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We introduce a method that allows one to infer many properties of a quantum state—including nonlinear
functions such as Rényi entropies—using only global control over the constituent degrees of freedom. In
this protocol, the state of interest is first entangled with a set of ancillas under a fixed global unitary, before
projective measurements are made. We show that when the unitary is sufficiently entangling, a universal
relationship between the statistics of the measurement outcomes and properties of the state emerges, which
can be connected to the recently discovered phenomeonon of emergent quantum state designs in chaotic
systems. Thanks to this relationship, arbitrary observables can be reconstructed using the same number of
experimental repetitions that would be required in classical shadow tomography [Huang et al., Nat. Phys.
16, 1050 (2020)]. Unlike previous approaches to shadow tomography, our protocol can be implemented
using only global Hamiltonian evolution, as opposed to qubit-selective logic gates, which makes it
particularly well suited to analog quantum simulators, including ultracold atoms in optical lattices and
arrays of Rydberg atoms.
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Introduction.—The ability to control interactions in a
many-body quantum system allows one to simulate and
study other complex quantum systems of interest [1,2]. In a
universal quantum computer, where logical gates can be
selectively applied to a few qubits at a time, one can, in
principle, mimic the dynamics of any Hamiltonian [3];
however, at present such devices are limited by their size
and noisiness [4]. In contrast, analog quantum simulators—
such as ultracold atoms in optical lattices [5,6] and arrays of
Rydberg atoms [7–10]—typically possess global rather
than site-specific control and, as such, are more tailored to
synthesizing specific classes of Hamiltonians. Despite
their limitations in terms of programmability, such plat-
forms are often more scalable and less noisy than computa-
tionally universal devices and have already been used to
shed light on a wide variety of many-body quantum
phenomena [11–20].
In any such experiment, a key task is to infer the

properties of some many-body state once it has been
prepared. In computationally universal devices, a particu-
larly powerful technique known as shadow tomography can

be employed for this purpose [21–23], wherein random
unitary rotations are applied before projective measure-
ments of each qubit are made (see also [24–26]). Using this
scheme, many properties of the state can be estimated
simultaneously, and nonlinear properties such as Rényi
entropies can also be accessed. However, measurement
strategies of this kind currently involve the application of
spatially inhomogeneous sequences of site-selective gates.
While these operations are natural in digital devices, they
are not available in analog quantum simulators, wherein
all degrees of freedom evolve simultaneously under some
global uniform Hamiltonian. Accordingly, the set of
observables that can be directly accessed therein (effi-
ciently or otherwise) is at present much more limited.
In this Letter, we bridge this gap by introducing a new

protocol that allows one to simultaneously infer many
properties of a state (including Rényi entropies, etc.)
without needing to address each degree of freedom indi-
vidually. Rather than applying inhomogeneous unitaries
drawn randomly and compiled from few-qubit gates, we
propose to apply some fixed deterministic global unitary U
to the system together with a set of ancillas, followed by
measurements in the computational basis [see Fig. 1(a)].
The unitary need not be fine-tuned, and so can be native to
the system in question, making our protocol particularly
well suited to analog quantum simulators. Importantly, our
scheme offers the same performance guarantees as classical
shadow tomography [23], meaning that the number of
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measurements needed to estimate a wide range of expect-
ation values does not grow with system size.
We show that, for generic choices of U, a universal

relationship between properties of the target state
and the distribution of measurement outcomes emerges.
Specifically, the procedure becomes equivalent to making
measurements of the state in bases drawn randomly from
the Haar ensemble. This equivalence is made precise later
through our introduction of a construction called the
“tomographic ensemble”: a probability distribution of wave
functions that describes the overall measurement process
[Eqs. (1) and (2)]. For sufficiently scrambling U, integer
moments of this ensemble agree closely with the Haar
ensemble, i.e., an approximate quantum state design (QSD)
is formed [27,28]. Consequently, properties of the system
density matrix can be reconstructed through appropriate
postprocessing of the measurement outcomes. This can be
achieved with moderate resources, while allowing low
errors in observables’ estimates (≲1%).
The emergence of QSDs from a single global unitary (as

opposed to random sequences of local gates [29]) can be
related to the recently introduced concept of “deep thermal-
ization,” where QSDs appear in the projected ensemble of
many-body quantum states [30–35]. By adapting analytical
arguments developed in that context, we rigorously estab-
lish the existence of QSDs for particular representative
cases. We supplement this with numerical evidence for
generic choices of U, which allows us to benchmark the
full tomography procedure and understand the effect of
symmetries.
Protocol.—Our aim is to measure properties of some

state of interest ρS, which is prepared at the beginning of
each run of the experiment in some register of qubits S
labeled i ¼ 1;…; NS (similar considerations also apply
beyond qubit systems). We assume that projective mea-
surements of all qubits can be made in some computational
basis fjmig and fix a basis where jmi are Zi diagonal,
where ðXi; Yi; ZiÞ are Pauli operators.

Projective measurements in the fixed basis fjmig give us
access to expectation values of diagonal observables, e.g.,
hZiZji. To learn off-diagonal observables, one can apply an
appropriate unitary to the system qubits before measure-

ment. For instance, if we rotate every qubit by e−iπ
P

i
Yi=4,

then observables such as hXiXji can be learned. However,
in analog quantum simulators, where we have only global
control, observables such as hXiYji cannot be measured in
this way, since different unitaries would have to be applied
to qubits i and j separately—an operation that we assume to
be unavailable. (See also Refs. [36,37] for a discussion.)
To overcome this limitation, we propose a protocol that

employs a set of ancilla qubits A initialized in some
predetermined state, which for convenience we assume
to be a pure product state j0⊗NAi (this assumption is not
strictly necessary). The system and ancilla qubits are jointly
evolved using some fixed global unitary U, which is
generated by a (possibly time-dependent) Hamiltonian that
can be readily simulated on the platform in question. We
refer to all such unitaries as “native.” Finally, all qubits are
measured in the computational basis fjmig. This is
repeated M times, resulting in a collection of M bit strings

mðrÞ ¼ mðrÞ
1 mðrÞ

2 …mðrÞ
N , for r ¼ 1;…;M, each of length

N ¼ NS þ NA. This protocol is illustrated in Fig. 1(a).
Our claim is that if a native unitary U is sufficiently

entangling (in a sense soon to be made precise), then any
observable can be inferred from the distribution of meas-
urement outcomes m, and—crucially—that the number of
experimental repetitions M and amount of classical com-
putation required to estimate most observables of interest
can be bounded, in the same spirit as classical shadow
tomography [23]. Remarkably, this is possible using just a
single, fixed choice of U each run (although later we will
show that quantitative performance improvements can be
obtained by sampling U from an ensemble of native
unitaries in each run).
The above claim can be more precisely specified using

the formalism of positive operator-valued measures
(POVMs). Any measurement scheme on a state ρS with
possible outcomes fmg can be described by a set of
positive Hermitian operators Fm ≥ 0, known as a
POVM, chosen such that the probability of obtaining
outcome m is PðmjρSÞ ¼ Tr½FmρS�. Conservation of prob-
ability implies

P
m Fm ¼ IS. For our protocol, the POVM

operators are given by

Fm ¼ ðIS ⊗ h0jAÞU†jmi hmjUðIS ⊗ j0iAÞ: ð1Þ

We have assumed that the initial state of the ancilla is pure
and the evolution is unitary. Therefore, Fm are proportional
to rank-1 projectors Fm ¼ dSqmjϕmihϕmj, where qm ¼
PðmjIS=dSÞ ¼ Tr½Fm�=dS are the outcome probabilities
for the maximally mixed state IS=dS, jϕmi are normalized
wave functions, and dS ¼ 2NS . Since qm ≥ 0 and

FIG. 1. (a) In our protocol, the target state ρS is evolved together
with a set of ancillas under a fixed unitary U, before projective
measurements are made in the computational basis. (b) For a
many-body state, qubits can be subdivided into “blocks”, each of
which interact with a separate set of ancillas. (c) Schematic of the
process for constructing estimators θ̂O of expectation values hOi.
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P
m qm ¼ 1, formally we can define a probability distri-

bution over pure states on S, where the normalized wave
function jϕmi occurs with probability qm. We refer to this
distribution, which contains complete information about
the POVM, as the tomographic ensemble.
We argue that for generic choices ofU generated by local

interactions without conservation laws, the tomographic
ensemble exhibits a useful universal property, namely, that
it forms an approximate QSD [27,28]. This means that, for
small enough integers k, the kth moments of the ensemble

EðkÞ ¼
X
m

qmðjϕmihϕmjÞ⊗k ≡ 1

dS

X
m

Tr½Fm�F̃⊗k
m ð2Þ

agree with the kth moments of the Haar ensemble EðkÞ
Haar up

to some small error. (Here, F̃m ¼ Fm=Tr½Fm� are unit-trace
positive operators.) Intuitively, closeness of a given ensem-
ble to the Haar measure [as quantified by the moments (2)]
implies that the probability distribution covers the space of
states approximately uniformly. If the dynamics U respects
some symmetry, then EðkÞ will instead tend toward an
alternative ensemble, where within each symmetry charge
sector a k-design is formed; we discuss this case in the
Supplemental Material [38].
We first provide evidence justifying the above claim and

then describe how this property can be leveraged to perform
shadow tomography of target states ρS.
Emergent quantum state designs.—The formation of

QSDs in the tomographic ensemble is reminiscent of the
concept of deep thermalization. In the latter, a bipartite
wave function jΨSAi is prepared by applying a unitary U to
a product state, and the qubits on A are measured
projectively, therefore producing an ensemble of states
on S. Deep thermalization is achieved if this ensemble
reproduces the Haar ensemble up to the kth moment for
some k > 1. While deep thermalization and QSDs in the
tomographic ensemble are distinct concepts, they bear
many similarities. This connection is particularly fruitful
since there are examples [30,32,33] where the emergence
of deep thermalization can be rigorously established. We
have adapted these proofs to show that the tomographic
ensemble forms an (approximate) QSD when U is drawn
from the Haar ensemble or is a dual-unitary circuit evolved
for a time t ≥ NS [38].
These two cases are illustrative, albeit contrived, exam-

ples where rigorous results can be obtained. For more
practical purposes, we employ numerical simulations to
illustrate that the same occurs for generic unitaries
that arise in analog quantum simulators. As figure of merit,
following Ref. [30], we use the trace distance ΔðkÞ ≔
1
2
kEðkÞ − EðkÞ

Haark1, which quantifies how far the tomographic

ensemble is from being a k-design (kCk1 ¼ Tr½
ffiffiffiffiffiffiffiffiffi
C†C

p
� is

the trace norm). We study dynamics under the Hamiltonian
HðtÞ ¼ P

j XjXjþ1 þ hxðtÞXj þ hyðtÞYj þ hzðtÞZj, which

approximates the native dynamics of Rydberg atom quan-
tum simulators [17] and in certain parameter regimes is
known to exhibit fast scrambling of information [53–56].
Furthermore, when the fields hx;y;zðtÞ are time dependent,
there are no conserved quantities, and we find that this
encourages a rapid approach to k-design. We find that
Floquet evolution works well, with hx ¼ 0.8, hz ¼ 0, and
hyðtÞ toggling periodically between 0.9 for t∈ ½n; nþ 0.5Þ
and 1.8 for t∈ ½n − 0.5; nÞ, with n∈Z. In the following, the
system qubits are located at the center of a chain with open
boundary conditions.
The behavior of the trace distance for k ¼ 2 as a function

of time is shown in Fig. 2 for various different NA. We see
approximately exponential decay with time, until a plateau
is reached. The value of this plateau is close to the
average trace distance that one obtains by replacing jϕmi
with 2N independently sampled Haar-random wave func-
tions, indicating that the states making up the tomographic
ensemble are effectively quasirandom. Accordingly, the
plateau trace distance scales as ∼1=

ffiffiffiffiffiffi
2N

p
. This behavior is

qualitatively similar behavior to that seen in the projected
ensemble of wave functions generated from non-energy-
conserving dynamics [34].
Extracting properties of the state.—Having established

that the POVMs generated from our protocol generically
form QSDs, we now describe how this property can be
leveraged to efficiently learn properties of ρS. While 2-
designs are known to be optimal for full reconstruction
of the system density matrix [57] or process tomo-
graphy [58,59], here we describe an explicitly shadow
tomographic scheme for extracting information about ρS,
which in comparison keeps the sample complexity and
classical computational cost bounded [21–23].

FIG. 2. Trace distance between the moments of the tomo-
graphic ensemble (2) and the Haar ensemble for a unitary
U ¼ Ut

F, with NS ¼ 2 and NA increasing from 4 (green) to 12
(purple). The Floquet unitary is UF ¼ e−iH2=2e−iH1=2, with
Hamiltonians H1;2 describing the tilted-field Ising model with
different field values; see main text. Inset: the plateau values
(dashed lines in main plot) scale approximately as ∼2−N=2

(dotted line).
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For a fixed unitary U, the distribution of measurement
outcomes pm depends on the state ρS through the POVM
operators (1). It will be useful to treat operators on S as
vectors, denoted using double angled brackets jO⟫ and
equipped with the inner product ⟪OjO0⟫ ¼ Tr½O†O0�.
Similarly, the outcome distribution can be written as a
2N-dimensional vector jpÞ ¼ P

m pmjm), where jm) is an
orthonormal basis for R2N , i.e., ðmjm0Þ ¼ δm;m0 . One can
then define a completely positive linear map, which we call
the POVM channel,

F ¼
X
m

jmÞ⟪Fmj: ð3Þ

The observed experimental outcomes fm̂ðrÞg (r ¼ 1;…;M)
are evidently distributed according to the probability
vector jpÞ ¼ F jρS⟫.
The inverse problem of learning properties of ρS from

experimental data fm̂ðrÞg can be solved by finding a map G
satisfying GF ¼ id, where id is the identity superoperator.
This allows us to construct an unbiased estimator θ̂O for
any expectation value hOi ¼ Tr½OρS� according to
θ̂O ¼ M−1PM

r¼1 ⟪OjGjm̂ðrÞÞ. In the spirit of shadow
tomography [21–23], this estimator can be computed
without needing to reconstruct the full density matrix ρS,
which would be sample inefficient. Such an inverse G only
exists when F has full row rank: a condition known as
“informational completeness,” which is guaranteed when
the tomographic ensemble forms a 2-design [38].
While G is nonunique, in general, to minimize

sample complexity we choose the inverse that minimizes
the (average-case) variance Varθ̂O ¼ Em̂½θ̂2O� − Em̂½θ̂O�2,
namely [38],

G� ≔ M−1F̃ †; where M ≔
X
m

Tr½Fm�jF̃m⟫⟪F̃mj; ð4Þ

where we defined the normalized channel F̃ ¼P
m jmÞ⟪F̃mj. The map M is a superoperator mapping

the space of operators on S to itself. It has full rank
whenever F is informationally complete and therefore has
a unique inverse.
At this point, we notice that the superoperator M is

equivalent to the second moment of the tomographic
ensemble Eð2Þ, Eq. (2) [38]. Having established that QSDs
generically appear in our protocol, we can replace M with
its universal 2-design form M ¼ ðidþ jI⟫⟪IjÞ=ðdS þ 1Þ,
which has an inverse

M−1½O� ¼ ðdS þ 1ÞO − Tr½O�I: ð5Þ

Using the fact that a 2-design is formed, we circumvent
having to explicitly computeM−1, which keeps the classical
computational cost bounded.

Using ⟪OjG�jmÞ ¼ ⟪M−1½O�jF̃m⟫, we can express the
variance of the estimator (4) as

Var θ̂O¼ 1

M
Tr

�
ðρS⊗M−1½O�⊗2Þ

�X
m

Fm⊗ F̃⊗2
m

��
: ð6Þ

The factor in rounded brackets we identify as the third
moment, Eð3Þ in Eq. (2). Therefore, if the tomographic
ensemble forms a 3-design, as we expect for generic
unitaries U, then the variance (6) will be the same as for
any other 3-design POVM. One such POVM arises in
classical shadow tomography with random global Clifford
unitaries [38]. Therefore, we can conclude that our scheme
can be used to estimate expectation values of ρS using the
same number of repetitions M as one would need for
ordinary classical shadow tomography. The dependence of
the variance on the observable in question is well charac-
terized in Ref. [23]: observables with bounded norm
kOk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½O†O�

p
can be efficiently estimated for any

system size NS. The procedure can be generalized in the
same way as classical shadow tomography to estimate
nonlinear observables, e.g., Rényi entropies [38].
To summarize, we have shown how the formation of

QSDs in the tomographic ensemble facilitates efficient
reconstruction of expectation values, since the map
M−1 appearing in Eq. (4) can be replaced by its uni-
versal form (5). The deviation from the 2-design will
govern the systematic error, since jEmθ̂O − hOij ≤
ðdS þ 1ÞΔð2ÞkOk∞, where Δð2Þ is the trace distance, while
the k ¼ 3 moments Eð3Þ determine the variance via (6). It is
evidently favorable to have the tomographic ensemble as
close to a 2- and 3-design as possible, which occurs for
generic chaotic evolution as we saw above.
Benchmarking the protocol.—Wenowprovide numerical

simulations of our full protocol, including the joint evolution
of the system and ancillas, sampling of measurement out-
comes, and reconstruction of observables. We test our
measurement scheme on a family of 2-qubit target states
ρSðαÞ ¼ αjEPRi hEPRj þ ð1 − αÞ½j00i h00j þ j11i h11j�=2,
where jEPRi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

is an Einstein-Podolsky-
Rosen state. The coherence parameter α∈ ½0; 1� allows us to
interpolate between fully dephased (α ¼ 0) and pure (α ¼ 1)
EPR pairs. For the purpose of demonstration, the observ-
ables we choose to reconstruct are the fidelity with the EPR
state Tr½ρSjEPRi hEPRj� and the purity Tr½ρ2S�.
In one set of simulations, we generate U from Floquet

evolution using the tilted-field Ising model as a generating
Hamiltonian, as before. In a second set, we also add some
randomness to U—that is, for each repetition r we generate
a distinct UðrÞ by selecting random magnetic fields. Then,
UðrÞ is used in the joint system-ancilla evolution and in the
construction of estimators. This helps to bring the tomo-
graphic ensemble closer to a 2-design, therefore further
reducing systematic errors [38]. To construct random
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unitaries UðrÞ, for each time interval of length τ ¼ 1, we
sample each field component hx;y;z independently from a
normal distribution with zero mean and standard
deviation

ffiffiffi
2

p
.

Figure 3 shows estimations of the fidelity and purity
for various different α and tomography schemes, using
M ¼ 5 × 103 repetitions each and evolving for a total time
t ¼ 10. We see closer agreement with the true fidelity asNA
is increased and when randomness is introduced.
Classical computations.—As in classical shadow tomo-

graphy, the estimation of expectation values from experi-
mental data requires a certain amount of classical
postprocessing, the complexity of which we wish to bound.
Specifically, when an outcome m is observed we must
evaluate ⟪OjG0jmÞ, which requires computation of the
backward time evolution U†jmi.
When the number of system qubits NS is Oð1Þ, the

evolution time required to obtain an approximate QSD is
also Oð1Þ, and hence efficient matrix product state tech-
niques can be used even for large NA. For tomography of
many-body states, the present strategy must be modified,
since the time of evolution required to reach a QSD grows
with NS. Instead of evolving all system qubits with a single
collection of ancillas, one can instead block the system into
n groups of NS=n ¼ Oð1Þ qubits and evolve each block
jointly with a separate collection of ancillas Aj under a
unitary Uj, where j ¼ 1;…; n. This scheme, illustrated in

Fig. 1(b), yields POVM operators Fm1;…;mn
¼ ⊗n

j¼1 F
ðjÞ
mj ,

where each FðjÞ
mj is of the form (1). The tomographic

ensemble for each separate block reaches an approximate
3-design in a Oð1Þ time, allowing Fm1;…;mn

to be evaluated
efficiently using matrix product methods as before. The
trade-off is that M−1 must be replaced by an n-fold tensor
product of (5), and this will affect how the estimator
variance (6) depends on the observable O. By analogy to
shadow tomography with random local Pauli measure-
ments [23], observables with support on a small number of
blocks will still be accessible using a reasonable number of
repetitions M, regardless of how big S is. (We demonstrate
this rigorously in the Supplemental Material [38].)
Note that one could, in principle, compute the mapM−1

without using the universal 2-design form (5), which
would eliminate any systematic error in estimation.
However, this is only feasible for a small number of
ancillas NA, since 2NSþNA separate terms must be summed
to construct M.

Note added.—Recently, we became aware of a comple-
mentary study, which appeared in the same arXiv posting,
where a similar measurement scheme is presented [37]. The
protocol introduced in that work follows the same steps as
ours, where the state is first entangled with ancillas, before
measurements in the computational basis are made, data
from which are postprocessed classically to infer properties
of the state. In contrast to our proposal, no assumption is
made about the formation of a QSD; instead, the inverse
map M−1 needs to be explicitly computed.
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