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Optical frequency metrology in atoms and ions can probe hypothetical fifth forces between electrons and
neutrons by sensing minute perturbations of the electronic wave function induced by them. A generalized
King plot has been proposed to distinguish them from possible standard model effects arising from, e.g.,
finite nuclear size and electronic correlations. Additional isotopes and transitions are required for this
approach. Xenon is an excellent candidate, with seven stable isotopes with zero nuclear spin, however it has
no known visible ground-state transitions for high resolution spectroscopy. To address this, we have found
and measured twelve magnetic-dipole lines in its highly charged ions and theoretically studied their
sensitivity to fifth forces as well as the suppression of spurious higher-order standard model effects.
Moreover, we identified at 764.8753(16) nm a E2-type ground-state transition with 500 s excited state
lifetime as a potential clock candidate further enhancing our proposed scheme.
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Indirect evidence from galactic rotation, gravitational
lensing, and cosmological evolution suggests the existence
of dark matter (DM) [1,2]. Its constituents, by coupling to
standard model (SM) particles, could also influence the
neutrino-mass hierarchy [3] and explain open physics
questions. Additional fields could cause a fifth-force
coupling of electrons with neutrons, inducing small but
measurable effects [4–6] in atomic systems. In an electronic
transition, sensitivity to a fifth force arises because the
overlap with the nucleus changes between the ground and
excited state, reflecting interactions as small as a fraction of
the linewidth.
However, since the transition energies cannot be calcu-

lated accurately, isotope shift spectroscopy is employed.
The classical method of the King plot (KP) uses two
transitions in at least three different isotope pairs are used.
Plotting the isotope shifts scaled by the nuclear-mass
parameter eliminates the charge radius, typically leading
to a linear behavior [7] from which atomic constants
characterizing atomic recoil (mass shift) and the overlap
of the electronic wave function with the nucleus (field shift)
can be derived. Optical frequency metrology has reduced

uncertainties in the determination of transition energies of
forbidden transitions by orders of magnitude, making KP
methods far more sensitive. On top of such isotopic shifts
(IS), hypothetical fifth forces would add minute perturba-
tions causing a deviation from linearity [5,6,8–11].
However, unknown SM effects of higher order [6,8]
(sometimes dubbed “spurions”) could also induce sizable
nonlinearities that are hard to distinguish from those of the
hypothetical forces.
A recently devised generalized King plot (GKP) [12,13]

overcomes this by using more transitions and isotope pairs
to build a set of linear equations determining the higher-
order effects, and even disposing of the need of exact
nuclear masses (“no-mass GKP”). Recent dedicated experi-
ments in ytterbium measured a deviation from the King
linearity [14], which has since been confirmed using other
transitions [15–17]. The most likely reason for the
deviation is changes in the nuclear deformation of Yb
between isotopes [18], however the analysis show that a
second, yet unidentified source of nonlinearity is also
present. In contrast, a measurement in calcium [19], where
higher-order effects are expected to be smaller, was con-
sistent with King linearity.
To further enhance the GKP sensitivity, as many tran-

sitions and even isotopes as possible are sought after. An
ideal candidate is xenon (Z ¼ 54). It has seven natural zero-
nuclear-spin isotopes (124, 126, 128, 130, 132, 134, 136),
and four more radio isotopes (118, 120, 122, and 138) with
lifetimes longer than minutes. Its mass reduces Doppler
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shifts in comparison with lighter elements, and its nuclear
charge magnifies relativistic and QED effects [20], which is
in itself a key field of research [21].
In this Letter, we find twelve xenon ground-state,

magnetic dipole (M1) transitions in the optical region,
with wavelength uncertainties in the order of 0.1 pm, and
one optical electric quadrupole (E2) clock transition in
charge states Xe9þ through Xe17þ. We have calculated and
evaluated theoretical King plots to find which combination
of transitions leads to the highest possible sensitivity to a
hypothetical fifth force between neutrons and electrons.
Highly charged ions (HCI) such as those studied here are

very well suited for high-precision experiments [22], since
their very low polarizability suppresses effects of external
electromagnetic perturbations. Moreover, the reduced num-
ber of bound electrons reduces their theoretical complexity.
Recent experimental developments like sympathetic cool-
ing [23], application of quantum logic spectroscopy [24] to
HCI [25], and algorithmic cooling [26] have made clocks
based on HCI with a sub-Hz uncertainty possible [27].
They will help extending GKP applications into beyond-
the-SM (BSM) parameter regions not yet constrained by
scattering experiments [28–32] and fifth-force studies
[33–38].
We produced the ions of interest with an electron beam

ion trap (EBIT) [39,40], the Heidelberg EBIT (HD-EBIT)
[41], from a differentially pumped atomic beam of Xe
interacting with electrons at selected energies. For produc-
ing the HCI of interest Xe9þ through Xe33þ, we scanned the
electron beam energy in the range 100–2500 eV in 10-eV
increments. Every time the ionization potential of a given
charge state is surpassed, the next higher one appears in the
trap, and with it a different spectrum. In each cycle, we kept
these ions trapped for 60 s, and dumped them at the end by
briefly inverting the axial trapping potential set by trap
electrodes. This removes impurity ions that slowly accu-
mulate due to evaporation of barium and tungsten from the
electron-gun cathode.
Electron-impact excitation populates the upper levels of

the observed transitions both directly and through cascades.
The electron and ion density conditions in the EBIT are
such that optical magnetic-dipole transitions with Einstein
coefficients higher than ≈10 s−1 can be measured [42–46].
For this purpose, a set of in vacuo lenses projects an image
of the cylindrical ion cloud through a quartz vacuum
window. This intermediate image is rotated by 90° by a
periscope and relayed by two lenses to the entrance slit of
an optical spectrometer, as in Refs. [42,43]. In the present
work, we used a Czerny-Turner spectrometer with 2 m
focal length [44–46] to record the wavelength range 250–
800 nm, and calibrated it with hollow-cathode lamps of
different elements. In its focal plane, a CCD-camera,
cooled to −80 °C, took several images for averaging with
an exposure time of 60 min each. Pixels showing high
signals due to cosmic muons were identified and removed

from the images. Stray-light background was also sub-
tracted. After obtaining overview spectra with a
150 grooves=mm grating, we performed measurements
at higher resolution using two gratings with 1800 and
3600 grooves=mm, respectively. The results are shown
in Fig. 1.
For identification, we calculated for each ion the elec-

tronic structure and transition rates with the flexible atomic
code (FAC) [48] and AMBiT [49]. The advantage of FAC is its
calculation speed, while AMBiT is used for its more precise
results. Since the 8-T field of the EBIT separates the
Zeeman components to a resolvable extent, we fitted for
each line its centroid, experimental linewidth, the g factors
of the upper and lower state, π and σ amplitudes, and
compare the results with theory. We corrected the identi-
fication of the 436.2 nm line in Ref. [50], from Xe18þ to
Xe17þ based on the Zeeman splitting. Table I presents the
key parameters of the thirteen discovered ground-state
transitions. Wavelength uncertainties are the quadratic
average of those from the Zeeman fits and the spectrometer
dispersion. Results of AMBiT calculations are also given
there: ab initio wavelength λ, Einstein coefficient Aki, and
expected g factors. Furthermore, we tabulate in the
Supplemental Material [47] many other identified lines
not involving the electronic ground state.
A key result of our search is the identification of a ground-

state clock transition of E2 electric quadrupole in Xe10þ
from the lowest excited state. By means of Ritz-Rydberg
combinations (see Supplemental Material [47]), we deter-
mine for the 4d8 3F2 →3 F4 transition a vacuum wavelength
of 764.8753(16) nm. We compare this with an AMBiT

calculation yielding 735.6 nm and an E2 transition rate of
Aki ¼ 0.002 s−1, which is within the expected calculation
uncertainty. The low transition rate suggests that this is a
suitable candidate for an optical clock with a sensitivity to
fifth forces that can be fully exploited due to its narrow
linewidth of 0.3mHz.We also have preliminary assignments
for a few additional E2 candidates in other charge states in
the Supplemental Material [47], but a conclusive identifi-
cation will require complementary measurements.
Following an established approach, we checked the

suitability of the found ground-state transitions for GKP
studies. For this, we added to the electromagnetic interaction
potentials used for the FAC calculations an additional term for
the hypothetical fifth force as a Yukawa potential [12]:

VΦðrÞ ¼ yeynðA − ZÞ ℏc
4πr

exp

�
−
c
ℏ
mΦr

�
; ð1Þ

where yeyn is the coupling strength between electrons and
neutrons; A the nuclear mass, Z the nuclear charge; ℏ the
reduced Planck constant, and c the speed of light. The
range of the force is defined by the mass parameter mΦ.
Using an automatized script, we performed FAC calcula-
tions varying the force range, its strength, as well as the
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nuclear charge radius and mass, and calculated the corre-
sponding perturbation on the isotope shifts.
Between two isotopes, the total isotope shift (IS) δνai ¼

νAref
− νA is expressed by the following equation [12] for

the transition i and the isotope pair a ¼ ðAref ; AÞ:

δνai ¼ Kiμa þ Fiδhr2ia þ yeynXiγa: ð2Þ

Here, the first two terms represent themass shift and the field
shift, respectively. The former depends on the difference of
the inverse of the isotope masses μa ¼ 1=mAref

− 1=mA, and

TABLE I. Transitions in highly charged Xe ions: Measured energies, wavelengths (λvac, vacuum), and g factors of upper and lower
energy levels obtained through fitting of the Zeeman structure with their corresponding uncertainties. Theoretical transition probabilities
Aki, ab initio wavelengths, and g factors were calculated with AMBiT [49].

Observed values AMBiT calculations

Ion Transition Energy (eV) λvac ðnmÞ gupper glower Aki ðs−1Þ λ ðnmÞ gupper glower Type

Xe9þ 4d9 2D3=2-2D5=2 2.071 511 56(28) 598.520 419(90) 0.792(2) 1.189(1) 67.5 595.4 0.8 1.2 M1
Xe10þa 4d8 3F3-3F4 1.880 862 7(14) 659.187 89(56) 1.082(4) 1.238(3) 88.4 665.1 1.0833 1.2426 M1
Xe10þb 4d8 3F2-3F4 1.620 972 6(34) 764.8753(16) (Ritz) 0.002 735.6 0.9792 1.2426 E2
Xe10þc 4d8 1G4-3F4 5.056 723 1(73) 245.186 84(36) (Ritz) 67.1 242.9 1.0074 1.2426 M1
Xe11þa 4d7 2G9=2-4F9=2 3.933 951 7(50) 315.164 51(45) 1.105(37) 1.321(35) 107.7 313.3 1.0823 1.3054 M1

Xe11þb 4d7 4F7=2-4F9=2 1.713 585 55(87) 723.536 67(37) 1.242(9) 1.306(7) 82.8 727.4 1.2276 1.3054 M1
Xe12þ 4d6 3H4-5D4 3.725 218 3(78) 332.823 98(79) 1.058(32) 1.455(31) 110.8 328.6 1.0438 1.462 M1
Xe15þa 4d3 4P1=2-4F3=2 4.274 778 1(74) 290.036 57(50) 2.17(20) 0.78(9) 16.8 297.7 2.2137 0.47304 M1

Xe15þb 4d3 4P3=2-4F3=2 4.044 860 9(24) 306.522 77(20) 0.856(57) 0.799(28) 101.7 337.1 1.4357 0.47304 M1
Xe16þa 4d2 1D2-3F2 4.420 765 1(39) 280.458 69(25) 1.197(11) 0.704(15) 84.4 271.3 1.2027 0.706 81 M1
Xe16þb 4d2 3F3-3F2 2.241 058 33(38) 553.239 49(11) 1.073(1) 0.702(2) 137.6 555.4 1.0833 0.706 81 M1
Xe16þc 4d2 3P1-3F2 4.924 361 4(65) 251.777 21(33) (Ritz) 10.3 244.3 1.5 0.706 81 M1
Xe17þ 4d 2D5=2-2D3=2 2.841 782 91(47) 436.290 179(73) 1.184(2) 0.785(3) 123.7 433.8 1.2 0.8 M1

FIG. 1. Measured optical ground-state transitions of Xe9þ through Xe17þ. The Zeeman structure (arrows) was fitted based on line
identification with FAC calculations. For Xe10þ the Grotrian diagram has been expanded. Dotted line: calculated E2 transition; dashed
line: calculated M1 transition (see Supplemental Material [47] for details and further Grotrian diagrams).
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the latter on the mean-square charge radii difference
δhr2ia ¼ hr2iAref

− hr2iA. The third term is caused by the
fifth force, and depends on the coupling strength yeyn
between electrons and neutrons, the electronic constant
Xi ¼ XiðVΦÞ due to the Yukawa potential, and a factor
γa ¼ ðAref − ZÞ − ðA − ZÞ depending on the difference in
number of neutrons. We plot the fifth-force shift versus
varying mediator masses mΦ in Fig. 2(a).
To study the effect of a fifth force, we used a King plot

[7], where the isotope shift in Eq. (2) is divided by the mass
parameter μa, which then yields a common nuclear param-
eter δhr2ia=μa in the SM part. Between two modified
transitions, the SM parts lead to a linear behavior, but a fifth
force would break it. For the six Xe-isotope pairs this is
shown as theoretical prediction in Fig. 2(b). The mediator
mass mΦ ¼ 1 × 105 ðeV=c2Þ and the coupling parameter
yeyn ¼ 10−13 are fixed at arbitrary, but theoretically pos-
sible values [6]. Mass uncertainties are neglected. The fifth-
force shift in Fig. 2(a) is on the order of hundreds of Hz,
but only a small fraction remains as a nonlinearity due to
the alignment of the SM linearity with the fifth-force
contributions [6].
Although each pairing of transitions experiences a

different nonlinearity, similar fine-structure transitions
share common-mode shifts, reducing the total sensitivity

as in Refs. [13,46]. Following these works, we quantified
nonlinearities in the King plot with the area NL spanned
by the isotope pairs. Error propagation of the assumed
measurement uncertainty on the isotope-shifts yielded its
uncertainty ΔNL. With this, we defined the resolution R as
R ¼ NL=ΔNL. A value R ¼ 1 sets the lower bound of the
coupling parameter yeyn that can be resolved, as shown for
given transition pairs in Fig. 3.
We assume a frequency uncertainty ofΔν ¼ 100 mHz as

recently achieved [25,27] and discussed in Ref. [46].
Dashed lines in Fig. 3 depict King plots neglecting mass
uncertainty and higher-order SM effects. Inclusion of the
former in one of these pairs, e.g., Xe12þ, Xe11þb , for isotopes
130 to 136 (relative mass uncertainties ≈10−10) and 124 to
128 (between 10−8 and 10−7) [51] diminishes sensitivity by
3 orders of magnitude. Another order of magnitude is lost if
nuclear deformation causes a second-order field shift of
1 kHz (dash-dotted line) [18,52] estimated by evaluating
calculated higher-order shifts in other elements [8]. We can
overcome these losses with a no-mass generalized King
plot [13] (shown as solid line) by adding more transitions to
expand the King plot into a higher dimension. This restores
the sensitivity by 3 orders of magnitude, as shown in Fig. 3
and brings it to the level of the ytterbium GKP with an
assumed frequency uncertainty of 100 mHz from Ref. [13].
A different xenon pairing would improve the sensitivity
around 105 eV. Full sensitivity is not recovered due to the
error propagation of the four transitions needed. Note that
either a reduction of the ν-uncertainty down to 5 mHz, as

FIG. 2. (a) Isotopic shift from a hypothetical fifth-force for the
forbidden ground-state transitions in Xe9þ through Xe17þ for a
fixed coupling constant yeyn ¼ 1 × 10−13 and varying mediator
mass. (b) Theoretical King plot for the six possible Xe-isotope
pairs using the Xe11þb , Xe12þ pair as example. We set the
coupling constant to yeyn ¼ 1 × 10−13 and the mediator mass
to mΦ ¼ 1 × 105 ðeV=c2Þ. The error bars represent 100 mHz
measurement uncertainty modified by the mass parameter μa.

FIG. 3. Sensitivity limit for yeyn for selected transition pairs
with assumed frequency uncertainty of 100 mHz. Dashed lines:
Classical King plot (KP) neglecting mass uncertainty. Calcium
King plot from Solaro et al. [19] with 100 mHz uncertainty
included for comparison. Dash-dotted line: Inclusion of a second-
order field shift of 1 kHz and mass uncertainty. Solid lines:
Predicted no-mass GKP for Yb [13] and for the present Xe, using
four transitions.
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already achieved by optical clocks [53], or a separate,
sufficiently accurate mass measurement would lead to
better sensitivity.
If more higher-order SM contributions are expected,

more transitions can be used to suppress their spurious
effects. The seven stable even isotopes of Xe can tackle up
to three such “spurions” by expanding the KP into five
dimensions. With thirteen ground-state transitions, one can
use various pairings to optimize sensitivity to NP. By
contrast, other candidates such as calcium or ytterbium
only have enough even isotopes to suppress one spurion.
In the future, we plan to extend our search towards the

EUV region to include ground-state transitions of even
higher-charged xenon ions. This increases the number of
transitions and their GKP sensitivity, as electronic wave
functions with stronger overlap with the nucleus are
involved. Currently emerging and continuously developing
EUV frequency combs [54–57] should in the future allow
frequency metrology on HCI in this spectral regime.
Moreover, the presently assumed uncertainty of
100 mHz is due to that of the SI second reference, which
is a Cs transition [58,59]. By performing direct frequency
comparisons with optical clocks [60–62], or by measuring
the isotope shift of simultaneously trapped ions [63],
one could enhance sensitivity even by a few orders of
magnitude.
In summary, we found and identified thirteen optical

ground-state transitions in highly charged xenon ions,
theoretically analyzed them, and evaluated pairs with high
sensitivity to Yukawa-type fifth forces. Such pairings
overcome limitations caused by both known and unknown
SM effects by enabling the method of no-mass generalized
King plots. We found for xenon a sensitivity already
comparable to ytterbium, but with the clear advantage of
its more numerous even isotopes and reduced nuclear
deformation for future frequency metrology with sub-Hz
uncertainty. Moreover, we identified a ground-state ultra-
narrow clock (E2) transition with 0.3 mHz linewidth
complementing the other twelve M1 lines. The analysis
of this set of transitions can also be used to conduct further
tests of nuclear deformation [64].
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