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Recently, there has been renewed interest in a crossing-symmetric dispersion relation from the 1970s due
to its implications for both regular quantum field theory and conformal field theory. However, this
dispersion relation introduces nonlocal spurious singularities and requires additional locality constraints for
their removal, a process that presents considerable technical challenges. In this Letter, we address this issue
by deriving a new crossing-symmetric dispersion relation free of spurious singularities. Our formulation
offers a compact and nonperturbative representation of the local block expansion, effectively resumming
both Witten (in conformal field theory) and Feynman (in quantum field theory) diagrams. Consequently,
we explicitly derive all contact terms in relation to the corresponding perturbative expansion. Our results
establish a solid foundation for the Polyakov-Mellin bootstrap in conformal field theories and the crossing-
symmetry S-matrix bootstrap in quantum field theories.
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Introduction.—The recent revival in crossing-symmetric
dispersion relations [1,2] has sparked considerable interest
in both quantum field theory (QFT) [3] and conformal
field theory (CFT) [4,5]. In contrast to traditional t-fixed
dispersion relations, which display symmetry in only two
channels [6,7], crossing-symmetric dispersion relations
impose no additional constraints and are in perfect accord
with Feynmandiagramexpansions.Within theCFTdomain,
four-point correlation functions must adhere to crossing
symmetry constraints. Numerical bootstrap typically en-
forces this crossing symmetry on the conformal block
expansion. Alternately, Polyakov introduced a conformal
bootstrap using crossing-symmetric blocks [8], an approach
that has recently proven effective in Mellin space [9–11].
This method employs a perturbative expansion [12,13], as

Mðs1; s2Þ ¼
X
i¼s;t;u

Miðs1; s2Þ þMcðs1; s2Þ; ð1Þ

where Miðs1; s2Þ are crossing-symmetric exchange terms
for the s, t, and u channel, and Mcðs1; s2Þ are crossing-
symmetric contact terms. Equation (1), however, only offers
a formal expansion, with the explicit contact terms remain-
ing undetermined [13,14]. Resolving these terms continues
to pose a considerable challenge [12,15–21].
Gopakumar et al. [4] recently observed that these

contact term ambiguities are fully determined using a

crossing-symmetric dispersion relation, initially developed
byAuberson andKhuri (AK) [1] and later revisited by Sinha
andZahed [3]. However, theAKdispersion relation presents
spurious singularities that violate locality. Therefore, addi-
tional locality constraints are manually imposed to remove
these unphysical terms. In theory, after removing these
singularities, crossing-symmetric dispersion relations allow
for a Feynman and Witten diagram expansion and entirely
fix the contact terms. In line with this approach, a closed
form of the contact terms has been proposed [22].
Nevertheless, the complexity of analyzing singularities

restricts its practical application to lower spins, thereby
complicating the implementation of the Polyakov boot-
strap. This difficulty is intrinsically connected to the
nonperturbative nature of the crossing-symmetric ampli-
tude; when it expands in a perturbative manner as given by
Eq. (1), the terms involved—especially the contact terms—
become cumbersome, indicating that the expansion may
not be fundamentally natural. This becomes particularly
evident for higher spin values, where the number of
monomials in the contact term grows rapidly [see
Supplemental Material (SM) [23], Sec. C]. Therefore, it
is of significant interest to explore a naturally nonpertur-
bative, and local crossing-symmetric dispersion relation
that is not only essential for advancing the Polyakov
bootstrap but also holds fundamental importance in its
own right.
In this Letter, we propose such a new dispersion relation

that manifests both crossing symmetry and locality. We
discover a novel approach to directly remove nonlocal
singularities, resulting in a closed form of the singularity-
free dispersion relation. This technique affords a single
compact and nonperturbative representation of the local
block expansion, effectively resumming all Witten (CFT) or

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 131, 161602 (2023)

0031-9007=23=131(16)=161602(6) 161602-1 Published by the American Physical Society

https://orcid.org/0000-0002-3048-7046
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.161602&domain=pdf&date_stamp=2023-10-18
https://doi.org/10.1103/PhysRevLett.131.161602
https://doi.org/10.1103/PhysRevLett.131.161602
https://doi.org/10.1103/PhysRevLett.131.161602
https://doi.org/10.1103/PhysRevLett.131.161602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Feynman (QFT) diagrams. In consequence, this approach
offers explicit derivation of all contact terms. As a result,
when the absorptive part of the amplitude is known, we can
instantly generate such a nonperturbative representation.
Furthermore, we develop the full dispersion relationwithout
assuming crossing-symmetric amplitudes, enabling the
application of our findings to a wide range of problems.
For instance, our work establishes a solid foundation for the
Polyakov bootstrap, where the only remaining nontrivial
constraint is the Polyakov condition [8,10]. Moreover, our
approach yields a novel functional sum rule for the crossing-
symmetric bootstrap, eliminating the need for power series
expansions.
Singularity-free dispersion relation.—We begin with the

shiftedMandelstamvariables s1¼s−μ=3, s2 ¼ t − μ=3, and
s3¼u−μ=3 satisfying the constraint s1þs2þs3¼0, where
s, t, and u are the usual Mandelstam variables. For regular
QFT, we have μ ¼ 4m2, while for CFT, we have μ¼2Δϕ.
We consider hypersurfaces ðs1−aÞðs2−aÞðs3−aÞ¼−a3,
and rewrite skðz; aÞ ¼ a − aðz − zkÞ3=ðz3 − 1Þ, where zk
are cube roots of unity [1]. Note that we can express a¼y=x,
where x≡−ðs1s2þs2s3þs3s1Þ and y≡ −s1s2s3. Instead of
a dispersion relation in s for fixed t, we can write down a
twice subtracted dispersion relation in the variable z, for
fixed a. The full crossing-symmetric dispersion relation is
quite involved, and we refer the readers to Ref. [1] for more
details. A full singularity-free dispersion relation is set to be
proposed in a subsequent section.
Our discussion belowprimarily focuses on the completely

crossing-symmetric scattering amplitudes, such as pion-
pion scattering in QFT or the Mellin amplitude for a four-
point correlation of identical scalars in CFT [24,25]. For a
crossing-symmetric amplitude MðsÞ, the dispersion re-
lation simplifies dramatically in terms of s≡ fs1; s2; s3g, as

MðsÞðsÞ ¼ α0 þ
1

π

Z
dσ
σ
A
�
σ; s�

�
σ;

a
σ − a

��

×Hðσ; sÞ; ð2Þ

where Aðs1; s2Þ is the s-channel discontinuity, symmetric
under the exchange of t and u channels, i.e., Aðs1; s2Þ ¼
Aðs1; s3Þ. The constant α0 ≡MðsÞð0; 0Þ, and the functions
Hðσ; sÞ and s�ðσ; ηÞ are defined as

Hðσ; sÞ≡ s1
σ − s1

þ s2
σ − s2

þ s3
σ − s3

;

s�ðσ; ηÞ≡ σ
−1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4η
p
2

;

where sþs− ¼ −σ2η and sþ þ s− ¼ −σ. Setting η ¼
a=ðσ − aÞ and s1 ¼ σ solves s2 ¼ s� and s3 ¼ s∓ from
the definition above. Note that Aðσ; sþÞ ¼ Aðσ; s−Þ, and
thus the validity of Eq. (2) is independent of the choice of sþ
or s−.

Equation (2) is manifestly crossing symmetric, allowing
the scattering amplitude

MðsÞðsÞ ¼
X
p;q

MðsÞ
p;qxpyq ð3Þ

to be expanded in terms of crossing-symmetric variables x
and y. However, the AK dispersion relation (2) involves the
variable a and, therefore, leads to negative powers of x in
the expansion (3). These spurious singularities are known
to violate locality [3]. To obtain the physical scattering
amplitude, additional locality constraints must be imposed
to enforce the vanishing of these nonphysical terms in
Eq. (3). Formally, a singularity-free dispersion relation
requires computing the regular part

R≡R
�
A
�
σ; s�

�
σ;

a
σ − a

��
Hðσ; sÞ

�
; ð4Þ

where Rf…g denotes a formal regularization with the
negative power of x terms being removed.
To obtain a closed form of the regular part R, we first

rewrite Hðσ; sÞ ¼ ð2σ3 − yÞH0ðσ; sÞ − 2, where

H0ðσ; sÞ≡ 1

ðσ − s1Þðσ − s2Þðσ − s3Þ
¼ 1

σ3 þ y − σx

corresponds to the poles. Notice that multiplying the factor
a with a regular function fðx; yÞ,

âfðx; yÞ≡Rfafðx; yÞg

acts as a lowering operator âjni ¼ yjn − 1i, with âj0i ¼ 0,
where jni≡ xn denotes the nth power of x. Specifically, we
obtain

ânH0 ¼
1

σ3 þ y

X∞
m¼0

�
σ

σ3 þ y

�
m
ânxm

¼ 1

σ3 þ y

X∞
m¼n

�
σ

σ3 þ y

�
m
ynxm−n

¼
�

σy
σ3 þ y

�
n
H0;

which suggests that

Fðâ; yÞH0ðσ; sÞ ¼ F

�
σy

σ3 þ y
; y

�
H0ðσ; sÞ ð5Þ

for any function Fða; yÞ admitting a Taylor expansion in
terms of a. Substituting Eq. (5) into Eq. (4) and noting
Fðâ; yÞfðyÞ ¼ Fð0; yÞfðyÞ lead to

R¼A½σ; s�ðσ; y=σ3Þ�ð2σ3 − yÞH0ðσ;sÞ− 2A½σ; s�ðσ;0Þ�:
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Therefore, we obtain the singularity-free (SF) dispersion relation

MðsÞðsÞ ¼ α0 þ
1

π

Z
dσ
σ

�ð2σ3 þ s1s2s3ÞA½σ; s�ðσ;−s1s2s3=σ3Þ�
ðσ − s1Þðσ − s2Þðσ − s3Þ

− 2Aðσ; 0Þ
�
; ð6Þ

where the locality constraints are automatically satisfied, as
we will show explicitly in the next section.
Intriguingly, the SF dispersion relation exhibits a faster

convergence rate in comparison to existing dispersion
relations. Considering the CFT as an instance, Ref. [26]
demonstrates that the AK dispersion relation in terms of
k converges following the rate k−11=3þa=2, whereas the
standard fixed-t dispersion relation converges at the rate
k−11=3þs2=2. In contrast, the SF block converges following
the rate k−11=3 logðkÞ, which markedly surpasses the other
two in speed. Of greater significance is the fact that the AK
dispersion relation converges for ℜðaÞ < 16=3 and for
fixed-t ℜðs2Þ < 16=3. The SF relations converge for any
choice of a or s2. A numerical test of the convergence of
Eq. (6) in terms of spin cutoffs, applied to the 3D Ising
model [27], is presented in SM [23], Sec. A.
Block expansion and contact terms.—To facilitate the

analysis of the s-channel discontinuity, it is common
practice to expand it in terms of the partial waves with
even spins, as

Aðs1; s2Þ ¼
X
l

Z
dλflðs1; λÞQλ;lðs1; s2Þ;

where the partial wave Qλ;lðs1; s2Þ ¼ Qλ;lðs1; s3Þ is a
symmetric polynomial of order l that is invariant
under the exchange of the ut channels, and the spectrum
flðs1; λÞ encodes scattering data. For QFT, we express

Q0;lðs1; s2Þ≡ ðs1 − 2μ=3ÞlCðαÞ
l ½ðs2 − s3Þ=ðs1 − 2μ=3Þ� in

terms of Gegenbauer polynomials, and flðs1; λÞ ¼
ðs1 − 2μ=3Þ−lΦðs1Þð2lþ 2αÞαlðs1ÞδðλÞ with Φðs1Þ≡
ΨðαÞðs1 þ μÞ1=2=ðs1 − 2μ=3Þα with α ¼ ðd − 3Þ=2. Here,
ΨðαÞ is a real positive number and αlðs1Þ encodes partial
wave coefficients. For CFT, we express QΔ;lðsÞ ¼
PΔ−d=2;lðs1 þ 2Δϕ=3; s2 − Δϕ=3Þ in terms of Mack poly-

nomials [24,28,29], and flðs1; λÞ≡P
Δ;k CΔ;lN

ðkÞ
Δ;lδðs1 −

τkÞδðλ − ΔÞ encodes the operator product expansion (OPE)
data, where τk ¼ðΔ−lÞ=2− ð2Δϕ=3Þþk, CΔ;l is OPE

coefficient andNðkÞ
Δ;l is the normalization term (see SM [23],

Sec. A for its explicit definition).
The scattering amplitude can also be expressed as

MðsÞðsÞ ¼ α0 þ
1

π

X∞
l¼0

Z
dσdλflðσ; λÞMλ;lðσ; sÞ;

where Mλ;lðσ; sÞ are scattering blocks. Comparing AK
dispersion relation (2), we obtain the Dyson block [3],

MðDÞ
λ;l ¼ 1

σ
Qλ;l

�
σ; s�

�
σ;

a
σ − a

��
Hðσ; sÞ; ð7Þ

which contains spurious singularities. By contrast, our
dispersion relation (6) leads to the singularity-free block

MðSFÞ
λ;l ¼ ð2σ3 − yÞQλ;l½σ; s�ðσ; y=σ3Þ�

σðσ − s1Þðσ − s2Þðσ − s3Þ
−
2

σ
Qλ;lðσ; 0Þ: ð8Þ

To show explicitly SF block MðSFÞ
λ;l removes spurious

singularities present in the Dyson block MðDÞ
λ;l , we take the

QFT case as an example. We start with the Gegenbauer

polynomials Cðd−3Þ=2
l ð ffiffiffi

ξ
p Þwhere ξ¼ ½sþðσ;ηÞ− s−ðσ;ηÞ�2=

ðσ−2μ=3Þ2 ¼ ξ0ð1þ4ηÞ, where ξ0 ≡ σ2=ðσ − 2μ=3Þ2. We
set η ¼ a=ðσ − aÞ and expand the Gegenbauer polynomials
around ξ0, giving us [1,3]

MðDÞ
λ;l ¼ 1

σ

X∞
n;m¼0

BðlÞ
n;mxnðy=xÞm;

where pðkÞ
l ≡ ∂

k
ξC

ðd−3Þ=2ð ffiffiffiffiffi
ξ0

p Þ, and

BðlÞ
n;m ¼

Xm
k¼0

pðkÞ
l ð4ξ0Þkð3k −m − 2nÞð−nÞm
πσ2nþmk!ðm − kÞ!ð−nÞkþ1

:

Similarly, expanding the Gegenbauer polynomials
around ξ0 with η ¼ y=σ3 leads to

MðSFÞ
λ;l ¼ 1

σ

X∞
n;m¼0

CðlÞn;mxnym;

where

CðlÞn;m ¼
Xm
k¼0

pðkÞ
l ð4ξ0Þkð−1Þm−k½2nþ 3ðm − kÞ�

πσ2nþ3mn!k!ðm − kÞ!
× ðnþm − k − 1Þ!:

It is easy to verify that CðlÞn;m ¼ BðlÞ
nþm;m for n, m ≥ 0,

indicating that the regular part of the Dyson blocks matches
with the SF blocks, as expected. However, the Dyson
blocks have spurious singularities with a negative power of
x when n < m, which is absent in our SF blocks. A similar
deviation can be obtained for general partial waves Qλ;l.
As we mentioned above, Eq. (1) only offers a formal

expansion in terms of exchange and contact terms, with its
explicit form unknown. The singularity-free (SF) block
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provides a block expansion for the amplitude that directly
relates to the usual Feynman and Witten diagrammatic
expansions for QFT and CFT, respectively. To see this, we
will show below that the SF block can be written as a
summation of exchange and contact terms, as follows:

MðSFÞ
λ;l ðσ; sÞ ¼

X3
i¼1

MðiÞ
λ;lðσ; sÞ þMðcÞ

λ;lðσ; sÞ; ð9Þ

where the exchange term of channel i is given by

MðiÞ
λ;lðσ; sÞ ¼ Qλ;lðsi; siþ1Þ

�
1

σ − si
−
1

σ

�
;

for i ¼ 1, 2, 3 with the cyclic condition iþ 1 ¼ 1 for i ¼ 3.

The contact terms MðcÞ
λ;lðσ; sÞ involve polynomials of si ’s,

whose explicit form is previously only known for a few
lower order terms. We substitute Eq. (8) into Eq. (9),
obtaining

MðcÞ
λ;lðσ; sÞ ¼

1

σ

X3
i¼1

siΔQ
ðiÞ
λ;l

ðσ − siÞ
þ 2

σ
ΔQð0Þ

λ;l; ð10Þ

where ΔQðiÞ
λ;l≡Qλ;l½σ;s�ðσ;y=σ3Þ�−Qλ;l½si;s�ðsi;y=s3i Þ�,

and ΔQð0Þ
λ;l ≡Qλ;l½σ; s�ðσ; y=σ3Þ� −Qλ;lðσ; 0Þ are polyno-

mials. To show the contact termMðcÞ
λ;l are also polynomials,

we notice that the symmetry of u and t channels allows us
to expand Qλ;lðs1; s2Þ ¼

P
nþ2m≤l qnms

n
1ðs2s3Þm, which

implies

Qλ;l½σ; s�ðσ; y=σÞ� ¼
X

nþ2m≤l
qnmσnðs1=σÞmðs2s3Þm:

Thus,

ΔQðiÞ
λ;l ¼

X
n;m

qnmσn½ðsi=σÞm − ðsi=σÞn�ðsiþ1siþ2Þm;

where the term ðsi=σÞm − ðsi=σÞn must divide si=σ − 1 and
thus cancel the poles in Eq. (10). More explicitly, we find
that [see SM [23], Sec. B for more details]

ΔQðiÞ
λ;l ¼ ðsi − σÞ

X
n;m

Pn;mðσÞsni ðsiþ1siþ2Þm;

where

Pn;mðσÞ

¼

8>><
>>:

P
n
k¼0 qkmσ

k−n−1; 0 ≤ n < minðm;l− 2mþ 1ÞPl−2m
k¼0 qkmσk−n−1; l− 2m ≤ n ≤ m− 1;

−
Pl−2m

k¼nþ1 qkmσ
k−n−1; m ≤ n ≤ l− 2m− 1:

Substituting into Eq. (10), we obtain the contact term

MðcÞ
λ;l ¼ 2

σ

	
Qλ;l½σ; s�ðσ; y=σ3Þ� −Qλ;lðσ; 0Þ




−
1

σ

X
n;m

Pn;mðσÞ
�X3

i¼1

snþ1
i ðsiþ1siþ2Þm

�
; ð11Þ

which are manifestly crossing-symmetric polynomials.
Note that the summation over indices n and m is across
all nonzero Pðn;mÞ terms, i.e., 0 ≤ m ≤ l=2 and
nþ 2m ≤ 3l=2 − 1. In the case of the l ¼ 2 block, for

instance, Eq. (11) leads toMðcÞ
λ;2 ¼ ð2xq2;0=σÞ þ ðyq0;1=σ2Þ.

This outcome is in agreement with the block discovered in
Ref. [3], which was achieved by expanding the Dyson
block and manually discarding the nonlocal terms. More
comprehensive details, along with higher spin examples,
can be found in SM [23], Sec. C.
Singular block and sum rules.—Since the SF block

corresponds to the regular part of the Dyson block, we
can decompose

MðDÞ
λ;l ðσ; sÞ ¼ MðSFÞ

λ;l ðσ; sÞ þMðSÞ
λ;lðσ; sÞ;

where MðSÞ
λ;lðσ; sÞ refers to the corresponding singular part,

given by

MðSÞ
λ;l ¼

Qλ;l½σ; s�ðσ; y=σ3Þ�−Qλ;l½σ; s�ðσ;a=ðσ−aÞÞ�
y=σ3−a=ðσ−aÞ

×
ð2σ− 3aÞy
σ4ðσ−aÞ −

2

σ
ðQλ;l½σ; s�ðσ; y=σ3Þ�−Qλ;l½σ;0�Þ:

Note that the polynomial Qλ;lðs1; s2Þ ¼ Qλ;lðs1; s3Þ is
symmetric for even spins. As a result, it can be expanded
in terms of the power of s1 and the product s2s3. Therefore,
Qλ;lðσ; s�ðσ; ηÞÞ can be expressed as a polynomial of
sþðσ; ηÞs−ðσ; ηÞ ¼ σ2η. This, consequently, leads to it
being expressed as a polynomial of η. The term in the
first line is the difference operator acting on Qλ;l between
η ¼ y=σ3 and η ¼ a=ðσ − aÞ, and thus is also a polynomial
of these two terms. Therefore, the first term involves
positive powers of a ¼ y=x except for the zeroth-order
term, which cancels the last term in the above equation.
Consequently, only terms with negative powers of x remain

in MðSÞ
λ;l, as expected.

Since both Dyson and SF blocks lead to the same
amplitude, the contribution from the singular part needs
to be canceled:

X
l

Z
dσdλflðσ; λÞMðSÞ

λ;lðσ; sÞ ¼ 0; ð12Þ

which imposes a constraint on the spectrum flðσ; λÞ. For
instance, for QFT, Eq. (12) requires the cancellation of

power series contributions of BðlÞ
n;mxn−mym with negative
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powers of x, i.e., n < m, generalizing the Froissart bound
[3,30]. For CFT, it appears to connect to the conformal
dispersive sum rules [4,19]. Unlike previous approaches,
Eq. (12) provides a single functional sum rule without
involving series expansion.
Full dispersion relation.—Our approach extends to

general scattering amplitudes without assuming the com-
plete crossing symmetry. The corresponding full dispersion
relation should link the scattering amplitude MðsÞ to s, u,
and t-channel discontinuities, denoted asAiðsÞ for i ¼ 1, 2,

3. Furthermore, MðsÞ is not merely a function of x and y,
but also of a linear combination of si. In addition, an
antisymmetric part exists [31], characterized in terms of
w ¼ −ðs1 − s2Þðs2 − s3Þðs3 − s1Þ. Note that the algebraic
curve w2 ¼ 4x3 − 27y2 suggests that any power of w higher
than first order will be absorbed in a combination of x and
y. Using an approach similar to the one presented above,
we derive the full SF dispersion relation (see SM [23],
Sec. D for more details):

MðsÞ ¼ α0 þ
X3
i¼1

αisi þ
1

2π

X3
i¼1

Z
dσ
σ

Kþ
i ðs; σÞAiðσ; s̃þÞ þ K−

i ðs; σÞAiðσ; s̃−Þ
ðσ − s1Þðσ − s2Þðσ − s3Þ

− K0þ
i ðs; σÞAi½σ; sþðσ; 0Þ� − K0−

i ðs; σÞAi½σ; s−ðσ; 0Þ�; ð13Þ

where s̃� ≡ s�ðσ; y=σ3Þ, K0�
i ðs; σÞ ¼ 2

3
þ ðsi=σÞ �

½ðsiþ1 − siþ2Þ=3σ�, and

K�
i ðs; σÞ ¼

�
ð2σ3 − yÞ � σw

s̃þ − s̃−

��
1

3
þ σ2si
2ðyþ σ3Þ

�

þ
�
σ2w� ð2σ3 − yÞð4yþ σ3Þ

s̃þ − s̃−

�
siþ1 − siþ2

6ðyþ σ3Þ :

The constants αi correspond to the first-order coefficient
of si, with only two being free, enabling us to imposeP

3
i¼1 αi ¼ 0. The corresponding SF blocks can be found

consequently.
While the full dispersion relation (13) is considerably

more involved, it simplifies remarkably for the crossing
symmetric and antisymmetric cases. In the former scenario,
the discontinuities across all channels are identical, i.e.,
Aiðσ; s̃�Þ ¼ Aðσ; s̃�Þ. Equation (13) reduces to Eq. (6)
since all terms cancel after summation except for
ð2σ3 − yÞ=3. Likewise, for the crossing antisymmetric
amplitude MðasÞðsÞ, Eq. (13) simplifies to

MðasÞðsÞ ¼ w
π

Z
dσ

ðσ − s1Þðσ − s2Þðσ − s3Þ
Aðσ; s̃þÞ
s̃þ − s̃−

;

which provides the singularity-free dispersion relation for
the case discussed in Ref. [31]. It is noteworthy that in this
case Aðσ; s̃þÞ ¼ −Aðσ; s̃−Þ, thus ½Aðσ; s̃þÞ=ðs̃þ − s̃−Þ� ¼
1
2
f½Aðσ; s̃þÞ −Aðσ; s̃−Þ�=ðs̃þ − s̃−Þg is a polynomial in

terms of s̃þ and s̃−, as expected for odd spin contributions.
Discussion.—The singularity-free, crossing-symmetric

dispersion relation approach introduced in this Letter
addresses a long-standing challenge in the nonperturbative
exploration of quantum field theories. The proposed cross-
ing-symmetric blocks seamlessly link to Feynman and
Witten diagrams, with contact terms being explicitly
determined. The null contribution of the singular block

leads to a simplified functional sum rule, enhancing
existing methods. Furthermore, the full singularity-free
dispersion relation lays the groundwork for the Polyakov
bootstrap beyond identity operators. This approach also
provides remarkable opportunities for numerical S-matrix
bootstrap within a broader setup. Undoubtedly, our
advancements establish a robust foundation for crossing-
symmetric bootstrap applicable to both QFTs and CFTs.

We express our gratitude to Aninda Sinha and
Ahmadullah Zahed for their invaluable discussions and
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