small ml within the scaling window the critical scaling of
Kn½ψ̄ψ � in Eq. (8) arises from the universal behaviors of the
amplitudes of PnðλÞ at the infrared, and not from its system-
specific λ dependence; i.e.,

PnðλÞ ¼ m1=δ−nþ1
l fnðzÞgnðλÞ: ð10Þ

Here, gnðλÞ are nonuniversal functions encoding the prop-
erties of the specific system under consideration.
Next, we numerically establish Eq. (10) through lattice

QCD calculations.

Lattice QCD calculations.—Lattice QCD calculations
were carried out between T ¼ 135–176 MeV for (2þ 1)-
flavor QCD using the highly improved staggered
quarks and the tree-level Symanzik gauge action, a setup
extensively used by the HotQCD Collaboration [28–33].
ms was fixed to its physical value with a varying
ml ¼ ms=27; ms=40; ms=80; ms=160, which correspond
to the Goldstone pion masses mπ ≈ 140, 110, 80,
55 MeV, respectively. The temporal extents of the lattices
were Nτ ¼ 8, and spatial extents were chosen to be
Nσ ¼ ð4 − 7ÞNτ. The gauge field configurations were
generated using a software suite SIMULATeQCD [34], and
the same gauge ensembles were used for the determination
of chiral phase transition temperature in the continuum
limit [35].
Observables were calculated on gauge configurations

from every tenth molecular dynamics trajectory of unit
length, after skipping at least first 800 trajectories for
thermalization. ρUðλÞ and PnðλÞ for n ¼ 1, 2, 3 over the
entire range of λ were computed using the Chebyshev
filtering technique combined with the stochastic estimate
method [18,36–40] on about 3000 configurations. Orders
of the Chebyshev polynomials were chosen to be 2 × 105

and 24–96 Gaussian stochastic sources were used. Exact
details are provided in Table SI of Supplemental
Material [24].
Results.—Owing to Eq. (9) we expect the relevant

infrared energy scale is λ ∼ml for small values of ml. It
is natural to express all quantities as functions of the
dimensionless and renormalization group invariant λ=ml:

λ̂¼ λ=ml; m̂l ¼ml=ms; z¼ z0m̂
−1=βδ
l ðT −TcÞ=Tc;

P̂nðλ̂Þ ¼mnþ1
s m̂lPnðλÞ=T4

c; and

K̂n½ψ̄ψ � ¼
Z

∞

0

P̂nðλ̂Þdλ̂∼ m̂1=δ−nþ1
l fnðzÞ; ð11Þ

where the dimensionless and renormalization group invari-
ant K̂n½ψ̄ψ � ¼ mn

sKn½ψ̄ψ �=T4
c.

In Fig. 1 we show P̂nðλ̂Þ for n ¼ 1, 2, 3 as a function of λ̂
in the proximity of Tc ¼ 144.2ð6Þ MeV [21]. P̂nðλ̂Þ rapidly
vanishes for λ̂≳ 1, and the regions where P̂nðλ̂Þ ≠ 0 get

FIG. 1. P̂1ðλ̂Þ (left), P̂2ðλ̂Þ (middle), and P̂3ðλ̂Þ (right) for 135 MeV ≤ T ≤ 145 MeV and 55 MeV ≤ mπ ≤ 140 MeV.
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smaller with increasing n. This reinforces that the relevant
infrared energy scale turns out to be λ̂ ∼ 1. In this infrared
region P̂nðλ̂Þ at a fixed T shows clear dependences on ml,
which becomes stronger for increasing n. The form of ml

dependence of P̂nðλ̂Þ also changes with varying T.
As shown in Fig. S1 of Supplemental Material [24] we

have checked that integrals over the relevant nonvanishing
infrared regions of P̂nðλ̂Þ [cf. Eq. (11)] reproduces Kn½ψ̄ψ �,
independently calculated through inversions of the fermion
matrices, for n ¼ 1, 2, 3. As seen from Fig. 1, expectedly,
our results become increasingly noisy with increasing n and
decreasing ml. With our present statistics we cannot access
correlation functions n > 3, particularly for smaller ml.
Theml and T dependence of P̂nðλ̂Þ shown in Fig. 1 can be

understood in terms of the three-dimensional O(2) scaling
properties. Once the P̂nðλ̂Þ are rescaled with respective
m̂1=δþ1−n

l fnðzÞ the data in Fig. 1 magically collapse onto
each other, see Fig. 2. The system-specific parameters Tc ¼
144.2ð6Þ MeV and z0 ¼ 1.83ð9Þ needed to obtain fnðzÞ
were taken from Ref. [21], where three-dimensional O(2)
scaling fits were carried out for the same lattice ensembles
but using an entirely different macroscopic observable,
namely the ml dependence of the static quark free energy.
Thus, our expectations fromEq. (10) are clearly borne out in
Fig. 2, namely

P̂nðλ̂Þ ¼ m̂1=δ−nþ1
l fnðzÞĝnðλ̂Þ; ð12Þ

where ĝnðλ̂Þ characterize the system specific of the nth order
energy-level correlations. To satisfy our generalized Banks-
Casher relations of Eq. (9) the ĝnðλ̂Þ must also satisfy
limV→∞lima→0limml→0ĝnðλ̂Þ → δðλ̂Þ, such that Kn½ψ̄ψ � has
the correct scaling behavior in ðT − TcÞ=Tc.
The values of z0 and Tc used to demonstrate the

universal scaling in Fig. 2 were obtained fitting lattice
results for ml dependence of the static quark free energy
only for 55 MeV ≤ mπ ≤ 110 MeV [21]. It is noteworthy
that the physical QCD with mπ ≈ 140 MeV also shows the
same universal scaling for 135 MeV ≤ T ≤ 145 MeV.
Outside of this temperature window we do not observe
scaling (see Fig. S3 of Supplemental Material [24]).

As mentioned in Ref. [21], presently fTc; z0g are not
very well determined. By using other values for fTc; z0g
quoted in Ref. [21] we checked that the scaling of Fig. 2 is
fairly insensitive to the exact values of fTc; z0g (see Fig. S4
of Supplemental Material [24]). Presumably, this is because
P̂nðλ̂Þ are sensitive only to the deep infrared physics λ ∼ml.
This is in contrast to many other macroscopic operators
used for detailed scaling studies that contain large con-
tributions from the ultraviolet energies [20,35,41–44]. This
suggests that it even might be advantageous to use P̂nðλ̂Þ
for detailed scaling studies to determine the system-specific
parameters. Our focus here is to reveal the underlying
connection between the universal features and the quark
spectra, and such detailed scaling studies are beyond the
scope of the present work.
Conclusions.—In this Letter, we investigate how the

universal critical scaling of macroscopic observables near
the QCD chiral transition arises from the microscopic
degrees of freedom. We have presented a theoretical
connection between the nth order cumulant of the chiral
order parameter and the n-point correlations of the quark
energy spectra. This connection led us to a generalized
Banks-Casher relation, equating the nth order cumulant of
chiral condensate to the nth order cumulant of the zero
mode of the quark energy in the chiral limit. These new
theoretical developments establish a direct connection
between the universal scaling observed at the macroscale
and the microscopic energy levels of the system. Through
staggered lattice QCD calculations in the vicinity of the
chiral phase transition with a series of light quark masses
we have discovered the hidden universality within the
correlations among the quark energy spectra. We have
found that these universal behaviors are also imprinted
within the microscopic energy levels of QCD with physical
light quark masses.
The new theoretical developments presented in this work

can be applied to spin systems near criticality. Away from
the phase transition and at temperature much lower
compared to Tc with nonvanishing chiral condensate, the
newly proposed quantity PnðλÞ as well as the generalized
Banks-Casher relation could be interesting to be inves-
tigated in the randommatrix theory [45–49]. The numerical

FIG. 2. P̂nðλ̂Þ in Fig. 1 rescaled by m̂1=δþ1−n
l fnðzÞ for n ¼ 1 (left), n ¼ 2 (middle), and n ¼ 3 (right).
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techniques used here can be straightforwardly carried over
to lattice QCD calculations with controlled thermodynamic
and continuum limits when sufficient computing power is
available.
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