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Despite impressive advances in the AdS3=CFT2 correspondence, the setup involving Ramond-Ramond
backgrounds, which is related to the D1–D5 system of branes, remained relatively poorly understood. We
use the mirror thermodynamic Bethe ansatz (TBA) equations recently constructed by Frolov and Sfondrini
to study the spectrum of pure Ramond-Ramond AdS3 × S3 × T4 strings. We find that the leading-order
contribution to the anomalous dimensions at small tension is due to the gapless world-sheet excitations, i.e.,
to the T4 bosons and their superpartners, whose interactions are nontrivial.
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Introduction and summary.—The AdS3=CFT2 corre-
spondence is one of the earliest instances of holography
[1], yet it remains rather mysterious. Even when restricting
to simple observables such as the free-string spectrum, little
can be computed away from some very special setups.
There exist several maximally supersymmetric AdS3
backgrounds with 16 Killing spinors. Here, we consider
the simplest, AdS3 × S3 × T4. The background can be
supported by a combination of Ramond-Ramond (RR)
and Neveu-Schwarz-Neveu-Schwarz (NSNS) fluxes [2,3],
but so far only the setup without RR fields is well
understood.
Consider strings on AdS3 × S3 × T4 with mixed flux.

The string tension T is sourced by the (quantized) NSNS
coupling k and by the (continuous) RR coupling g:

T ¼ R2

2πα0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ k2

4π2

s
; g ≥ 0; k∈N0; ð1Þ

where R is the S3 radius. This can be read off from the
bosonic action Sbos which is given by a sigma model (SM)
term and a Wess-Zumino (WZ) term:

Sbos ¼
T
2
SSM þ k

4π
SWZ; T ≥ 0; k∈N0: ð2Þ

T ≫ 1 gives the supergravity and semiclassical regimes [4].
When only NSNS fluxes are present (g ¼ 0), the world-
sheet theory is a level-k supersymmetric Wess-Zumino-
Witten (WZW) model [5] and can be solved [6]. Its free
spectrum can be easily written in closed form and is hugely
degenerate like the spectrum of flat-space strings. The
g ¼ 0 holographic duals are symmetric-product-orbifold
CFTs which are particularly simple at k ¼ 1 [7–9] and
more subtle for k ≥ 2 [10].
If g > 0, the world-sheet CFT becomes nonlocal [11,12],

and it is hard to decouple its ghost sector [13,14]. As a
result, the computation of the spectrum and other observ-
ables is hard. It is unknown how to describe the holographic
duals for generic g, k [15]. They should be as nontrivial as,
for instance, planar N ¼ 4 supersymmetric Yang-Mills
theory (SYM) at finite ’t Hooft coupling.
An alternative to the world-sheet-CFT approach is to

exploit the classical integrability of the model, which holds
for any g ≥ 0 and k∈N0, as found in [16] following [17–
19]. By studying the AdS3 × S3 × T4 Green-Schwarz
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action [20–22] in a suitable light-cone gauge, we may
bootstrap the world-sheet S matrix [23]—the same
approach was used for AdS5 × S5 and N ¼ 4 SYM with
remarkable success [24,25]. The equations describing the
free-string spectrum for pure-RR backgrounds (k ¼ 0 and
any g > 0) were recently constructed [26]. This regime is
interesting because it is “as far as possible” from the WZW
construction, being directly related to the D1–D5 system of
branes in perturbative string theory [27], and allows for the
smallest possible tension (1).
Here, we study this spectrum in the small-tension limit,

which is expected to be dual to a weakly coupled two-
dimensional CFT. We will first briefly review the con-
struction of the string light-cone-gauge model [28] and of
its “mirror” [29], describe its particle content, and sketch
the mirror TBA equations of [26]. We will then discuss
their weak-tension limit and derive the spectrum in the
tensionless limit. The detailed derivation and our numerical
algorithm will be presented elsewhere [30].
Pure-RR light-cone gauge-fixed model.—The construc-

tion of the light-cone gauge-fixed action [24,31] for the
model at hand was performed in [32]. The superisometry
algebra is psuð1; 1j2Þ ⊕ psuð1; 1j2Þ. There is also a
local soð4Þ isometry algebra from T4 which is useful to
label the states: Bispinors of soð4Þ carry indices A ¼ 1, 2,
Ȧ ¼ 1, 2. We denote by L0 and L̄0 the suð1; 1Þ
Cartan element of either psuð1; 1j2Þ algebra and by J3

and J̄3 the suð2Þ ones. The Bogomol’nyi-Prasad-
Sommerfield (BPS) bound is

E ≔ L0 − J3 ≥ 0; Ē ≔ L̄0 − J̄3 ≥ 0: ð3Þ

A pointlike string moving along the time direction t in
AdS3 and along a great circle φ in S3 [33] saturates (3). It
can be used to define the uniform light-cone gauge
(supplemented by a light-cone κ-gauge fixing [32])

Xþ ¼ τ; P− ¼ 1; X� ¼ φ� t
2

; Pμ ¼
δS
δẊμ : ð4Þ

The world-sheet time τ is conjugate to the Hamiltonian H,

H ¼ Eþ Ē ≥ 0; and we define M ≔ E − Ē∈Z: ð5Þ

H vanishes on half-BPS states, whileM is a combination of
AdS3 and S3 spins. Because of (4) and κ-gauge fixing, only
eight bosons and eight fermions survive; Furthermore,
reparametrization invariance is lost and the model is not
Lorentz invariant. The surviving symmetries were studied
in [32,34]. The algebra undergoes a central extension
similar to Beisert’s [35,36]. The additional central charges
must vanish on physical states satisfying the level-matching
condition. A perturbative analysis [32] indicates that the
eigenvalues of the additional central charges are propor-
tional to the strength of the RR coupling g introduced in (1).

Algebraic considerations fix the dispersion relation of a
single excitation of world-sheet-momentum p as [37]

HðM;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4h2sin2

�
p
2

�s
; ð6Þ

where M is the eigenvalue of M. Here, h ¼ hðTÞ is an
effective coupling depending on the tension [3]. At strong
tension, h ∼ g ∼ T, while T → 0 when h → 0. While hðTÞ
should be determined like in [38–40], (6) is exact in h and it
reduces to the pp-wave results [33,41] in the large-h,
small-p limit. Four bosons on AdS3 × S3 fit in two irreps
with M ¼ �1, while those on T4 fit in two irreps with
M ¼ 0, labeled by Ȧ ¼ 1, 2. The eight fermions complete
those multiplets. Similar algebraic considerations [42,43]
are sufficient to fix the two-particle S matrix, which
satisfies the Yang-Baxter equation [32], up to overall
“dressing” factors. Closure of the S-matrix bootstrap
[44] requires us to introduce appropriate bound states of
the fundamental particles, thereby allowing for any M∈Z
[45]. The dressing factors are constrained by crossing,
unitarity, and analyticity and were recently proposed
in [46].
The S matrix describes the theory on a decompactified

world sheet. To obtain the spectrum of H, the world sheet
must be a cylinder. Imposing periodic boundary conditions
for an N-particle state gives the Bethe-Yang equations,
schematically

eipjL
YN
k¼1

SMj;Mk
ðpjpkÞ ¼ −1; j ¼ 1;…N; ð7Þ

where L ¼ J3 þ J̄3 is the R charge of the vacuum. (The
Bethe-Yang equations are actually more involved and
feature “auxiliary” excitations because the S matrix is
nondiagonal [47,48].) The energy and level-matching
conditions read

H ¼
XN
j¼1

HðMj; pjÞ;
XN
j¼1

pj ¼ 0: ð8Þ

Equations (7) and (8) are not exact, as they neglect finite-
size effects [49]. These are due to virtual particles wrapping
the cylinder and are suppressed at L ≫ 1 by e−LM, much
like tunneling. As this model features M ¼ 0 gapless
excitations, wrapping should be particularly severe.
Mirror model and TBA.—Following [50] we account for

wrapping (finite-volume) effects by studying the finite-
temperature features of a new model, related to the previous
by the exchange of world-sheet time and space:

ðτ; σÞ → ð−iσ̃;−iτ̃Þ; ðH;pÞ → ðip̃; iH̃Þ: ð9Þ
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Because our model is nonrelativistic, the dispersion relation
changes drastically [29,49], from (6) to

H̃ðM; p̃Þ ¼ 2arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p̃2

p
2h

: ð10Þ

The particle content of the mirror model is similar to that of
the original model and consists of (1) gapped excitations
with M ¼ �1;�2;…, (2) gapless excitations with M ¼ 0

which come in two families, distinguished by Ȧ ¼ 1, 2, and
(3) four types of auxiliary particles (labeled by a ¼ � and
by A ¼ 1, 2) which carry no energy and account for the
multiplet structure of the model. The mirror TBA equations
for the ground state were derived in [26]. The equations are
expressed in terms of “Y functions” which give the
distribution of particles and holes at finite “temperature”
1=L as a function of p̃ or of a suitable rapidity which we
call u. Schematically, they are written in terms of con-
volutions [51]:

− lnYMðuÞ ¼ LH̃ðM; uÞ − ½lnð1þ YJÞ � KJM�ðuÞ

−
�
ln

�
1 −

1

Ya

�
� KaM

�
ðuÞ; ð11Þ

where the kernels are related to the S matrices by
KJMðu; vÞ ¼ ð1=2πiÞðd=duÞ ln SJMðu; vÞ [26]. For auxili-
ary particles, there is no energy contribution:

lnYaðuÞ ¼ −½lnð1þ YMÞ � KMa�ðuÞ: ð12Þ

These ground-state equations can be generalized to excited
states by analytic continuation [52]. During the continu-
ation, some singularities may cross the integration con-
tours. Let uj, j ¼ 1;…N, be the rapidities in the physical
region of string model such that YMj

ðujÞ ¼ −1, which we
rewrite as

lnYMj
ðujÞ ¼ iπð2νj þ 1Þ; νj ∈Z: ð13Þ

Picking up the singularity of lnð1þ YMj
Þ amounts to

adding to the right-hand side of (11) a driving term of
the schematic form

ΔMðujÞ ¼
XN
j¼1

ln SMjMðuj; uÞ: ð14Þ

There is also a similar term in (12). Finally, the energy of
the excited state is given by convolutions over nonauxiliary
particles (including both flavors of massless particles):

H ¼ −
Z

du
2π

dp̃M

du
lnð1þ YMÞ þ

XN
j¼1

HðMj; pjÞ; ð15Þ

where the last term also comes from the deformation of the
contour. The quantization of pj ¼ pðujÞ follows from
imposing (13) on (11).
Tensionless limit.—We now write down the excited-state

mirror TBA at h ≪ 1. To this end, we first worked out the
excited-state equations for any h ≥ 0 (sketched above) and
then take the small-h limit. Interestingly, we find that
the result of this procedure coincides with taking h ≪ 1 in
the ground-state equations and applying the contour-
deformation trick to those equations [30].
Let us analyze the mirror TBA equations (11) as h → 0.

Let us assume that the convolutions are regular in this limit,
which we prove in [30]. Since

H̃ðM; p̃Þ ¼ 2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p̃2

p
h

þOðh2Þ; ð16Þ

we have that

YMðuÞ ¼ h2LyMðuÞ þOðh2Lþ1Þ; M ≠ 0; ð17Þ

where yMðuÞ is regular and h independent. Therefore, the
contribution of M ≠ 0 Y functions is suppressed in the
energy (15), as well as in the other TBA equations, as
Oðh2LÞ. The story is different for M ¼ 0. Even at small h,
the small-jp̃j region of the M ¼ 0 modes is never sup-
pressed. To better see this, we reparametrize p̃M¼0 and
H̃ð0; p̃Þ [53]:

p̃ ¼ −
2h
shγ

; H̃ ¼ ln
�
1þ eγ

1 − eγ

�
2

; γ ∈R: ð18Þ

Hence, Y0ðγÞ is finite as h → 0 and its integral contributes
at OðhÞ to the energy (15), because dp̃=dγ ¼ OðhÞ. The
auxiliary functions Ya do not enter (15), but they are finite
as h → 0 and couple to the equations for Y0; hence, they
cannot be discarded.
Let us compute mirror TBA equations at leading order,

i.e., Oðh0Þ for Y0 with Ȧ ¼ 1, 2 and for the auxiliary
functions Y� with A ¼ 1, 2. We consider the case where all
excitations (13) are gapless modes (Mj ¼ 0), as they are
most important at small h. We assume that no extra
singularities of [54] appear. We find several remarkable
simplifications. First, the number of equations is reduced to
just two—one for the gapless modes and one for the
auxiliary functions. Second, the kernels and S matrices
are of difference form (which was the motivation for
introducing γ in [55]). Finally, all kernels reduce to the
Cauchy kernel:

sðγÞ ¼ 1

2πi
d ln SðγÞ

dγ
; SðγÞ ¼ −ith

�
γ

2
−
iπ
4

�
: ð19Þ

Suppressing the γ dependence, we write [56]
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lnY0 ¼ −LH̃ þ ln½ð1þ Y0Þ2ð1 − YÞ4� � sþ Δ0;

lnY ¼ ln½ð1þ Y0Þ2� � sþ Δ0; ð20Þ

where the driving term is given by (14) by setting all S
matrices to be S½γj − γ þ ðiπ=2Þ�. It is easy to see that
Y0ðγkÞ ¼ 0. We expect (13) to hold in the string region, at
γþk ≔ γk þ ðiπ=2Þ:

iπð2νkþ1Þ¼−iLpk− ln½ð1þY0Þ2ð1−YÞ4��sþΔ0; ð21Þ

where we used H̃ðγþk Þ ¼ ipk. The energy is finally

H ¼ −
Z

dγ
2π

dp̃
dγ

lnð1þ Y0Þ2 þ
XN
j¼1

HðpjÞ; ð22Þ

where we used thatHðpjÞ ¼ ip̃ðγþj Þ. Note that dp̃=dγ has a
pole at γ ¼ 0; cf. (18). Nonetheless, the integration con-
verges, because Y0ðγÞ ¼ Oðγ2LÞ around zero due to the LH̃
term in (20). Similarly, the ðiπ=2Þ-shifted Cauchy kernel in
(21) is singular in γk, but the Y functions vanish there,
making all convolutions well defined. As is generally the
case for excited-state TBA equations—with the notable
exception of WZWAdS3 backgrounds [57–59]—it appears
impossible to find an analytic solution, and we resort to
numerical evaluation.
Tensionless spectrum.—Let us summarize the results of

the TBA analysis order by order in h. At Oðh0Þ, there is no
Y-function contribution to the energy. The only contribu-
tion comes from the asymptotic part of the energy (8).

Since at this order HðM;pÞ ¼ jMj [see Ref. (6)], the
gapped modes contribute with their “engineering” dimen-
sions, irrespective of their momentum (like in tree-level
N ¼ 4 SYM) while the gapless ones have zero energy,
leading to a glut of degenerate states (like in flat space when
α0 ¼ ∞). At Oðh1Þ, both the asymptotic energy of gapless
modes and their Y functions contribute—signaling that
wrapping occurs as early as possible. This lifts the
degeneracy of gapless excitations. The next qualitative
difference occurs at Oðh2LÞ when the wrapping of massive
states begins contributing to the energy.
We solved (20) numerically to high precision by iter-

ations. We present the results for the anomalous dimensions
at Oðh1Þ, starting from N ¼ 2 excitations with ν1 ¼ −ν2,
which is necessary and sufficient to satisfy the level
matching. Figure 1 shows the anomalous dimensions.
We find L=2 distinct energies. They are rather well
approximated by the asymptotic result and indeed quite
close to the free result, i.e., (8) with Mj ¼ 0 and
pj ¼ 2πνj=L. Intriguingly, finite-volume corrections do
not have a definite sign as a function of ν=L and scale like
1=L; see also Fig. 2. In Fig. 3, we consider N ¼ 4 states
with ν1 ¼ −ν2 and ν3 ¼ −ν4 (a convenient choice suffi-
cient but not necessary to solve the level matching). We see
qualitatively similar behavior and note that the multiparticle
energy is not just additive as expected in an interact-
ing model.

FIG. 1. Anomalous dimensions for states with ν1 ¼ −ν2. ExpandingH ¼ Hð1ÞhþOðh2Þ, we plotHð1Þ for various lengths comparing
it with the Bethe-Yang prediction (7) and with the energy of a free model with dispersion (8).

FIG. 2. The finite-size correction with respect to the Bethe-
Yang prediction decreases roughly as 1=L.

FIG. 3. Anomalous dimensions for states with ν1 ¼ −ν2 and
ν3 ¼ −ν4. States with ν1 ¼ ν3 are allowed as long as the suð2Þ
labels are Ȧ1 ≠ Ȧ3. Their energy is regular.
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Conclusions and outlook.—We derived the mirror TBA
at weak tension for pure-RR AdS3 × S3 × T4. It is a simple
system of difference-form equations (20), whose Y system
can be straightforwardly derived [60]. This TBA describes
the spectrum at Oðh1Þ. By contrast, in AdS5 × S5 (where
there are no gapless modes), wrapping effects appear only
at Oðh2LÞ.
We solved (20) numerically to high precision. As it

happens in the k ¼ 1, g ¼ 0model, the leading contribution
to the energy comes from the T4 modes. However, unlike
that case, it is not given by a free theory (multiexcitation
energies are not additive). Even disregarding interactions,
the energy dispersion goes as j sinðπνj=LÞj rather than
linearly in the (fractional) mode numbers jνj=wj, w∈N,
as for the orbifold theory. The spectrum is also different from
the g ¼ 0, k ≥ 2 spectrum [6,57], which is of square-root
form. The underlying model does not appear to be a short-
range spin chain either, and it may be described by the
gapless sector of the chain investigated in [61], which is
indeed completely nonlocal. It would be interesting to study
that dynamics, which resembles that recently encountered in
four-dimensional N ¼ 2 models [62].
Our TBA equations differ from [63] as they nonrelativ-

istic. Our equations represent the low-tension limit of the
spectrum rather than coming froma low-energy limit of theS
matrix (see also [64]). Like in [63], one could extract the
central charge of the dual CFT from the TBA, though this
cannot be donewith the standard dilogarithm trick precisely,
because the dispersion relation is nonrelativistic. The
twisted ground-state energy was recently studied in [65].
A natural next step is to interpolate from small tension to

finite and eventually large tension for a particular set of
states and compare with perturbative results. A similar
computation has been initiated [66] using the recently
conjectured “quantum spectral curve” [67,68] (QSC). This
was done for some states in the gapped sector, for
0 < h≲ 0.08. It appears that numerical instabilities make
it difficult to extrapolate the QSC beyond that.
Furthermore, gapless excitations appear inaccessible in
that formalism. It seems, however, that the TBA equations,
while rather cumbersome to treat numerically, do not suffer
from similar issues and may be a better numerical testing
ground. Moreover, this would help establish whether the
conjectured QSC does indeed match with the mirror TBA
as derived from the all-loop S matrix. This is an important
outstanding question that could also be answered through a
rigorous derivation of the QSC from the mirror TBA along
the lines of [69,70].
A more ambitious goal is to extend the mirror TBA to

any g, k. The integrable structure is modified [71–73], with
(6) becoming

HðM;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

k
2π

pþM
�

2

þ 4h2sin2
�
p
2

�s
; ð23Þ

with h ¼ hðT; kÞ. The resulting analytic structure is rather
unique, and it so far frustrated the efforts to determine the
dressing factor of the theory [74]. Expanding on [46,64] it
should be possible to overcome this obstacle.
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[66] A. Cavaglià, S. Ekhammar, N. Gromov, and P. Ryan,

arXiv:2211.07810.
[67] S. Ekhammar and D. Volin, J. High Energy Phys. 03

(2022) 192.
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