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The spreading of quantum information in closed systems, often termed scrambling, is a hallmark ofmany-
body quantum dynamics. In open systems, scrambling competes with noise, errors, and decoherence. Here,
we provide a universal framework that describes the scrambling of quantum information in open systems: we
predict that the effect of open-systemdynamics is fundamentally controlled by operator size distributions and
independent of the microscopic error mechanism. This framework allows us to demonstrate that open
quantum systems exhibit universal classes of information dynamics that fundamentally differ from their
unitary counterparts. Implications for the Loschmidt echo, nuclear magnetic resonance experiments, and the
classical simulability of open quantum dynamics will be discussed.
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Introduction.—Conventionally, the study of quantum
many-body systems has focused on the prediction of
few-body observables, such as local correlation functions.
More recently, sparked by fundamental questions in quan-
tum thermalization and chaos [1], the classical simulation
of quantum systems [2], and quantum gravity [3], phys-
icists have turned to a complementary pursuit: quantifying
the complexity of many-body dynamics itself.
At the heart of this pursuit is the notion of quantum

information scrambling; across nearly the entirety of inter-
acting many-body quantum systems, information encoded
in initially local operators grows to become highly nonlocal
[4–6]. Remarkably, recent experimental advances have
enabled the direct measurement of scrambling—a task that,
most commonly, utilizes backwards time evolution [7–14],
but can also be performed using multiple copies of the
system [15–17] or randomized measurements [18,19]. In
such systems, the interplay between scrambling dynamics,
extrinsic decoherence, and experimental noise motivates an
essential question: What is the nature of quantum informa-
tion scrambling in open quantum systems [13,16,20–31]?
In this Letter, we introduce a universal framework—

based upon operator size distributions [32–35]—for cap-
turing the effect of local errors on scrambling dynamics. In
particular, we conjecture that the propagation of errors in
chaotic many-body systems is fundamentally controlled
by the size distributions of time-evolved operators and
independent of the microscopic error mechanism. Our
framework immediately offers predictions for both the
Loschmidt echo [36–38] and out-of-time-ordered correla-
tion (OTOC) functions [39,40]. In particular, we predict
that the decay of the Loschmidt echo, which measures the
fidelity associated with backwards time evolution, occurs at

a rate proportional to the operator’s size. Meanwhile, we
predict that the decay of the OTOC, which measures the
growth of local operators, is inhibited by open-system
dynamics (by an amount proportional to the width of the
operator’s size distribution).

FIG. 1. Left: size distributions for three classes of systems
under unitary (blue) versus open (red) dynamics. Rightward
arrows denote growth in time to larger sizes, ticks denote a fixed
size, and downward arrows denote loss of probability at a given
size. Right: qualitative depiction of open-system operator growth.
In all cases, operators lose normalization due to open dynamics
(dark to light gray boxes). In the latter two classes, operators are
dominated by smaller size components compared to unitary
evolution (smaller boxes).
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We leverage our framework to characterize operator
growth in five distinct classes of open quantum systems,
which vary in their dimensionality, range of interaction,
conservation laws, and integrability (Table I, Figs. 1–3). In
each class, our framework yields markedly distinct predic-
tions for the Loschmidt echo and OTOCs. We hypothesize
that these results provide a theoretical underpinning for
recent nuclear magnetic resonance (NMR) experiments [9–
11], and also serve to resolve apparent disagreements
between previous empirical studies of open-system scram-
bling [13,24,25]. Finally, we propose and analyze a protocol
for measuring operator size distributions via engineered
dissipation.
Operator size distributions.—We begin with a simple

example to build intuition. Consider a lattice of qubits acted
on by a series of local quantum gates, each featuring some
error ε, before measuring a local operator M̂. Noting that the
measurement can only be influenced by gates in its past light
cone, a naive estimate of the measurement fidelity is
F ≈ ð1 − εÞVLC , where VLC is the light cone volume, i.e.,
the number of gates it contains [13,20]. This relation in fact
already contains the essential intuition underlying our work:
a connection between the measurement fidelity of a local
operator and the operator’s growth under Heisenberg evo-
lution. By generalizing the light cone volume using operator
size distributions, we will show that this connection is
significantly richer and more universal than the above
example suggests [5,33].
To introduce the notion of an operator’s size distribution,

we first define the size of a Pauli string, R̂, as its number of
nonidentity elements; for instance, R̂ ¼ Y ⊗ 1 ⊗ Z ⊗ X
has size SR ¼ 3. From this, one can define the size
superoperator:

SfÔg≡ −
X

P̂i

ðP̂iÔP̂†
i − ÔÞ=4; ð1Þ

which gives SfR̂g ¼ SRR̂, where P̂i ∈ f1̂i; X̂i; Ŷi; Ẑig
are single-qubit Pauli operators [35]. More general oper-
ators can be expressed as a sum of Pauli strings, Ô ¼P

R̂ cRR̂, and thereby possess a size distribution, PðSÞ¼P
fSR¼Sg jcRj2, with normalization N ¼hO†Oi¼P

R jcRj2;
here, h·i≡ Trð·Þ=Trð1Þ represents the infinite temperature
expectation value. We note that the operator’s size distri-
bution is closely related to out-of-time-ordered correlation
functions, hM̂ðtÞP̂jM̂ðtÞP̂ji. As the operator M̂ðtÞ grows to
have support on site j, the OTOC typically decays to zero.
From Eq. (1), one immediately sees that the average size of
M̂ðtÞ is directly proportional to unity minus the OTOC
averaged over all single-qubit Pauli operators:

S¼hM̂ðtÞSfM̂ðtÞgi
hM̂ðtÞM̂ðtÞi ¼1

4

X

P̂i

�
1−

hM̂ðtÞP̂iM̂ðtÞP̂ii
hM̂ðtÞM̂ðtÞi

�
: ð2Þ

Open-system operator growth hypothesis.—Let us now
turn to open quantum systems. Operator evolution is
typically governed by the Lindblad master equation:

∂tM̂ ¼ i½Ĥ; M̂� −
X

α

εα

�
L̂†
αM̂L̂α −

1

2
fL̂†

αL̂α; M̂g
�
: ð3Þ

The first term describes unitary time evolution, while the
second describes a sum of local error processes, each
characterized by a Lindblad operator, L̂α, and an associated
error rate, εα.
Our central conjecture is that the effects of local errors on

operator growth are in fact captured by a much simpler,
effective Lindblad equation:

∂tM̂ ¼ i½Ĥ; M̂� − εSfM̂g; ð4Þ

where S is the size superoperator. This conjecture is rooted
in the following intuition: larger size operators are affected
by a greater number of local error processes, and thus
decohere at a faster rate [41]. In effect, this model replaces
the original Lindblad operators with isotropic decoherence
at each qubit [Eq. (1)].
We expect Eq. (4) to apply to the large-size components

of operators whenever the error rate is small compared to
the unitary interaction strength, ε ≪ J, and the dynamics
are ergodic. In these conditions, the large-size components
of M̂ will involve exponentially many Pauli strings that
vary rapidly in time compared to the error rate. We expect
these properties to “average” the effect of Lindblad
operators such that their action depends solely on whether
they are in the support of a given component of M̂,
independent of their precise microscopic form. The number
of Lindblad operators in the support is proportional to the
size. We refer to the Supplemental Material for a detailed
analytic discussion [44].

TABLE I. Operator growth under various dynamics.

System Unitary dynamics Open dynamics

(d ≥ 1)D, no
conservation law

S ∼ td

peaked PðSÞ
S ∼ td

logðN Þ ∼ εtdþ1

1D, conservation law S ∼ t
bimodal PðSÞ

S ∼ 1=εt
N ∼ 1=

ffiffi
t

p

All-to-all coupled (0D) S ∼ eλt

broad PðSÞ
S ∼ λ=ε
logðN Þ ∼ λt

ðd ≥ 1Þ1D, long range Superballistic
broad PðSÞ

Ballistic
logðN Þ ∼ εtdþ1

Free fermion integrable S ∼ t
broad PðSÞ

S ∼ 1=εt
N ∼ 1=εt2
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Finally, we conjecture that our framework also applies to
an alternate scenario (often explored in NMR experi-
ments [9–12]), where one evolves forward unitarily via
a Hamiltonian, H, and backward via a perturbed
Hamiltonian, −H þ ηδH [54,55]. Naively, this scenario
features perturbations that are highly correlated in time and
space, and thus outside the Lindbladian framework.
However, in ergodic many-body dynamics, one expects
such correlations to quickly decay outside of some thermal-
ization time (τth) and length (ξth). This assumption leads to
a Fermi’s golden rule [55,56] estimate of an effective
decoherence rate, ε ∼ η2τthξth [44].
Open-system scrambling dynamics.—Our framework

predicts two effects of open-system dynamics on operator
growth, which are captured by the behavior of the
Loschmidt echo and the average OTOC (i.e., the average
operator size), respectively. For the former, we note that the
Loschmidt echo fidelity with respect to a local operator is in
fact equal to the normalization of the operator’s size
distribution,N ðtÞ ¼ hM̂ðtÞM̂ðtÞi ¼ R

dSPðSÞ. Our frame-
work predicts [57] that the Loschmidt echo decays in time
at a rate equal to the average size multiplied by the error
rate:

∂t logN ðtÞ ¼ −2εSðtÞ: ð5Þ
Turning to the OTOC, we note that errors decrease the

amplitude of large-size components of M̂ðtÞ at a faster rate
than small-size components. Thus, compared to purely
unitary evolution, open-system dynamics inhibit the growth
of operators. More specifically, we predict that the ave-
rage size, S̄ [related to the OTOC via Eq. (2)], evolves
according to

∂tSðtÞ ¼ ðunitaryÞ − 2εδSðtÞ2: ð6Þ
Here, the first term captures the specific unitary dynamics
of the system, while the second term decreases the size
at a rate proportional to the variance of the size distri-
bution, δS2.
We now apply our framework to five paradigmatic

classes of scrambling dynamics (Table I, Figs. 1–3): local
and all-to-all interacting systems, local systems with con-
servation laws, long-range interacting systems, and free
fermion integrable systems (see Supplemental Material for
the latter two cases [44]). We begin by demonstrating that
operator growth in the first two classes—systems with no
conserved quantities under local and all-to-all interactions
—are affected by open-system dynamics in drastically
different ways.
For the former (focusing on 1D systems for specificity),

one expects operators to grow ballistically in time under
unitary dynamics, S ≈ 3

2
vBt, where vB is the butterfly

velocity. Meanwhile, the width of the operator’s size
distribution grows “diffusively,” δS ≈ c

ffiffiffiffiffiffiffi
vBt

p
where c is

a constant [32,35,58]. Combining these expectations via

Eq. (6), we arrive at a simple phenomenological equation
for operator growth under 1D open-system dynamics,
limx→∞∂tS≈3

2
vB−εðc

ffiffiffiffiffiffiffi
vBt

p Þ2, whose solution yields the pre-
diction: SðtÞ ≈ 3

2
vBt − c

2
εvBt2. From Eq. (5), the Loschmidt

echo fidelity thusdecays as aGaussian in time to leading order
in ε, N ðtÞ ¼ exp½−ε R t

0 dt
0Sðt0Þ� ≈ exp

�
− 3

4
εvBt2

�
.

To explore these predictions, we numerically simulate
dynamics in a 1D random unitary circuit (RUC) [32,59]
with single-qubit decoherence [44]. As shown in Fig. 2(a),
we find that both the operator size and the Loschmidt echo
fidelity (solid lines) agree remarkably well with our
phenomenological predictions (dashed lines) across multi-
ple orders of magnitude in the error rate.
In all-to-all interacting systems, unitary dynamics

instead typically exhibit “fast scrambling” characterized
by the exponential growth of operator size in time, S ∼ eλt,
where λ is the Lyapunov exponent [35,60–64]. Unlike local
systems, the size distribution is also extremely broad,
δS ≈ bS̄ where b is a constant, owing to the exponen-
tial growth of early-time fluctuations [33–35]. Solving
Eq. (6), i.e., ∂tS ≈ λS − εb2S2, then yields an intriguing
prediction: under open-system dynamics, the average
operator size plateaus to a system-size independent value,
Sp ≈ λ=ðεb2Þ, after a time tp ∼ log½λ=ðεb2Þ�. This causes
the Loschmidt echo to approach a constant rate of decay,

FIG. 2. (a) Average operator size, S, and the Loschmidt echo
fidelity, N , in a 1D RUC with N ¼ 200 [44]. The size grows
ballistically with quadratic corrections due to open-system
dynamics (solid, data; dashed, theory). Inset: the Loschmidt
echo fidelity, N �, when ðdS=dtÞ ¼ 0.9ðdS=dtÞjε¼0, decays
exponentially in the inverse error rate, ε−1. (b) All-to-all RUC
with N ¼ 1500 [44]. The size grows exponentially before
plateauing to a value which is independent of the system size.
The decay rate of the Loschmidt echo is independent of ε after
plateauing (solid, data; dashed, theory). Inset: the Loschmidt
echo fidelity, N �, when ðd logS=dtÞ ¼ 0.9ðd logS=dtÞjε¼0, is
constant with respect to ε.
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N ðtÞ ∼ expð−λt=b2Þ. Notably, the decay rate, λ=b2, is
independent of the microscopic error rate, ε, echoing
seminal results in single-particle quantum chaos [55] and
tantalizing recent NMR experiments [9–11]. As shown in
Fig. 2(b), both of these predictions are indeed born out by
RUC simulations.
One can further sharpen the distinction between

open-system dynamics with local versus all-to-all inter-
actions by analyzing their behavior at asymptotically small
error rates. Specifically, consider the value of the
Loschmidt echo, N �, at a time when the open-system
dynamics have substantially deviated from the unitary
dynamics. In all-to-all systems, this occurs shortly after
the plateau time, tp, which gives an order one Loschmidt

echo, N ðtpÞ ≈ exp
�
−ε

R tp
0 dt0eλt0

�
≈ expð−1=b2Þ, indepen-

dent of the error rate [inset, Fig. 2(b)]. In contrast, in 1D,
the influence of open-system dynamics on operator growth
becomes substantial only once ðεvBt2=vBtÞ ∼ 1, at which
time the Loschmidt echo has decayed to an exponentially
small value, N ðtÞ ∼ expð−vB=εÞ [inset, Fig. 2(a)]. For
small error rates, this implies that large deviations in
operator growth are in practice unobservable for local
systems, since the signal is exponentially small in 1=ε.
Physically, this is a direct consequence of the asymptotic
separation, δS ≪ S̄.
Effects of conservation laws.—We now show that the

above behaviors are strikingly modified when an operator
has overlap with a conserved quantity, Q̂ ¼ P

i q̂i (e.g., the
total spin, or the Hamiltonian). Such systems feature an
interplay between hydrodynamics and scrambling, which is
embodied by a “bimodal” profile for unitary time-evolved
operators [65,66]:

M̂ðtÞ ¼
X

i

qði; tÞq̂i þ
X

R̂≠q̂i

cRðtÞR̂: ð7Þ

The operator contains both small-size components, q̂i,
representing the dynamics of the conserved quantity, as
well as large-size Pauli strings, R̂, representing scrambled
information.
The small-size components arise because an operator’s

overlap with Q̂, hM̂ðtÞQ̂i ¼ P
i qði; tÞ, is conserved in

time. As an example, in ergodic 1D systems, one expects
the local overlap, qði; tÞ ¼ hM̂ðtÞq̂ii, to spread diffusively,
which causes the total normalization of the small-size
components to decay in time,

P
i jqði; tÞj2 ∼ 1=

ffiffi
t

p
. This

in turn implies that the total normalization of the large-size
Pauli strings is increasing in time; physically, this corre-
sponds to the dynamics of qði; tÞ “emitting” chaotic
components, which spread ballistically from thereon. In
combination, this leads to a size distribution (Fig. 1),
PðSÞ ≈ ð1= ffiffiffiffiffiffi

Dt
p ÞδS;Sqi

þ ðvB=
ffiffiffiffi
D

p Þð3
2
vBt − SÞ−3=2, where

Sqi is the size of the hydrodynamic components [67].

We expect open-system dynamics to damp the large-size
components of M̂ by a factor ∼e−εS2=vB, where S2=vB is the
space-time volume of the components’ light cone [68].
This effectively truncates the size distribution above
Str∼

ffiffiffiffiffiffiffiffiffiffi
vB=ε

p
(Fig. 1). This suggests that the average opera-

tor size will actually shrink in time once vBt≳ Str, since
small-size components decay more slowly, PðSqiÞ ∼ t−1=2,
than large-size components, PðStrÞ∼ t−3=2. This sharply
contrasts with the behavior of operators that do not overlap
conserved quantities, where one expects monotonic growth
[Fig. 2(a)].
To explore this, we simulate the dynamics of a one-

dimensional spin chain with generic interactions and
measure the OTOC as a proxy for operator growth [44].
For an operator that does not overlap with the Hamiltonian,
we find that the OTOC decays monotonically following a
linear light cone [Fig. 3(a)]. For an operator exhibiting
overlap, we find that the decay of the OTOC indeed
reverses as a function of time, indicative of a decrease
in the average operator size [Fig. 3(b)]. Interestingly, this
insight immediately resolves an apparent disagreement
between previous studies of open-system operator growth.
In particular, certain studies found that OTOCs were only
minimally affected by errors [13,24], while others found a
dramatic reversal of scrambling [23,25]. We attribute this
difference to the presence or absence of conservation laws.
Experimental implications.—Our results lead to a num-

ber of implications. First, we provide a new perspective on
protocols which divide error-prone OTOC measure-
ments by an independent characterization of the error
[9,13,23,24]. In our language, the latter is precisely the
normalization, N ðtÞ ¼ hM̂ðtÞM̂ðtÞi. To this end, these

FIG. 3. OTOC as a function of time and space for an N ¼ 12
one-dimensional spin chain. (a) Operators that do not overlap the
Hamiltonian exhibit an OTOC which follows a ballistic light
cone. (b) For an operator that overlaps with the Hamiltonian, the
OTOC at a given site i initially decays, before increasing at later
times. To demonstrate the generality of our framework, we
calculate the OTOC in the perturbed Hamiltonian scenario,
1
4

P
Phe−iH1tM̂eiH1tP̂ie−iH2tM̂eiH2tP̂ii=N ðtÞ, where the forwards

and backwards time evolution are governed by two distinct 1D
Hamiltonians, H1 ¼ H2 þ ηδH (for details see Supplemental
Material [44]).
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protocols will only replicate unitary dynamics when the
total error is small (1 −N ≈ ε

R
t
0 dtS ≪ 1) or when size

distributions are tightly peaked, δS ≪ S.
Second, our results suggest a novel protocol for meas-

uring operator size distributions (Fig. 4), which circum-
vents the need to either perform exponentially many
measurements [69] or utilize two entangled copies of the
system [35]. Specifically, in order to measure the generating
function of the size distribution, GSðμÞ ¼

P
S PðSÞe−μS,

we propose the following protocol (Fig. 4): (i) prepare an
initial state, ρ ¼ ð1þ M̂Þ ⊗ 1⊗N−1=2N , (ii) time-evolve
forward, e.g., via a unitary operation, U, (iii) apply a set
of single-qubit Pauli operators, fP̂1;…; P̂Ng, (iv) time-
evolve backward via U†, and (v) measure M̂. If the
intervening Pauli operators are fixed, this reduces to pre-
vious schemes for measuring OTOCs [8]. However, if one
randomly samples each Pauli matrix in each experimental
shot, with probability p ¼ ð1 − e−μÞ=4 to be fX̂; Ŷ; Ẑg and
probability 1 − 3p to be the identity, this in effect imple-
ments a decoherence channel, e−μS, that explicitly depends
on the size superoperator. The fidelity to recover the
initial state then gives the generating function via
F ¼ 1

2
½1þNGSðμÞ�, whereN can be measured by setting

μ ¼ 0.
Finally, we conjecture that our framework provides a

theoretical underpinning to NMR experiments on the
Loschmidt echo in the perturbed Hamiltonian scenario
[9–11,70]. Indeed, recent experiments observe precisely
our predicted linear scaling of the Loschmidt echo decay
rate with the average operator size [11]. Somewhat
intriguingly, this transitions to a square root scaling at
small η; developing a microscopic understanding of this
regime remains an open question. Our protocol to measure
size distributions also suggests a resolution to another open
question in NMR experiments, regarding non-Gaussianities
in “spin counting” protocols [9–11,71,72]. Namely, these
non-Gaussianities detect higher moments of the operator’s
size distribution [73].
Looking forward, our results also have implications for

the classical simulability of open quantum systems—if
operator sizes are bounded from above by a constant, Sε,
then time evolution is in principle efficiently simulable,

since the dimension of the accessible operator space is
polynomial in the system size, ∼NSε . A similar idea was
recently proposed in diffusive 1D spin chains [67]; our
results suggest that it may hold more broadly.
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