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We construct a representation for the first anti—de Sitter curvature correction to the Virasoro-Shapiro
amplitude, as an integral over the Riemann sphere. The integrand is that of the Virasoro-Shapiro amplitude
in flat space, with the extra insertion of a linear combination of single-valued multiple polylogarithms of
weight three. The integral representation implies an elegant, manifestly single-valued representation for the

Wilson coefficients of the low-energy expansion.
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The idea.—In this Letter, we study the Virasoro-Shapiro
amplitude for the scattering of four gravitons on AdSs x $°.
This is defined, via the AdS/CFT correspondence, as the
correlator of four stress-tensor multiplets in Mellin space, to
leading order in inverse powers of the central charge. The
Borel transform of the Mellin amplitude reduces to the
usual Virasoro-Shapiro amplitude in the flat-space limit,
plus a tower of curvature corrections [1]:

/

A(S,T) = A0 (S, T) + %A(‘)(S, )+ (1)

The Virasoro-Shapiro amplitude in flat space

[(=S)[(=T)T(=U)
O(S+ OI(T + DT(U + 1)

AO(S.T) = - (2)

where S + 7 4+ U = 0, admits a low-energy expansion

1
A0S, T) = STU+2a;O%G3aaI)” (3)
with oy =1 (82 + T? + U?) and 63 = STU. It turns out [2]

that the Wilson coefficients af})] live in the ring of single-

valued multiple zeta values (MZVs) [3]. This is manifest in
the representation

. é'w 2n+1 <52n+]+T2n+]+U2n+l>
eXp (Zn 1 2n+1

AVS.T) = STU ’

4)
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where (*Y(2n+ 1) =2{(2n+ 1) are single-valued zeta
values. A direct worldsheet computation leads instead
to the following representation as an integral over the
Riemann sphere:

1
A(O)(S, T) = Uz/d21|z|_25_2|1 — 272, (5)

where z denotes the complex cross-ratio on the four-
punctured sphere and the integration measure is defined
as d*z = dzdz/(—2xzi). It was understood in [4-6] that the

reason for a((f,i being in the ring of single-valued MZVs is
the single-valued nature [7] of the integral (5).
The focus of this Letter will be the first correction
(1(8,T). In [8,9], the low-energy expansion for A (S, T)
was computed by leveraging Regge boundedness to derive
dispersive sum rules and assuming single-valuedness to
solve them. The result takes the form

2
__2+2 Z ‘72‘73 ab’ (6)
a,b=0

AD(S, T) =

where the Wilson coefficients ai{;) live in the ring of single-
valued MZVs by construction, justified by the expectation

that closed string amplitudes like A()(S,7) arise from
worldsheet integrals similar to (5). The aim of this Letter
is to construct such an explicit integral representation for
(1)(S,T), of the form
(s, 7y =B, T) + BOU,T) + BY(S,U), (7)

where BU)(S, T) is symmetric and given by

BU(S,T) = / P52 = TG (2,7). (8)
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Following the discussion in [6], we construct G(z, Z) out of
single-valued multiple polylogarithms (SVMPLs). This
ensures that the low-energy expansion of A()) (S, T) contains
only single-valued MZVs. Given that the coincident limit of
insertion points in a putative world sheet corresponds to
z = {0,1, 00}, we use polylogarithms evaluated at z and
labeled by words w with letters {0, 1}. Furthermore, the

structure of the Wilson coefficients a(alz found in [8,9],

together with the order of the poles in A(V)(S, T) (of fourth
order and lower), implies that the SVMPLs that appear have
at most weight three. We also present a worldsheet
motivation for this fact. It turns out the final integral
representation (4 1) is constructed out of SVMPLs of exactly
weight three.

Single-valued multiple polylogarithms.—Multiple poly-
logarithms (MPLs, also known as harmonic poly-
logarithms) are functions L,,(z) of one variable labeled
by a word w formed in our case by the “letters” 0 and 1.
They are recursively defined by the relations

0,L,(z) = Z_L]LW(Z), )

1
aZLOW(Z) = ELW(Z)7
together with L (z) = 1, where @ denotes the empty word,
and the condition that lim__,L, (z) = 0 for w not of the
form 07. For w = 07, we get Ly (z) = (log”z/p!). MPLs
satisfy shuffle relations
L,()Ly(x)= > Ly(2). (10)

Wewww

Evaluated at z = 1, MPLs reduce to MZVs; for instance,

L()S]’l10“\2711.__0“51711(1> = é’(SI, ey Sd). (11)
In the standard notation,

1
C(s1seees8a) = z P (12)
d

ny>e>ng>0"1 7

where s, + - - - + 5, is the weight, which agrees with the
length |w/|, and d is the depth. When the word starts with 1,
L, (1) is generally divergent. A regularized value can be
assigned by using the shuffle relations to isolate the
divergent contribution and then setting L,(1) = (1) =0
(which is equivalent to setting log0 = 0). As a conse-
quence of (10), MZVs also satisfy shuffle relations. MPLs
have branch points at z = 0, 1, co. A single-valued version
of MPLs was constructed in [10] via a single-valued map
L, (z) = L,(z) such that £, (z) is a single-valued weight-
preserving linear combination of L, (z)L,(Z) and satisfies
the same differential relations:

ALinfe) = 1 L0 (13

1
az‘c()w(z) = Eﬁw(z)’

such that Ly(z) =1, Lg(z) = (log’|z|*/p!), and
lim,_ £,,(z) = 0 for w not of the form 07. Furthermore,
they also satisfy the same shuffle relations:

L()Ly(x)= D Lw(2). (14)

Wewww'

Evaluated at z = 1, they give rise to single-valued MZVs.
For instance,

'CO"I“IO"Z“I...Okd“l(1) - Csv(kl, ey kd) (15)

Single-valued MZVs are a subset of the standard MZVs
and satisfy several relations, including the same shuffle
relations. Furthermore, one can check

£V(2n) =0, CY2n+1)=2L2n+1). (16)
For higher depths, the single-valued map acts in a com-
plicated way but can be computed, for instance, with the

program HyperlogProcedures [11].
Integrating SVMPLs.—Next, we consider the integrals

1,(5.T) = / el 521 - T2 () (17)

and compute their low-energy expansion. The authors of
[6] have considered the low-energy expansion for the
particular case L4(z) =1 in great detail and developed
a machinery to treat the general case. In particular, we will
use the following two key results. First, given any SVMPL,
we can write

Lu(z)
TPl =P 0.F,(2), (18)
where F,(z) is given by
FW(Z> ﬁOw(;()l__LZ";w(Z) (19)

This follows from the differential relations that SVMPLs
satisfy. The second result regards the integration of
SVMPLs. For the case at hand,

/ d?70.F(z) =Res._F(z) —ResyF(z) —Res | F(z). (20)

This follows from Stokes’ theorem [12]. Here, the residues
around infinity, zero, and one are defined by the expansions
around these points. For SVMPLs, we have

L,(2) =) iz —0)"(z=5)"log"lz— o> (21)

m,n,k
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The antiholomorphic residue around a point z = o is
defined as the coefficient ¢y _;.

Let us now turn to the problem at hand. Following [6],
we split the integral above into two contributions:

(2 =Dt =2 = 1)
2P|l - 2f?

s = [ @

5 |Z|_2S+|1 —Z|_2T—1
R e

L,(2),

Let us consider the first contribution. This is absolutely
convergent at § =7 =0, and, hence, we can Taylor
expand around that point and exchange summation and
integration. This leads to

I(S.T) = Y (=8)r(-T)¢ / 2 e DLn(DLn(2)

2171 _ 2
fyt |21 - 2]
(23)
Using the shuffle product, we write
Lo(@Lu(DL, ()= >  Ly(). (24)

We0Pwl9ww

Then, using the two key results above, we obtain

108, 7) = 37 (=8)r(=1)1

P.q=1

X Z (£0W(1> —£1W<1))- (25)

WeoPwl9ww

This generalizes in an obvious way the result by [6] valid
for w = @. Let us now turn to the second contribution.
Following again [6], we consider

ID48.7) = 3 (=$)P(=T)7y / 0.Fy(z)d%z, (26)
w JUe

P.q=0
p-q=0

where We0”wl9ww and U, = C\(By(e) U B;(e) U
By(e7!)) is the complex plane minus three balls,

around zero, one, and infinity. Clearly, IEVZ >(S, T) =
lim€_>015V2 )‘E(S, T). By Stokes’ theorem, this receives only

contributions from the three boundaries:

1&?>(S,T)_Z(-s)p(—T>qZ< / FW(z)iZd—:
w

oz 0 Bole™)
idz idz

4 / Fu(e) E 4 / Fu(e)'2). @7)
2 2%

0™ By(e) 0 B(e)

with Fy(z) = {[Low(z) = Liw(2)]/Z(1 - Z)}. Each boun-
dary can be analyzed separately. Let us assume for

simplicity that w is not of the form 0" and return to this
case later. In this case, the contribution from the boundary
at zero vanishes, and the same is true for the boundary
at infinity. The contribution from 07 B;(e) is slightly
more subtle, and, in order to compute it, we need the
behavior of £,,(z) around z = 1. For w = 1", we have
L1:(1+€) = (log"|e|*/n!). For w starting with a 0,
we have

Low (1 +€) = Loy (1) + Oe), (28)

for finite L, (1) given in terms of single-valued MZVs.
When the word starts with 1, we can use the shuffle
identities to isolate and compute its logarithmic divergences
as we approach z = 1. Assume, for instance, w = 10w/;
then

'Cl (Z)'COW’<Z) = 'CW(Z> + Z 'COW(Z)7 (29)

wWelww

which leads to

Ligw(1+€) =loglel?Loy(1) = Y Low(1)+ Ofe).

welww

(30)

Applying this idea recursively, we can compute the
logarithmic behavior, around z = 1, for any word. The
contribution from the boundary at 1 will be of the form

19(S.T) = polar + Y _ (=8)7(=T)
P,q20
p.g=0

x D

wWeorwl9ww

(Low(1) = Lyw(1)).  (31)

Combining both contributions, we obtain

1,(S.T) = polar + » _ (=8)7(=T)¢
p.q=0

X Z (Eow(l) _‘CIW(I))' (32)

We0rwl9ww

This result is valid for arbitrary w. The polar contribution
arises from logarithmic divergences either around z = 0,
for w= 0", or around z =1, as explained above. For
example,

polar(1") = — ! (33)

polar(0") = Tt

- Sn+1 ’
In general, a logarithmic divergence £.(1 + ¢) leads to a

polar term —1/T%*!. Below, we will need 1,,(S,T) for
weight three. An example of this is

161603-3
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Lot (S.T) = @ +2(2T - $)¢(5)
+2(4T% +4ST = S*)C(3)> +---. (34)

In particular, we see the generic term is an homogeneous
polynomial of degree n times a (single-valued) MZV of
weight n + 4. This is true for all other cases of weight three,
as well as for {(3)I4(S,T).

Integral representation for AV (S, T).—The coefficients
in the low-energy expansion of 1,,(S,T) are in the ring of
single-valued MZVs. Hence, we will attempt to construct
an integral representation for A1) (S, T) such that

AN(S, ) =BY(S, T)+BY(U,T)+BY(S,U), (35)
where B (S, T) is symmetric and of the form

BU)(S’ T)= ZRW(S’ T)IW(S7 T)’ (36)

for some rational functions R, (S, T). From the low-energy
expansion for A((S, T)

20, 44 537
AN(S.T)==35= 3¢ o= ((Mas++, (37)
3

we see that the generic term is a homogeneous polynomial
of degree n times MZVs of weight n + 4. This suggests w
in our ansatz should have weight three and the rational
functions be the ratio of two homogeneous polynomials of
the same degree. This is confirmed by the pole structure of
AM(S,T) with quartic (and lower) order poles. Indeed,
note that the insertion of log® |z|? is equivalent to taking 03,
which increases the degree of the single poles of A“) (S, T)
by three.

Next, note that, due to the z <> Z symmetry of the
integrand, the integral 7,,(S,7T) is sensitive to only the
symmetric part of £,,(z). Using the explicit expressions for
L,,(z) for weight three, given in the Appendix, this implies

Lo (S, T)=1110(S.T), 1ooi1(S.T)=1100(S.T). (38)
This reduces the number of independent integrals 7,,(S, T')
at weight three from eight to six. Next, we want to construct
a function BV (S, T') which is symmetric under S <> 7. By
a change of variables z — 1 — z, we see

1,(T.8) = / Pl B2 = T2, (1 - 2). (39)

SVMPLs are closed under this transformation. For weight
three,

-2(3). (40)

so that, for instance, Ioy (7,S) =1110(S,T)—2¢(3)I4(S,T)
and so on. Note, furthermore, that I4(S, T) is itself sym-
metric. We then try the following ansatz:

BW(S,T) = Ro(S, T)looo(S, T) + Ro(T, $)111,(S, T)
+ Ry(S, T)o10(S.T) + Ry (T, $)1101(S. T)
+ Ry(S, T)ooi (S. T) + Ro(T, $)1110(S. T)
4 (Rasym(S. T) + Rym(S.T))¢(3)15(S. T),
(41)

where based on the integral representation for A©)(S, T)
we propose rational functions of the form R;(S,T) =
U‘2P52)(S, T), for sz)(S, T) homogeneous polynomials
of degree 2. In the above ansatz, Ryyn(S.T) =
2(R((T,S) = R(S,T)) — Ry(T,S) + Ry(S,T) is an anti-
symmetric function fixed so that BV (S, T) is symmetric.
Finally, Ryy,,,(S,T) cannot be fixed by our procedure, and
we set it to zero. In total, our ansatz contains only nine
coefficients, which are fixed by matching the low-energy
expansion with A()(S, T'). We find the following remark-
ably simple solution:

RO(S,T):—ﬁ, RI(S,T):—%,
RZ(S,T)—%, R (S.T) = 0. (42)

Structure of poles.—A")(S,T) has a very interesting
structure of poles that we would like to reproduce from its
integral representation. Let us write

BU)(S,T)_/d2z|z|-25-2|1—z|-2T-2G(S,T,z), (43)

where for the discussion below it is important to include the
explicit dependence of the integrand on S, 7. By a change
of variables, it is easy to see that

B(l)(U,T)—/d2z|z|‘251—Z|_2T_2G(U,T,1/Z),
B“)(S,U):/dzzIZI‘ZS‘le—Zl‘zTG<S’U’ Z1)' (44)
i

The full expression is then

161603-4
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A(1>(S7 T) :/d22|zl_zs_2|1_Z|_2T_2Gtot(S7 T’Z>7 (45)
with
G(S.T.2) = G(S,T.z) + |z]*G(U. T, 1/z2)

1 —z2G<S, U%) (46)
Z—

Note that single-valued polylogarithms are closed under
z— 1/zand z — [z/(z — 1)], so the above expression can
again be expressed in terms of £,,(z). We are interested in
computing the poles at S =0, 1, .... These arise from the
region of integration around z = 0 and can be computed by
expanding around this point and using polar coordinates.
Around 7z = 0,

2

I1- Z|_2T_2Gtot(S’ T,z)=

S
= _Jog®|zP+---. (47
ST T Ok @)

The leading-order term leads to poles at S = 0:
) 27 dep S2
AV (S, T _/’° d / ap 152 loo® 2
(S.T)[s5=0 A e P Ok
2 2

= — W + ﬁ + regular, (48)

which is the correct behavior for A1) (S, T) around S = 0.
Keeping higher-order terms in the expansion (47), we can

compute poles at S = 1,2, ...; for instance, to next order,
we obtain
-1 2/3 2/3 2£(3)-1
A8, T)= - ,
ST =G oy s s=1 e
(49)

which again agrees with the expected terms. The following
comment is in order. From the computation in [8,9], it turns
out that quartic and cubic poles follow from the spectrum at
leading order, which is the flat-space string spectrum. As a
result, quartic and cubic poles have a very simple form.
It turns out, however, that matching these poles is not
enough to fix the form of our answer. Instead, some of the
terms in the ansatz (41) depend on the AdS corrections
to the operator product expansion data, which was deter-
mined in [9].

A worldsheet perspective.—Although a direct worldsheet
computation for string amplitudes on AdSs x S° is out of
reach at the moment, we can understand the main feature of
our result from the following worldsheet model. Consider
the first AdS curvature correction to the flat-space tree-
level four-graviton amplitude. Around flat space, the AdS
metric takes the form g, (X) = n,, + (h,,/R*) + - - - with
h,, ~X,X,. Hence, one of the contributions to such a

curvature correction is given by the integrated insertion
of an extra graviton vertex operator with polarization
vector hy,,:

2

X ~ 1l _ T LiPyX
g P;I—I}()apl;apge T (50)

h,~X

Hv u

where P is the momentum of the inserted graviton. We are
then led to compute

v)
lima 3
P,—0
97 PZ Py

/d2u<V1(O)Vz(1)V3(°°)V4(Z)V§”(u)>- (51)

The superstring amplitude for the scattering of five grav-
itons can be written in terms of a set of building blocks;
see [13]. A prototype of the integrals to compute is

2

11;210 3r:0r, J(z.2), (52)

where

]t = Pl — <P
uPTT = uP

J(z,2) = /d2u (53)

The aim is to compute 7 (z,Z) as an expansion for small
(a.b,c)=d(Py-P, P,-P, Py P,) to quadratic order.
In [14], this integral was written in terms of products of
holomorphic and antiholomorphic integrals

T@7) ==~ (01D + (D). (4

where k; = sin(za) csc(z(b + ¢)) sin(z(a + b + ¢)),
K, = sin(zb) sin(zc) csc(z(b + ¢)), and

I = / i(—u)“*(l — w2 - w)du,
Jy(z) = /1 u (1 —u)>"Y(u - z)°du. (55)

Z

These integrals can be solved in terms of hypergeometric
functions and expanded for small a, b, c:

1 ¢
J](Z) =E+;logz+~',

1 b+c
Jz(Z):Z—F b

log(l —z) —logz+---. (56)

Expanding 7 (z,Zz) for small a, b, ¢, we obtain

161603-5
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so that at nth order in a, b, ¢ we obtain SVMPLs of weight
n + 1. This implies

lim
P,—0 aPl; apf]

J(z,2) =div+dl; + Z dijiLij(z). (58)

i.j.k=0,1

One should not worry about the divergent contribution,
since this is only a small part of the computation. At finite
order, we get a combination of SVMPLs of weight three,
exactly as in our ansatz. We expect other contributions to
behave in the same way.

Discussion.—In this Letter, we have given an integral
representation for the first AdS curvature correction to the
Virasoro-Shapiro amplitude in flat space. It takes the form
of the genus zero worldsheet integral for the usual Virasoro-
Shapiro amplitude in flat space with the extra insertion of
single-valued multiple polylogarithms of weight three. This
feature can be understood from a simple worldsheet model.

|

Loi(z) = —Lis(z),
Looi(z) = —Lis(z),

Going to higher orders, it would be interesting to under-
stand if a similar representation still holds and what is the
relevant space of single-valued functions. In the simplest
scenario, at the next order, SVMPLs of weight six would
suffice. A direct worldsheet computation from string theory
on AdSs x S5 is out of reach at the moment. However,
over the past years, there has been promising progress in
the construction of vertex operators in the pure spinor
formalism [15,16]. Note that our final result is remarkably
simple, and it should serve as a guiding target toward
defining and computing graviton amplitudes in the pure
spinor formalism.

We thank Francis Brown, Oliver Schnetz, and Federico
Zerbini for useful discussions. The work of L. F. A. and T.
H. is supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation program (Grant Agreement No. 787185).
L.F. A. is also supported in part by the Science and
Technology Facilities Council Grant No. ST/T000864/1.
J. A.S. is supported by the STFC Grant No. ST/T000864/1.

Appendix: Explicit SVMPLs.—Below, we give the
single-valued multiple polylogarithms of weight three in
an explicit form. We build them from multiple
polylogarithms which up to weight three are given by

Lyo(z) = Lix(z) +log(1 — z) log(z),
Lo1o(z) = 2Li3(z) — Liy(2) log(z),

Lin(2) = ~Lis(2) + Li(2) log(z) + 5 log(1 = 9log?(2),

Ling(e) = ~Lis(1 = 2) + g log(1 = 2) +¢(3).
Lyg1(z) = 2Li5(1 — z) — 2£(3) — log(1 — z) (2Liy(1 — 2) 4 Lis(z) + log(1 — z) log(z)),

Lopi(z) = —Lis(1 - z) + Lip(1 — z) log(1 - 2) +%10g(Z)1022(1 —2) +¢03),

(A1)

together with Ly»(z) = (log?z/p!) and L»(z) = (log?(1 — z)/p!). Single-valued multiple polylogarithms are constructed

from those. In particular (see, e.g., [17]),

Looo(z) = Looo(2) + Looo(Z) + Loo(2)Lo(Z) + Lo(2)Leo(2).
Lo01(z) = Looi(2) + Lioo(Z) + Loo(2)L1(Z) + Lo(z)L10(2),
Lo10(z) = Loio(2) + Loio(Z) + Loi (2)Lo(Z) + Lo(z) Lo (2),
L100(z) = Lioo(2) + Looi (Z) + L10(2)Lo(Z) + L1(2)Leo(2),
L110(z) = Li10(2) + Lo11(2) + L11(2)Lo(2) + L1(2) Lo (2),
L101(z) = Li01(2) + L101(Z) + L1o(2)L1(2) + L1(z)L10(2),
Lo (z) = Lon(2) + Li10(2) + Loi (2)L1(2) + Lo(2)L11(2),
Li11(2) = Lin(z) + L111(2) + Li1(2)L1(2) + Ly (2)L11(2)- (A2)
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