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We construct a representation for the first anti–de Sitter curvature correction to the Virasoro-Shapiro
amplitude, as an integral over the Riemann sphere. The integrand is that of the Virasoro-Shapiro amplitude
in flat space, with the extra insertion of a linear combination of single-valued multiple polylogarithms of
weight three. The integral representation implies an elegant, manifestly single-valued representation for the
Wilson coefficients of the low-energy expansion.
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The idea.—In this Letter, we study the Virasoro-Shapiro
amplitude for the scattering of four gravitons on AdS5 × S5.
This is defined, via the AdS=CFT correspondence, as the
correlator of four stress-tensor multiplets in Mellin space, to
leading order in inverse powers of the central charge. The
Borel transform of the Mellin amplitude reduces to the
usual Virasoro-Shapiro amplitude in the flat-space limit,
plus a tower of curvature corrections [1]:

AðS; TÞ ¼ Að0ÞðS; TÞ þ α0

R2
Að1ÞðS; TÞ þ � � � : ð1Þ

The Virasoro-Shapiro amplitude in flat space

Að0ÞðS; TÞ ¼ −
Γð−SÞΓð−TÞΓð−UÞ

ΓðSþ 1ÞΓðT þ 1ÞΓðU þ 1Þ ; ð2Þ

where Sþ T þU ¼ 0, admits a low-energy expansion

Að0ÞðS; TÞ ¼ 1

STU
þ 2

X∞
a;b¼0

σa2σ
b
3α

ð0Þ
a;b; ð3Þ

with σ2 ¼ 1
2
ðS2 þ T2 þ U2Þ and σ3 ¼ STU. It turns out [2]

that the Wilson coefficients αð0Þa;b live in the ring of single-
valued multiple zeta values (MZVs) [3]. This is manifest in
the representation

Að0ÞðS; TÞ ¼
exp

�P∞
n¼1

ζsvð2nþ1ÞðS2nþ1þT2nþ1þU2nþ1Þ
2nþ1

�
STU

; ð4Þ

where ζsvð2nþ 1Þ ¼ 2ζð2nþ 1Þ are single-valued zeta
values. A direct worldsheet computation leads instead
to the following representation as an integral over the
Riemann sphere:

Að0ÞðS; TÞ ¼ 1

U2

Z
d2zjzj−2S−2j1 − zj−2T−2; ð5Þ

where z denotes the complex cross-ratio on the four-
punctured sphere and the integration measure is defined
as d2z ¼ dzdz̄=ð−2πiÞ. It was understood in [4–6] that the
reason for αð0Þa;b being in the ring of single-valued MZVs is
the single-valued nature [7] of the integral (5).
The focus of this Letter will be the first correction

Að1ÞðS; TÞ. In [8,9], the low-energy expansion for Að1ÞðS; TÞ
was computed by leveraging Regge boundedness to derive
dispersive sum rules and assuming single-valuedness to
solve them. The result takes the form

Að1ÞðS; TÞ ¼ −
2

3

σ2
σ23

þ 2
X∞
a;b¼0

σa2σ
b
3α

ð1Þ
a;b; ð6Þ

where the Wilson coefficients αð1Þa;b live in the ring of single-
valued MZVs by construction, justified by the expectation
that closed string amplitudes like Að1ÞðS; TÞ arise from
worldsheet integrals similar to (5). The aim of this Letter
is to construct such an explicit integral representation for
Að1ÞðS; TÞ, of the form

Að1ÞðS; TÞ ¼ Bð1ÞðS; TÞ þ Bð1ÞðU; TÞ þ Bð1ÞðS;UÞ; ð7Þ

where Bð1ÞðS; TÞ is symmetric and given by

Bð1ÞðS; TÞ ¼
Z

d2zjzj−2S−2j1 − zj−2T−2Gðz; z̄Þ: ð8Þ
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Following the discussion in [6], we construct Gðz; z̄Þ out of
single-valued multiple polylogarithms (SVMPLs). This
ensures that the low-energy expansion ofAð1ÞðS; TÞ contains
only single-valuedMZVs. Given that the coincident limit of
insertion points in a putative world sheet corresponds to
z → f0; 1;∞g, we use polylogarithms evaluated at z and
labeled by words w with letters f0; 1g. Furthermore, the

structure of the Wilson coefficients αð1Þa;b found in [8,9],
together with the order of the poles in Að1ÞðS; TÞ (of fourth
order and lower), implies that the SVMPLs that appear have
at most weight three. We also present a worldsheet
motivation for this fact. It turns out the final integral
representation (41) is constructed out of SVMPLs of exactly
weight three.
Single-valued multiple polylogarithms.—Multiple poly-

logarithms (MPLs, also known as harmonic poly-
logarithms) are functions LwðzÞ of one variable labeled
by a word w formed in our case by the “letters” 0 and 1.
They are recursively defined by the relations

∂zL0wðzÞ ¼
1

z
LwðzÞ; ∂zL1wðzÞ ¼

1

z − 1
LwðzÞ; ð9Þ

together with L∅ðzÞ ¼ 1, where∅ denotes the empty word,
and the condition that limz→0LwðzÞ ¼ 0 for w not of the
form 0p. For w ¼ 0p, we get L0pðzÞ ¼ ðlogpz=p!Þ. MPLs
satisfy shuffle relations

LwðzÞLw0 ðzÞ ¼
X

W ∈w Ew0
LWðzÞ: ð10Þ

Evaluated at z ¼ 1, MPLs reduce to MZVs; for instance,

L0s1−110s2−11…0sd−11ð1Þ ¼ ζðs1;…; sdÞ: ð11Þ

In the standard notation,

ζðs1;…; sdÞ ¼
X

n1>���>nd>0

1

ns11 …nsdd
; ð12Þ

where s1 þ � � � þ sd is the weight, which agrees with the
length jwj, and d is the depth. When the word starts with 1,
Lwð1Þ is generally divergent. A regularized value can be
assigned by using the shuffle relations to isolate the
divergent contribution and then setting L1ð1Þ ¼ ζð1Þ ¼ 0
(which is equivalent to setting log 0 ¼ 0). As a conse-
quence of (10), MZVs also satisfy shuffle relations. MPLs
have branch points at z ¼ 0; 1;∞. A single-valued version
of MPLs was constructed in [10] via a single-valued map
LwðzÞ → LwðzÞ such that LwðzÞ is a single-valued weight-
preserving linear combination of Lw0 ðzÞLw00 ðz̄Þ and satisfies
the same differential relations:

∂zL0wðzÞ ¼
1

z
LwðzÞ; ∂zL1wðzÞ ¼

1

z − 1
LwðzÞ; ð13Þ

such that L∅ðzÞ ¼ 1, L0pðzÞ ¼ ðlogpjzj2=p!Þ, and
limz→0 LwðzÞ ¼ 0 for w not of the form 0p. Furthermore,
they also satisfy the same shuffle relations:

LwðzÞLw0 ðzÞ ¼
X

W ∈w Ew0
LWðzÞ: ð14Þ

Evaluated at z ¼ 1, they give rise to single-valued MZVs.
For instance,

L0k1−110k2−11…0kd−11ð1Þ ¼ ζsvðk1;…; kdÞ: ð15Þ

Single-valued MZVs are a subset of the standard MZVs
and satisfy several relations, including the same shuffle
relations. Furthermore, one can check

ζsvð2nÞ ¼ 0; ζsvð2nþ 1Þ ¼ 2ζð2nþ 1Þ: ð16Þ

For higher depths, the single-valued map acts in a com-
plicated way but can be computed, for instance, with the
program HyperlogProcedures [11].
Integrating SVMPLs.—Next, we consider the integrals

IwðS; TÞ ¼
Z

d2zjzj−2S−2j1 − zj−2T−2LwðzÞ ð17Þ

and compute their low-energy expansion. The authors of
[6] have considered the low-energy expansion for the
particular case L∅ðzÞ ¼ 1 in great detail and developed
a machinery to treat the general case. In particular, we will
use the following two key results. First, given any SVMPL,
we can write

LwðzÞ
jzj2j1 − zj2 ¼ ∂zFwðzÞ; ð18Þ

where FwðzÞ is given by

FwðzÞ ¼
L0wðzÞ − L1wðzÞ

z̄ð1 − z̄Þ : ð19Þ

This follows from the differential relations that SVMPLs
satisfy. The second result regards the integration of
SVMPLs. For the case at hand,

Z
d2z∂zFðzÞ¼Resz¼∞FðzÞ−Res0FðzÞ−Res1FðzÞ: ð20Þ

This follows from Stokes’ theorem [12]. Here, the residues
around infinity, zero, and one are defined by the expansions
around these points. For SVMPLs, we have

LwðzÞ ¼
X
m;n;k

ckmnðz − σÞmðz̄ − σ̄Þnlogkjz − σj2: ð21Þ

PHYSICAL REVIEW LETTERS 131, 161603 (2023)

161603-2



The antiholomorphic residue around a point z ¼ σ is
defined as the coefficient c0;0;−1.
Let us now turn to the problem at hand. Following [6],

we split the integral above into two contributions:

Ið1Þw ðS; TÞ ¼
Z

d2z
ðjzj−2S − 1Þðj1 − zj−2T − 1Þ

jzj2j1 − zj2 LwðzÞ;

Ið2Þw ðS; TÞ ¼
Z

d2z
jzj−2S þ j1 − zj−2T − 1

jzj2j1 − zj2 LwðzÞ: ð22Þ

Let us consider the first contribution. This is absolutely
convergent at S ¼ T ¼ 0, and, hence, we can Taylor
expand around that point and exchange summation and
integration. This leads to

Ið1Þw ðS; TÞ ¼
X
p;q¼1

ð−SÞpð−TÞq
Z

d2z
L0pðzÞL1qðzÞLwðzÞ

jzj2j1 − zj2 :

ð23Þ
Using the shuffle product, we write

L0pðzÞL1qðzÞLwðzÞ ¼
X

W ∈ 0p E 1q Ew
LWðzÞ: ð24Þ

Then, using the two key results above, we obtain

Ið1Þw ðS; TÞ ¼
X
p;q¼1

ð−SÞpð−TÞq

×
X

W ∈ 0p E 1q Ew

�
L0Wð1Þ − L1Wð1Þ

�
: ð25Þ

This generalizes in an obvious way the result by [6] valid
for w ¼ ∅. Let us now turn to the second contribution.
Following again [6], we consider

Ið2Þ;ϵw ðS; TÞ ¼
X
p;q≥0
p:q¼0

ð−SÞpð−TÞq
X
W

Z
Uϵ

∂zFWðzÞd2z; ð26Þ

where W ∈ 0p E 1q Ew and Uϵ ¼ CnðB0ðϵÞ ∪ B1ðϵÞ ∪
B0ðϵ−1ÞÞ is the complex plane minus three balls,

around zero, one, and infinity. Clearly, Ið2Þw ðS; TÞ ¼
limϵ→0I

ð2Þ;ϵ
w ðS; TÞ. By Stokes’ theorem, this receives only

contributions from the three boundaries:

Ið2Þw ðS; TÞ ¼
X
p;q≥0
p:q¼0

ð−SÞpð−TÞq
X
W

� Z
∂
þB0ðϵ−1Þ

FWðzÞ
idz̄
2π

þ
Z

∂
−B0ðϵÞ

FWðzÞ
idz̄
2π

þ
Z

∂
−B1ðϵÞ

FWðzÞ
idz̄
2π

�
; ð27Þ

with FWðzÞ ¼ f½L0WðzÞ − L1WðzÞ�=z̄ð1 − z̄Þg. Each boun-
dary can be analyzed separately. Let us assume for

simplicity that w is not of the form 0n and return to this
case later. In this case, the contribution from the boundary
at zero vanishes, and the same is true for the boundary
at infinity. The contribution from ∂

−B1ðϵÞ is slightly
more subtle, and, in order to compute it, we need the
behavior of LwðzÞ around z ¼ 1. For w ¼ 1n, we have
L1nð1þ ϵÞ ¼ ðlognjϵj2=n!Þ. For w starting with a 0,
we have

L0w0 ð1þ ϵÞ ¼ L0w0 ð1Þ þOðϵÞ; ð28Þ

for finite L0w0 ð1Þ given in terms of single-valued MZVs.
When the word starts with 1, we can use the shuffle
identities to isolate and compute its logarithmic divergences
as we approach z ¼ 1. Assume, for instance, w ¼ 10w0;
then

L1ðzÞL0w0 ðzÞ ¼ LwðzÞ þ
X

W ∈ 1 Ew0
L0WðzÞ; ð29Þ

which leads to

L10w0 ð1þ ϵÞ ¼ log jϵj2L0w0 ð1Þ −
X

W ∈ 1 Ew0
L0Wð1Þ þOðϵÞ:

ð30Þ

Applying this idea recursively, we can compute the
logarithmic behavior, around z ¼ 1, for any word. The
contribution from the boundary at 1 will be of the form

Ið2Þw ðS; TÞ ¼ polar þ
X
p;q≥0
p:q¼0

ð−SÞpð−TÞq

×
X

W ∈ 0p E 1q Ew

�
L0Wð1Þ − L1Wð1Þ

�
: ð31Þ

Combining both contributions, we obtain

IwðS; TÞ ¼ polar þ
X
p;q¼0

ð−SÞpð−TÞq

×
X

W ∈ 0p E 1q Ew

�
L0Wð1Þ − L1Wð1Þ

�
: ð32Þ

This result is valid for arbitrary w. The polar contribution
arises from logarithmic divergences either around z ¼ 0,
for w ¼ 0n, or around z ¼ 1, as explained above. For
example,

polarð0nÞ ¼ −
1

Snþ1
; polarð1nÞ ¼ −

1

Tnþ1
: ð33Þ

In general, a logarithmic divergence L1qð1þ ϵÞ leads to a
polar term −1=Tqþ1. Below, we will need IwðS; TÞ for
weight three. An example of this is
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I101ðS; TÞ ¼
4ζð3Þ
T

þ 2ð2T − SÞζð5Þ
þ 2ð4T2 þ 4ST − S2Þζð3Þ2 þ � � � : ð34Þ

In particular, we see the generic term is an homogeneous
polynomial of degree n times a (single-valued) MZV of
weight nþ 4. This is true for all other cases of weight three,
as well as for ζð3ÞI∅ðS; TÞ.
Integral representation for Að1ÞðS; TÞ.—The coefficients

in the low-energy expansion of IwðS; TÞ are in the ring of
single-valued MZVs. Hence, we will attempt to construct
an integral representation for Að1ÞðS; TÞ such that

Að1ÞðS; TÞ ¼ Bð1ÞðS; TÞ þ Bð1ÞðU; TÞ þ Bð1ÞðS;UÞ; ð35Þ

where Bð1ÞðS; TÞ is symmetric and of the form

Bð1ÞðS; TÞ ¼
X
w

RwðS; TÞIwðS; TÞ; ð36Þ

for some rational functions RwðS; TÞ. From the low-energy
expansion for Að1ÞðS; TÞ

Að1ÞðS;TÞ¼−
2

3

σ2
σ23

−
44

3
ζð3Þ2σ2−

537

8
ζð7Þσ3þ��� ; ð37Þ

we see that the generic term is a homogeneous polynomial
of degree n times MZVs of weight nþ 4. This suggests w
in our ansatz should have weight three and the rational
functions be the ratio of two homogeneous polynomials of
the same degree. This is confirmed by the pole structure of
Að1ÞðS; TÞ with quartic (and lower) order poles. Indeed,
note that the insertion of log3 jzj2 is equivalent to taking ∂3S,
which increases the degree of the single poles of Að0ÞðS; TÞ
by three.
Next, note that, due to the z ↔ z̄ symmetry of the

integrand, the integral IwðS; TÞ is sensitive to only the
symmetric part of LwðzÞ. Using the explicit expressions for
LwðzÞ for weight three, given in the Appendix, this implies

I011ðS;TÞ¼ I110ðS;TÞ; I001ðS;TÞ¼ I100ðS;TÞ: ð38Þ

This reduces the number of independent integrals IwðS; TÞ
at weight three from eight to six. Next, we want to construct
a function Bð1ÞðS; TÞ which is symmetric under S ↔ T. By
a change of variables z → 1 − z, we see

IwðT; SÞ ¼
Z

d2zjzj−2S−2j1 − zj−2T−2Lwð1 − zÞ: ð39Þ

SVMPLs are closed under this transformation. For weight
three,

L000ð1 − zÞ ¼ L111ðzÞ;
L001ð1 − zÞ ¼ L110ðzÞ − 2ζð3Þ;
L010ð1 − zÞ ¼ L101ðzÞ þ 4ζð3Þ;
L100ð1 − zÞ ¼ L011ðzÞ − 2ζð3Þ; ð40Þ

so that, for instance, I001ðT;SÞ¼ I110ðS;TÞ−2ζð3ÞI∅ðS;TÞ
and so on. Note, furthermore, that I∅ðS; TÞ is itself sym-
metric. We then try the following ansatz:

Bð1ÞðS; TÞ ¼ R0ðS; TÞI000ðS; TÞ þ R0ðT; SÞI111ðS; TÞ
þ R1ðS; TÞI010ðS; TÞ þ R1ðT; SÞI101ðS; TÞ
þ R2ðS; TÞI001ðS; TÞ þ R2ðT; SÞI110ðS; TÞ
þ �

RasymðS; TÞ þ RsymðS; TÞ
�
ζð3ÞI∅ðS; TÞ;

ð41Þ

where based on the integral representation for Að0ÞðS; TÞ
we propose rational functions of the form RiðS; TÞ ¼
U−2Pð2Þ

i ðS; TÞ, for Pð2Þ
i ðS; TÞ homogeneous polynomials

of degree 2. In the above ansatz, RasymðS; TÞ ¼
2ðR1ðT; SÞ − R1ðS; TÞÞ − R2ðT; SÞ þ R2ðS; TÞ is an anti-
symmetric function fixed so that Bð1ÞðS; TÞ is symmetric.
Finally, RsymðS; TÞ cannot be fixed by our procedure, and
we set it to zero. In total, our ansatz contains only nine
coefficients, which are fixed by matching the low-energy
expansion with Að1ÞðS; TÞ. We find the following remark-
ably simple solution:

R0ðS; TÞ ¼ −
2S

3ðSþ TÞ ; R1ðS; TÞ ¼ −
Sþ 5T
6ðSþ TÞ ;

R2ðS; TÞ ¼
2ðS − TÞ
3ðSþ TÞ ; RasymðS; TÞ ¼ 0: ð42Þ

Structure of poles.—Að1ÞðS; TÞ has a very interesting
structure of poles that we would like to reproduce from its
integral representation. Let us write

Bð1ÞðS; TÞ ¼
Z

d2zjzj−2S−2j1 − zj−2T−2GðS; T; zÞ; ð43Þ

where for the discussion below it is important to include the
explicit dependence of the integrand on S, T. By a change
of variables, it is easy to see that

Bð1ÞðU;TÞ¼
Z

d2zjzj−2Sj1−zj−2T−2GðU;T;1=zÞ;

Bð1ÞðS;UÞ¼
Z

d2zjzj−2S−2j1−zj−2TG
�
S;U;

z
z−1

�
: ð44Þ

The full expression is then
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Að1ÞðS; TÞ ¼
Z

d2zjzj−2S−2j1 − zj−2T−2GtotðS; T; zÞ; ð45Þ

with

GtotðS; T; zÞ ¼ GðS; T; zÞ þ jzj2GðU; T; 1=zÞ

þ j1 − zj2G
�
S;U;

z
z − 1

�
: ð46Þ

Note that single-valued polylogarithms are closed under
z → 1=z and z → ½z=ðz − 1Þ�, so the above expression can
again be expressed in terms of LwðzÞ. We are interested in
computing the poles at S ¼ 0; 1;…. These arise from the
region of integration around z ¼ 0 and can be computed by
expanding around this point and using polar coordinates.
Around z ¼ 0,

j1− zj−2T−2GtotðS;T; zÞ ¼
S2

9TðSþTÞ log
3jzj2þ � � � : ð47Þ

The leading-order term leads to poles at S ¼ 0:

Að1ÞðS; TÞjS¼0 ¼
Z

ρ0

0

ρdρ
Z

2π

0

dϕ
π

ρ−2S−2
S2

9TðSþ TÞ log
3ρ2

¼ −
2

3S2T2
þ 2

3ST3
þ regular; ð48Þ

which is the correct behavior for Að1ÞðS; TÞ around S ¼ 0.
Keeping higher-order terms in the expansion (47), we can
compute poles at S ¼ 1; 2;…; for instance, to next order,
we obtain

Að1ÞðS;TÞ¼ −1
ðS−1Þ4þ

2=3
ðS−1Þ3þ

2=3
ðS−1Þ2−

2ζð3Þ−1

S−1
þ reg;

ð49Þ

which again agrees with the expected terms. The following
comment is in order. From the computation in [8,9], it turns
out that quartic and cubic poles follow from the spectrum at
leading order, which is the flat-space string spectrum. As a
result, quartic and cubic poles have a very simple form.
It turns out, however, that matching these poles is not
enough to fix the form of our answer. Instead, some of the
terms in the ansatz (41) depend on the AdS corrections
to the operator product expansion data, which was deter-
mined in [9].
A worldsheet perspective.—Although a direct worldsheet

computation for string amplitudes on AdS5 × S5 is out of
reach at the moment, we can understand the main feature of
our result from the following worldsheet model. Consider
the first AdS curvature correction to the flat-space tree-
level four-graviton amplitude. Around flat space, the AdS
metric takes the form gμνðXÞ ¼ ημν þ ðhμν=R2Þ þ � � � with
hμν ∼ XμXν. Hence, one of the contributions to such a

curvature correction is given by the integrated insertion
of an extra graviton vertex operator with polarization
vector hμν:

hμν ∼ XμXν ∼ lim
Pg→0

∂
2

∂Pμ
g
∂Pν

g

eiPg·X; ð50Þ

where Pg is the momentum of the inserted graviton. We are
then led to compute

lim
Pg→0

∂
2

∂Pμ
g
∂Pν

g

Z
d2uhV1ð0ÞV2ð1ÞV3ð∞ÞV4ðzÞVμν

g ðuÞi: ð51Þ

The superstring amplitude for the scattering of five grav-
itons can be written in terms of a set of building blocks;
see [13]. A prototype of the integrals to compute is

lim
Pg→0

∂
2

∂Pμ
g
∂Pν

g

J ðz; z̄Þ; ð52Þ

where

J ðz; z̄Þ ¼
Z

d2u
juj2aj1 − uj2bju − zj2c

juj2j1 − uj2 : ð53Þ

The aim is to compute J ðz; z̄Þ as an expansion for small
ða; b; cÞ ¼ α0ðP1 · Pg; P2 · Pg; P4 · PgÞ to quadratic order.
In [14], this integral was written in terms of products of
holomorphic and antiholomorphic integrals

J ðz; z̄Þ ¼ −
1

π

�
κ1J1ðzÞJ1ðz̄Þ þ κ2J2ðzÞJ2ðz̄Þ

�
; ð54Þ

where κ1 ¼ sinðπaÞ csc�πðb þ cÞ� sin�πða þ b þ cÞ�,
κ2 ¼ sinðπbÞ sinðπcÞ csc�πðbþ cÞ�, and

J1ðzÞ ¼
Z

0

−∞
ð−uÞa−1ð1 − uÞb−1ðz − uÞcdu;

J2ðzÞ ¼
Z

1

z
ua−1ð1 − uÞb−1ðu − zÞcdu: ð55Þ

These integrals can be solved in terms of hypergeometric
functions and expanded for small a, b, c:

J1ðzÞ ¼
1

a
þ c
a
log zþ � � � ;

J2ðzÞ ¼
1

b
þ bþ c

b
logð1 − zÞ − log zþ � � � : ð56Þ

Expanding J ðz; z̄Þ for small a, b, c, we obtain
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J ðz; z̄Þ ¼ −
1

a
−
1

b
−
c
a
L0ðzÞ −

c
b
L1ðzÞ

þ c

�
L0ðzÞL1ðzÞ −

aþ c
2a

L2
0ðzÞ −

bþ c
2b

L2
1ðzÞ

�

þ � � � ; ð57Þ

so that at nth order in a, b, c we obtain SVMPLs of weight
nþ 1. This implies

lim
Pg→0

∂
2

∂Pμ
g
∂Pν

g

J ðz; z̄Þ ¼ divþ dζ3 þ
X

i;j;k¼0;1

dijkLijkðzÞ: ð58Þ

One should not worry about the divergent contribution,
since this is only a small part of the computation. At finite
order, we get a combination of SVMPLs of weight three,
exactly as in our ansatz. We expect other contributions to
behave in the same way.
Discussion.—In this Letter, we have given an integral

representation for the first AdS curvature correction to the
Virasoro-Shapiro amplitude in flat space. It takes the form
of the genus zero worldsheet integral for the usual Virasoro-
Shapiro amplitude in flat space with the extra insertion of
single-valued multiple polylogarithms of weight three. This
feature can be understood from a simple worldsheet model.

Going to higher orders, it would be interesting to under-
stand if a similar representation still holds and what is the
relevant space of single-valued functions. In the simplest
scenario, at the next order, SVMPLs of weight six would
suffice. A direct worldsheet computation from string theory
on AdS5 × S5 is out of reach at the moment. However,
over the past years, there has been promising progress in
the construction of vertex operators in the pure spinor
formalism [15,16]. Note that our final result is remarkably
simple, and it should serve as a guiding target toward
defining and computing graviton amplitudes in the pure
spinor formalism.
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Appendix: Explicit SVMPLs.—Below, we give the
single-valued multiple polylogarithms of weight three in
an explicit form. We build them from multiple
polylogarithms which up to weight three are given by

L01ðzÞ ¼ −Li2ðzÞ; L10ðzÞ ¼ Li2ðzÞ þ logð1 − zÞ logðzÞ;
L001ðzÞ ¼ −Li3ðzÞ; L010ðzÞ ¼ 2Li3ðzÞ − Li2ðzÞ logðzÞ;

L100ðzÞ ¼ −Li3ðzÞ þ Li2ðzÞ logðzÞ þ
1

2
logð1 − zÞlog2ðzÞ;

L110ðzÞ ¼ −Li3ð1 − zÞ þ 1

6
π2 logð1 − zÞ þ ζð3Þ;

L101ðzÞ ¼ 2Li3ð1 − zÞ − 2ζð3Þ − logð1 − zÞ�2Li2ð1 − zÞ þ Li2ðzÞ þ logð1 − zÞ logðzÞ�;
L011ðzÞ ¼ −Li3ð1 − zÞ þ Li2ð1 − zÞ logð1 − zÞ þ 1

2
logðzÞlog2ð1 − zÞ þ ζð3Þ; ðA1Þ

together with L0pðzÞ ¼ ðlogpz=p!Þ and L1pðzÞ ¼ ðlogpð1 − zÞ=p!Þ. Single-valued multiple polylogarithms are constructed
from those. In particular (see, e.g., [17]),

L000ðzÞ ¼ L000ðzÞ þ L000ðz̄Þ þ L00ðzÞL0ðz̄Þ þ L0ðzÞL00ðz̄Þ;
L001ðzÞ ¼ L001ðzÞ þ L100ðz̄Þ þ L00ðzÞL1ðz̄Þ þ L0ðzÞL10ðz̄Þ;
L010ðzÞ ¼ L010ðzÞ þ L010ðz̄Þ þ L01ðzÞL0ðz̄Þ þ L0ðzÞL01ðz̄Þ;
L100ðzÞ ¼ L100ðzÞ þ L001ðz̄Þ þ L10ðzÞL0ðz̄Þ þ L1ðzÞL00ðz̄Þ;
L110ðzÞ ¼ L110ðzÞ þ L011ðz̄Þ þ L11ðzÞL0ðz̄Þ þ L1ðzÞL01ðz̄Þ;
L101ðzÞ ¼ L101ðzÞ þ L101ðz̄Þ þ L10ðzÞL1ðz̄Þ þ L1ðzÞL10ðz̄Þ;
L011ðzÞ ¼ L011ðzÞ þ L110ðz̄Þ þ L01ðzÞL1ðz̄Þ þ L0ðzÞL11ðz̄Þ;
L111ðzÞ ¼ L111ðzÞ þ L111ðz̄Þ þ L11ðzÞL1ðz̄Þ þ L1ðzÞL11ðz̄Þ: ðA2Þ
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