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Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

(Received 24 June 2023; revised 30 August 2023; accepted 20 September 2023; published 17 October 2023)

For the efficient simulation of open quantum systems, we often use quantum jump trajectories given by
pure states that evolve stochastically to unravel the dynamics of the underlying master equation. In the
Markovian regime, when the dynamics is described by a Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation, this procedure is known as Monte Carlo wave function approach. However,
beyond ultraweak system-bath coupling, the dynamics of the system is not described by an equation of
GKSL type, but rather by the Redfield equation, which can be brought into pseudo-Lindblad form. Here,
negative dissipation strengths prohibit the conventional approach. To overcome this problem, we propose a
pseudo-Lindblad quantum trajectory (PLQT) unraveling. It does not require an effective extension of the
state space, like other approaches, except for the addition of a single classical bit. We test the PLQT for the
eternal non-Markovian master equation for a single qubit and an interacting Fermi-Hubbard chain coupled
to a thermal bath and discuss its computational effort compared to solving the full master equation.
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Introduction.—Away from thermodynamic equilibrium,
the properties of an open quantum system do not simply
follow from the fundamental principles of statistical
mechanics, but depend on the very details of the surround-
ing environment. This includes both transient dynamics, as
the algorithm of a quantum computer or the relaxation
following a quantum quench, and nonequilibrium steady
states. Therefore, it is crucial to find an effective equation of
motion for the open system that accurately captures the
impact of the environment. At the same time, and equally
important, the theoretical description should allow for
efficient numerical simulations. A powerful approach for
the latter is quantum trajectory simulations, where a
stochastic process for the evolution of pure states is
considered, the ensemble average of which describes the
open system. Compared to the evolution of the full density
operator (scaling quadratically with the state-space dimen-
sion D), these simulations require less memory, since pure
states scale only linearly with D. Moreover, such unravel-
ings can also directly describe stochastic processes of
measured systems [1–3].
Quantum trajectory simulations are rather straightfor-

ward in the ultraweak-coupling limit, where the system-
bath coupling is weak compared to the (quasi)energy level
splitting in the system. In this case, the system is described
by a master equation of GKSL (Gorini-Kossakowski-
Sudarshan-Lindblad) form [4,5] (ℏ ¼ 1),

ϱ̇ ¼ −i½H; ϱ� þ
X
i
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�
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†
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�
; ð1Þ

with the coherent evolution captured by some Hamiltonian
H and dissipation described by jump operators Li with

associated non-negative strengths γi. Here, H, γi, and Li
can be time dependent.
From this equation, we can immediately obtain a

stochastic process for the evolution of pure states known
as the Monte Carlo wave function (MCWF) approach
[6–13]. In each time step δt, the state either evolves
coherently according to jψðtþδtÞi∝ ½1− iδtHeffðtÞ�jψðtÞi
with probability 1 −

P
i riðtÞδt and effective Hamiltonian

HeffðtÞ ¼ H −
i
2

X
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†
i Li; ð2Þ

or a quantum jump occurs, jψðtþ δtÞi ∝ LijψðtÞi, with pro-
bability riðtÞδt, with jump rates riðtÞ¼ γihψðtÞjL†

i LijψðtÞi.
The state of the system is then given (or approximated) by the
ensemble average ρðtÞ ¼ jψðtÞihψðtÞj over an infinitely
(or sufficiently) large number N of trajectories jψnðtÞi,
where X̄ ≡ ð1=NÞPN

n¼1 Xn.
However, the assumption of ultraweak coupling is

questionable in various situations, for instance, in large
systems, with small finite-size gaps and tiny avoided
crossings between many-body states, as well as in
Floquet systems with driving frequency ω, where the
average quasienergy level spacing is ω=D [14].
Beyond ultraweak coupling, master equations in

pseudo-Lindblad form can be found, which look like a
GKSL master equation, Eq. (1), except for the fact that
the coefficients γi also take negative values. For instance,
the Redfield equation obtained in (Floquet-)Born-Markov
approximation can be brought to this form [15]. Generally,
negative relaxation strengths are relevant for non-Markovian
dynamics [16], stochastic Hamiltonians with non-Markovian
noise [17], gauge transformed Lindbladians [18], and exact
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master equations [19–21]. These negative values are incom-
patible with the conventional MCWF, since the probability
riðtÞδt for a quantum jump would become negative. To
overcome this problem, different quantum jump unravelings
have been formulated, which, however, require significantly
more computational resources [22–30]. In many approaches,
the system’s state space needs to be extended, so that its
dimensionality at least doubles [22–26,31–33]. For oscillat-
ing strengths between positive and negativevalues,moreover,
an alternative non-Markovian quantum jump method
(NMQJ) has been proposed in which jump processes are
inverted [27–29,34]. This method does not work if γi < 0 for
all times and does not admit independent (i.e., parallel)
evaluation of trajectories. For nonoscillatory strengths, the
rate operator quantum jump approach can be applied [30];
however, it requires a rather costly diagonalization of a state-
dependent operator in every time step of the evolution. A
generalization of the non-Markovian jump method to many-
body systems has been proposed in Ref. [35] and can be used
to study measurement-induced phase transitions.
In this Letter, we propose pseudo-Lindblad quantum

trajectories (PLQTs), which work for arbitrary γi, where the
trajectories evolve independently and which does not
require the doubling of state space. In the following, this
is realized by extending the system’s state space in a
minimal (and for the memory requirement of simulations,
practically irrelevant) fashion by a single classical bit
s∈ f−1;þ1g, jψðtÞi → fjψðtÞi; sðtÞg.
Algorithm.—To unravel the dynamics of a pseudo-

Lindblad quantum master equation by quantum trajectories
fjψðtÞi; sðtÞg, first choose a time step δt, which is suf-
ficiently short for the first-order time integration, and jump
rates riðtÞ > 0 for each jump operator Li (to be specified
below). Within one time step, a quantum jump occurs
described by

jψ ðiÞðtþ δtÞi ¼
ffiffiffiffiffiffiffijγij

p
LijψðtÞiffiffiffiffiffiffiffiffiffi
riðtÞ

p ;

sðiÞðtþ δtÞ ¼ γi
jγij

sðtÞ; ð3Þ

with probability riðtÞδt or, alternatively, with the remaining
probability 1 −

P
i riðtÞδt the state evolves coherently, with

Heff [Eq. (2)] [36]

jψ ð0Þðtþ δtÞi ¼ ½1 − iδtHeffðtÞ�jψðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δt

P
iriðtÞ

p ; ð4Þ

sð0Þðtþ δtÞ ¼ sðtÞ: ð5Þ

We now show that the ensemble of pure states obtained
by this PLQT approach converges to the correct density
operator solving Eq. (1),

ϱðtÞ ¼ sðtÞjψðtÞihψðtÞj: ð6Þ

For a pure initial state σðtÞ ¼ sðtÞjψðtÞihψðtÞj, on average
the update scheme is the weighted sum of the processes
described above:

σðtþ δtÞ ¼
X
i

riðtÞδtσðiÞðtþ δtÞ

þ
�
1 −

X
i

riðtÞδt
�
σð0Þðtþ δtÞ; ð7Þ

with σðiÞ ¼ sðiÞjψ ðiÞihψ ðiÞj and σð0Þ ¼ sð0Þjψ ð0Þihψ ð0Þj. By
inserting Eqs. (3) and (4), the jump rates riðtÞ cancel out,
and one arrives at

σðtþ δtÞ ¼ σðtÞ þ δt

�X
i

γiLiσðtÞL†
i

− iHeffðtÞσðtÞ þ iσðtÞHeffðtÞ†
�
; ð8Þ

almost corresponding to the action of the master Eq. (1).
The final step to arrive at Eq. (1) is to average Eq. (8) also
over an ensemble of pure states at time t, so that σðtþ δÞ →
ϱðtþ δtÞ and σðtÞ → ϱðtÞ. As will be discussed below, one
consequence of the presence of negative weights γi < 0 is
that individual wave functions jψni are not normalized. As
a result, the ensemble-averaged trace is preserved only in
the limit N → ∞ of an infinite ensemble [37]. Therefore,
in a finite ensemble, one obtains better convergence by
explicit normalization ϱN ¼ ð1=N ÞPN

n snjψnihψnj, with
N ¼ P

N
n snhψnjψni at every time t. A rigorous proof of

our algorithm using the Ito formalism is outlined in the
Supplemental Material [38]. In case that all γi are positive,
the sign bits do not change, and the algorithm corresponds
to the conventional MCWF approach.
Note that recently, another unraveling of non-Lindblad

master equations was also proposed in Ref. [39]. It is
different from our approach, but also involves an effective
classical degree of freedom given by a real number of
constant average, rather than our single bit, whose average
is time dependent, as will be seen below.
For the PLQT approach, as for other unraveling schemes

[23], the jump rates riðtÞ > 0 can, in principle, be chosen
arbitrarily. In practice, there is, however, a trade-off.
Whereas for too small rates ri, large ensembles of trajec-
tories are required to sample each jump process i suffi-
ciently, we also have to require that the probability
1 −

P
i riδt remains positive and large enough for the

given time step δt. A typical choice is [13]

riðtÞ ¼ jγij
kLijψðtÞik2
kjψðtÞik2 ; ð9Þ

for which the quantum jump does not alter the norm
kjψik≡ hψ jψi1=2 of the state, i.e., kjψ ðiÞðtþ δtÞik ¼
kjψðtþ δtÞik. Note, however, that for γi < 0 this choice
implies that the norm increases during the coherent
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time evolution with Heff , kjψ ð0Þðtþ δtÞik ¼ ½1þ δtP
γi<0 riðtÞ�kjψðtÞik [40]. This is not the case for the

conventional MCWF approach, where γi ≥ 0.
Non-Markovian dephasing for a single qubit.—As a

proof of principle, we implement the PLQT algorithm for a
qubit subjected to purely dissipative dynamics,

ϱ̇ðtÞ ¼ 1

2
½Lx þ Ly − tanhðtÞLz�ϱðtÞ; ð10Þ

with GKSL channels Liϱ ¼ σiϱσi − ϱ, where σi are Pauli
operators, with σ†i σi ¼ σ2i ¼ 1. This equation is known as
the eternal non-Markovian master equation [16,41]. The
existence of a negative relaxation rate makes it inaccessible
to the standard MCWF, while also the NMQJ approach
fails, since − tanhðtÞ < 0 for all t. However, for this model
the PLQT approach is easily implemented and, because
the jump operators are unitary, the jump rates are state
independent; i.e., kσijψðtÞik2 ¼ kjψðtÞik2 leads to a sim-
plification in Eq. (9), and one has rx ¼ ry ¼ 1=2,
rzðtÞ ¼ tanhðtÞ=2. Also, the effective Hamiltonian Heff ¼
−ði=2Þ½1 − tanhðtÞ=2� entering Eq. (4) is not state depen-
dent (since it is proportional to the identity).

On average, the sign follows the rate equation ˙sðtÞ ¼
−2rzðtÞsðtÞ, which is solved by sðtÞ ¼ 1= coshðtÞ, as
shown in Fig. 1(c) [38]. Quantum jumps are realized in
the Bloch-vector representation by reflections at the y-z
plane and x-z plane for σx and σy, respectively [Fig. 1(d)].
The σz quantum jump is a reflection at the x-y plane and,

due to the negative relaxation strength, the sign flip is
accounted for by an additional point reflection at the origin.
By simulating N ¼ 105 trajectories in Figs. 1(a) and

1(b), we obtain accurate results for the transient dynamics
until, at tR ∼ 2, the system reaches the steady state regime.
Besides this physical relaxation time, we also find an
algorithmic relaxation time tA ∼ 4, at which the number of
negative and positive trajectories become equal, and the
averaged sign decays to zero [Fig. 1(c)]. Beyond this
algorithmic relaxation time, fluctuations are typically
increased [Figs. 1(a) and 1(b)]. This effect can be under-
stood by noting that a stochastic process of a real variable
xn with positive mean x̄ will have bounded fluctuations

Δx ¼ ðx − x̄Þ2−1=2 ≤ x̄ as long as xn > 0, whereas Δx is
not bounded, when xn can also take negative values. Thus,
ideally, tA should be large compared to the time span of
the simulation (which is tR, if we are interested in com-
puting the steady state). The algorithmic relaxation time is
determined by the inverse sign-flip rate rSF ¼

P
i;γi<0 ri,

e.g., tA ¼ r−1neg for time-independent rSF. Thus, we can
increase tA simply by lowering the strengths for negative
processes with weights γi < 0 relative to positive ones with
γi > 0. However, this will also increase the number of
trajectories needed for properly sampling those negative-
weight processes. Thus, before doing this, one should first
attempt to rewrite the master equation, so that the relative
weight of negative processes is reduced. This can be done
for pseudo-Lindblad equations derived from the Redfield
equation [15], as we will recapitulate now.
Redfield dynamics.—For a microscopic model, a master

equation is often derived within the Born-Markov-Redfield
formalism [42,43]. We consider a system-bath Hamiltonian
of the form Htot ¼ H þP

i Si ⊗ Bi þHi with system
Hamiltonian H that couples to individual baths Hi where
Si and Bi denote the system and bath coupling operators,
respectively. The Redfield equation can then be written in
pseudo-Lindblad form [15]

ϱ̇ ¼ −i½H þHLS; ϱ� þ
X
i;σ¼�

σ

�
LiσϱL

†
iσ −

1

2
fL†

iσLiσ; ϱg
�
;

ð11Þ
with Lamb-shift Hamiltonian HLS¼ð1=2iÞPi SiSiþH:c:,
convolution operators Si ¼

R
∞
0 dτhBðτÞBieiHτSie−iHτ, and

Lindblad-like jump operators

Liσ ¼
1ffiffiffi
2

p
�
λiðtÞSi þ σ

1

λiðtÞ
Si

�
; ð12Þ

with arbitrary, time-dependent real parameters λiðtÞ. We see
that due to the negative relaxation rates with σ ¼ −1, the
Redfield equation is generally not of GKSL form unless
further approximations are employed in the limit of ultra-
weak coupling [42–44] or for high bath temperatures
[15,45]. For a purely Ohmic bath, the choice [15]

FIG. 1. Non-Markovian dynamics [Eq. (10)] for density matrix
elements ϱ00 (a), Reϱ01 (solid), Imϱ01 (dashed) (b), and the Bloch
vector in the x-y plane (d). Analytical solution (black) and
unraveling with N ¼ 105 PLQTs with time step δt ¼ 0.01 in blue
(N ¼ 10; 103 in thin and intermediate gray lines) for an initial
Bloch state with ϕ ¼ Θ ¼ π=4. (c) shows the averaged sign bit.
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λi;globðtÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
trS†

iSi

trSiSi

s
ð13Þ

minimizes the norm of the negative channels in the pseudo-
Lindblad equation globally, i.e., on average for all states.
A further reduction of negative processes can be achieved
by state-dependent optimization. Namely, according to
Eq. (9), where (assuming, without loss of generality, a
normalized state) the rates for negative quantum jumps
with Li− are given by ri−ðt; λiðtÞÞ ¼ 1

2
ðλiðtÞ2kSijψðtÞik2 þ

½1=λiðtÞ2�kSijψðtÞik2 − 2RehψðtÞjSiSijψðtÞiÞ. Thus, the
choice

λi;locðtÞ2 ¼
kSijψðtÞik
kSijψðtÞik

ð14Þ

minimizes the rates for negative quantum jumps in the
unraveling of the Redfield equation. Since the states in
the numerator and the denominator of Eq. (14) have to be
evaluated for evolving the state anyway, this local opti-
mization (which is not described in Ref. [15]) can be
implemented efficiently.
We test our method using state-dependent minimization

Eq. (14) for the extended Hubbard chain of spinless
fermions,

H ¼ −J
XM−1

l¼0

�
a†lalþ1 þ a†lþ1al

�
þ V

XM−1

l¼0

a†lala
†
lþ1alþ1;

ð15Þ

with fermionic operators al, tunneling strength J, and
nearest-neighbor interaction strength V. For the dissipator,
we have

hnjSljmi ¼ JðΔnmÞ
eΔnm=T − 1

hnjSljmi; ð16Þ

with system operator Sl ¼ a†lal, level splitting Δnm ¼
En − Em, and bath temperature T. We consider a purely
Ohmic bath, with spectral density JðEÞ ¼ γE and coupling
strength γ.
In Fig. 2, we depict the decay of the interaction energy for

an initial state in which pairs of adjacent sites are occupied
jψð0Þi ¼ j011011…i. Quench dynamics for such a charge
density wave in a spin polarized Fermi-Hubbard model have
been recently observed experimentally by Bakr and co-
workers [46]. We assume strong interactions V=J ¼ 7 for
which the doublon pairs can only be brokenwhen the system
exchanges energy with the bath. This leads to a decay of the
energy of the open system as depicted in Fig. 2(a), where the
transient oscillations are well reproduced.
Numerical implementation.—Let us now discuss the

numerical implementation of the PLQT approach. Since

the trajectories are independent, we run them in parallel.
Depending on the physical quantity of interest, let us say
observable A, it is often reasonable not to store the actual
time-dependent state as large vectors with complex entries,
but rather expectation values hψnðtÞjAjψnðtÞi together with
the norm kψnðtÞk and the sign snðtÞ. While the storage of
the trajectory data boils down to a few real numbers, the
time evolution requires the full state vector. The memory
needed for the time integration of a quantum trajectory
would grow linear with the state-space dimension D, if not
only the Hamiltonian, but also the jump operators were
sparse. The latter is the case, however, mainly in phenom-
enological master equations with local jump operators and
not for the Redfield equation, so that the memory needed
usually scales like D2. The memory needed for integrating
the Redfield equation scales equally like D2 (since it is
sufficient to store and apply the jump operators rather than
the full superoperator). Nevertheless, we find that the
memory requirement for quantum trajectories to be much
lower than that for integrating the master equation. In
Fig. 3, the required memory [Figs. 3(a) and 3(b)] and
single-time-step run-time [Figs. 3(c) and 3(d)] is compared
for solving the full Redfield master equation (blue) and a
single trajectory (red). We find that the required memory is
noticeably reduced for the quantum trajectory simulation,
even though, as discussed above, it still scales likeD2. (The
latter is not specific to our approach, but generically the
case also for other forms of quantum trajectory simula-
tions). For the run-time, the relative reduction is even
stronger and shows different scaling with D. Essentially,
the difference is two matrix-matrix products needed for the
Redfield integration and one matrix-vector product for the
PLQTs. Note that the unraveling can also be combined with
matrix-product states (e.g., [47,48]). It is interesting to see
how far such an approach would compare to a representa-
tion of the density operator by matrix-product operators
(e.g., Refs. [49,50]).

FIG. 2. Dynamics of scaled interaction energy of extended
Hubbard chain of two (eight) particles on four (13) sites
(a) [(b)] with V=J ¼ 7. We compare the dynamics of the isolated
(gray line) and open system with γ=J ¼ 0.02 and T=J ¼ 1 (blue
line for PLQT, thin orange for Redfield equation). The decrease of
interactions is related to bath-induced doublon-breaking processes.
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Finally, we would like to mention that while finalizing
this manuscript, a new approach for microscopically
deriving accurate local quantum master equations was
proposed [51]. It is a very promising perspective to apply
the PLQT to this equation, which can be broad into pseudo-
Lindblad form [51]. Namely, it will give rise to equations of
motion involving spars matrices for Hamiltonian and jump
operators only. As a result, the overall memory requirement
will scale linearly with the Hilbert-space dimensionD only.
Moreover, this could allow for efficient matrix-product-
state approaches for individual trajectories.
Conclusion.—We have developed an efficient unraveling

of master equations of pseudo-Lindblad form, which
includes the Redfield equation as an important case [15].
Different from previous approaches, it requires a minimal
extension of the state space by one classical sign bit only, it
is applicable also for dissipation strengths that are always
negative, it does not require matrix diagonalization during
the time integration, and it allows for a parallel implemen-
tation, since all trajectories are independent of each other.
We believe that it will be a useful tool for the simulation of
open many-body systems beyond ultraweak system-bath
coupling. In future work, it will be interesting to system-
atically investigate the impact of negative dissipation
strengths γi on the required ensemble size and the optimal
choice of the corresponding rates for efficient simulation.
Moreover, our algorithm should be compared to the
influence-martingale approach [39]. Finally, the combina-
tion of PLQT simulations with the recently derived local

quantum master equation [51] opens a promising route
for the efficient simulation of open many-body quantum
systems.
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