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Noise is ubiquitous in nature, so it is essential to characterize its effects. Considering a fluctuating
Hamiltonian, we introduce an observable, the stochastic operator variance (SOV), which measures the
spread of different stochastic trajectories in the space of operators. The SOVobeys an uncertainty relation
and allows us to find the initial state that minimizes the spread of these trajectories. We show that the
dynamics of the SOV is intimately linked to that of out-of-time-order correlators, which define the quantum
Lyapunov exponent λ. Our findings are illustrated analytically and numerically in a stochastic Lipkin-
Meshkov-Glick Hamiltonian undergoing energy dephasing.
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Any realistic quantum system inevitably experiences
some fluctuations induced by its surrounding environment.
Current quantum technologies are limited by the action
of this noise, motivating the pragmatic focus on noisy-
intermediate-scale quantum (NISQ) devices [1,2]. In
any experimental setting, tunable parameters such as
Hamiltonian coupling constants may exhibit fluctuations
due to interactions with the environment [3–5]. In this
context, the dynamics of an ensemble of noisy realizations
can be described in terms of the noise-averaged density
matrix, which evolves according to a master equation
describing nonunitary evolution [3,4,6,7]. Alternatively,
noise can be utilized as a resource for the quantum simulation
of open systems [4]. The study of fluctuations in noisy
quantumsystems is also connected to free probability [8–10].
The quest for understanding noise in chaotic systems

has recently led to a flurry of activities exploring the
signatures of quantum chaos when the dynamics is no
longer unitary [6,11–18]. Out-of-time-order correlators
(OTOCs) offer an important diagnostic tool, which was
initially proposed in the theory of superconductivity [19].
Their use experienced renewed interest in defining a
quantum analog of the Lyapunov exponent [20,21], which
measures the exponential sensitivity to the initial conditions
in chaotic systems and is universally bounded by the
system’s temperature [22]. The existence of a positive
Lyapunov exponent classically is a necessary but not
sufficient condition for the system to be chaotic—
e.g., [23,24]. Similarly, the exponential growth of the
OTOC is not a sufficient signature for quantum chaos
but rather indicates scrambling [25,26]. OTOCs have been
studied experimentally [27–32] and in open systems where
their evolution is changed by dissipation [21,33–37].
In this Letter, we consider the dynamics generated by a

stochastic Hamiltonian and go beyond an average descrip-
tion of the state by introducing the stochastic operator

variance (SOV), an observable that characterizes the spread
of stochastic trajectories of any operator. This notion is
directly relevant to experiments, particularly in NISQ
devices subject to various sources of noise. We compute
the evolution of the SOV and show that it obeys a
generalized uncertainty relation. It allows us to identify
the initial state that minimizes the deviation from Lindblad
dynamics at long times. Surprisingly, we also find that the
SOV evolution relates to that of an OTOC, which connects
fluctuations of the system with scrambling. This is picto-
rially represented in Fig. 1.
We illustrate our results in a stochastic generalization of

the Lipkin-Meshkov-Glick (sLMG) model. The LMG
model [38] describes an Ising spin chain with infinite

FIG. 1. The SOV-OTOC connection. Illustration of the
stochastic operator variance and its connection to the out-of-
time-order correlator. An operator Â evolves through different
realizations (gray) of a stochastic Hamiltonian, as illustrated by
its projections over the identity 1̂ and another operator X̂. The
noise-averaged evolution (black) follows Lindblad dissipative
dynamics. The SOV ΔÂ2

t characterizes the deviation of different
trajectories (red). Its projection over the identity (blue) is related
to the evolution of the OTOC.
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range interactions and exhibits scrambling from an unstable
fixed point [25,39,40]. It can be realized experimentally
with trapped ions [41] and is amenable to dynamical
control techniques such as shortcuts to adiabaticity [42].
Considering fluctuations in the energy scale, we compute
the SOV in this model, show its connection to the OTOC,
and use it to characterize the Lyapunov exponent in the
classical limit.
The stochastic operator variance.—Let us consider a

system evolving under a Hermitian Hamiltonian Ĥ0 and
subject to classical noise ξt modulating the coupling
constant of a Hermitian operator L̂, i.e.,

Ĥt ¼ Ĥ0 þ
ffiffiffiffiffi
2γ

p
ξtL̂; ð1Þ

where γ measures the coupling strength between the system
and noise—we set ℏ ¼ 1. The stochastic process is taken as
real Gaussian white noise, that is, hξti ¼ 0 and hξtξt0 i ¼
δðt − t0Þ. We will represent the stochastic averages by h•i;
quantum expectation values will be written explicitly taking
the trace over the state density matrix, Trð•ρÞ. We introduce
the Wiener process dWt ≡ ξtdt, which is convenient to
deal with the formal treatment of stochastic differential
equations (SDEs). It obeys Itō’s rules dW2

t ¼ dt with
vanishing higher-order terms, dt dWt ¼ dWkþ1

t ¼ dtk ¼
0 ∀ k > 1 [43]. Over a time increment dt, the evolution
of a Hermitian operator Â in the Heisenberg picture is
Ât−dt ¼ Û†

dtÂtÛdt [44], since operators in the Heisenberg
picture evolve backward in time [45,46]. The associated
propagator reads [44]

Ûdt ¼ e−iĤ0dt−i
ffiffiffiffi
2γ

p
dWt−dtL̂: ð2Þ

Expanding the propagator according to those rules and
introducing the backward differential dÂt ¼ Ât−dt − Ât

[45,46] yields the SDE for the evolution of Ât under the
stochastic Hamiltonian (1),

dÂt ¼ L†½Ât�dtþ i
ffiffiffiffiffi
2γ

p
½L̂; Ât�dWt−dt; ð3Þ

where L†½Ât� ¼ i½Ĥ0; Ât� − γ½L̂; ½L̂; Ât�� is the adjoint
Lindbladian. Upon averaging (3), all the linear terms in
dWt−dt vanish [43] and we find that the noise-averaged
operator evolves with an adjoint Lindblad equation
dthÂti ¼ L†½hÂti�. This corresponds to the standard evo-
lution of an observable in an open quantum system with a
Hermitian jump operator L̂ [47]. The formalism described
so far has been introduced in [3] and used in [4] to engineer
long-range and many-body interactions. Here, we focus on
the stochastic variance of an observable.
In order to find the variance, the second stochasticmoment

hÂ2
t i is needed. Considering the reference operator to be Â2

instead of Â, one finds that its evolution follows the Lindblad

equation, dthÂ2
t i ¼ L†½hÂ2

t i�. Recall that the average is
over realizations of the noise and that hÂ2

t i is still an
operator acting on the Hilbert space. Subtracting dthÂti2¼
hÂtiL†½hÂti�þL†½hÂti�hÂti¼L†½hÂti2�þ2γ½L̂;hÂti�2 from
both sides [44], we find the evolution of the SOV, defined
as ΔÂ2

t ¼ hÂ2
t i − hÂti2, to be given by

dðΔÂ2
t Þ

dt
¼ L†½ΔÂ2

t � − 2γ½L̂; hÂti�2: ð4Þ

The SOV ΔÂ2
t is an observable that characterizes the

deviation of any (stochastic) operator Ât from the noise-
averaged operator in a stochastic evolution governed by the
Hamiltonian (1)—see Fig. 1 for a scheme and [44] for a
quantitative illustration. Although its equation of motion
depends on out-of-time-order terms like L̂hÂtiL̂hÂti, it can
easily be computed from the evolution of hÂti and hÂ2

t i.
Indeed, the SOV evolves as

ΔÂ2
t ≡ hÂ2

t i − hÂti2 ¼ eL
†t½Â2� − ðeL†t½Â�Þ2: ð5Þ

The average hÂti follows the standard Lindblad dissipative
dynamics from which the individual trajectories deviate as
dictated by the variance ΔÂ2

t . Since the SOV is Hermitian,
it is an observable. It differs from the quantum variance of
an operator Â over a state ρt, commonly defined as
VarðÂ; ρtÞ ¼ TrðÂ2ρtÞ − TrðÂρtÞ2. For an initially pure
state, this variance reads VarðÂt;ψ0Þ ¼ hψ0jeL†t½Â2�jψ0i−
hψ0jeL†t½Â�jψ0i2. Such quantum variance cannot be
obtained from the expectation value of an observable
since it is nonlinear in the state jψ0i. The difference
between the SOV (5) evaluated on a pure state and the
quantum variance reads hψ0jΔÂ2

t jψ0i − VarðÂt;ψ0Þ ¼
hψ0jeL†t½Â�Q̂eL

†t½Â�jψ0i, where Q̂ ¼ 1̂ − jψ0ihψ0j is a
projection operator on the complementary subspace of
jψ0ihψ0j. Therefore, the SOV contains also contributions
from the projector over the complementary subspace,
similarly to the term governing the recombination of decay
products in unstable systems [48].
A related notion of variance—without the stochastic

interpretation—has been introduced in the theory of pos-
itive definite matrices [49], which provides us with tools to
formally characterize the SOV. First, the SOV is positive
semidefinite, ΔÂ2

t ≥ 0. This can be shown from Kadison’s
inequality [50] which ensures that eL

†t½Â2� ≥ ðeL†t½Â�Þ2
for a positive and unital map, eL

†t½1̂� ¼ 1̂. Second, our
formalism leads to a generalization of the Robertson-
Schrödinger uncertainty principle [51,52]. Indeed, consid-
ering two operators Â, B̂ and their SOVs and an initial state
ρ0, we show in [44] that
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TrðΔÂ2
t ρ0ÞTrðΔB̂2

t ρ0Þ ≥ jTrðΔcABtρ0Þj2;

≥
1

4

�
D2þðÂ; B̂Þ −D2

−ðÂ; B̂Þ
�
; ð6Þ

where ΔcABt ¼ eL
†t½Â B̂� − eL

†t½Â�eL†t½B̂� is the stochastic
operator covariance of Â and B̂. The quantity DηðÂ; B̂Þ≡
TrðeL†tð½Â; B̂�ηÞρ0 − ½eL†tðÂÞ; eL†tðB̂Þ�ηÞρ0Þ measures the
difference between evolving the commutator (η ¼ −) and
anticommutator (η ¼ þ) as a whole or each separately [44].
Note that Dþ is purely real and D− is purely imaginary, so
D2þ −D2

− ≥ 0. For Â ¼ B̂, the uncertainty relation is
saturated and Eq. (6) becomes an equality.
Bipartite interpretation.—Many quantum properties,

such as entanglement or scrambling, are best understood
in a bipartite system [53–56]. The SOV can actually be
interpreted analogously: consider a doubled Hilbert space
H ⊗ H, with an operator Â living in each of the copies of
the Hilbert space, denoted as H1 and H2. Using the
swap operator S [55,56], which introduces an interac-
tion between the Hilbert spaces and is defined as
Sðjii1jji2Þ ¼ jji1jii2, the product between operators can
be interpreted as an operation over a doubled Hilbert
space, namely, X̂ Ŷ ¼ TrH2

ððX̂ ⊗ ŶÞSÞ—see details in
[44]. Thus, the first term in the SOV (5) can be interpreted
as first letting the operators Â interact to form Â2 in the
bipartite system and then letting that operator evolve
under the dissipative evolution of a single bath, eL

†t½Â2�.
By contrast, the second term corresponds to letting each of
the uncoupled systems evolve with their own bath and
then making them interact at time t. As expected, the
difference between these terms is positive since ΔÂ2

t ≥ 0,
and the first protocol always suffers less decoherence.
The SOV-OTOC connection.—Remarkably, the expect-

ation value of (4) over the completely mixed state,
ρ ¼ 1̂=N, gives a dissipative version of the OTOC, namely,

1

N
dTrðΔÂ2

t Þ
dt

¼ −
2γ

N
Trð½L̂; hÂti�2Þ: ð7Þ

OTOCs are typically defined from two operators as
Ct ¼ −Trð½B̂0; Ât�2Þ=N, and measure the exponential sen-
sitivity on initial conditions in quantum chaotic systems
[20]. Indeed, in a quantum system with scrambling, one
expectsCt ∼ ϵeλQt in the time window ts ≪ t ≪ tE between
the saturation time of two-point functions, ts ∼ 1=λQ, and
that of the OTOC, known as the Ehrenfest time, tE ∼
lnðℏ−1Þ=λQ [22]. The main difference in our setting is that

the evolved operator follows dissipative dynamics, eL
†t½Â�,

instead of unitary evolution, eiĤtÂe−iĤt. The connection
between this OTOC and the SOV is pictorially shown in
Fig. 1. It can be used to compute the Lyapunov exponent
through

Ct ¼
1

2γN
dTrðΔÂ2

t Þ
dt

∼ ϵeλQt; ð8Þ

where the exponential behavior holds only in systems with
scrambling over the appropriate period ts ≪ t ≪ tE. The
SOV-OTOC connection is complementary to the optimal-
path approach to study chaos in continuously monitored
systems [57]. Note that the SOV ΔÂ2

t is an observable
constructed from the knowledge of the evolution under
different noise realizations. The classical limit of the above
equation is similar, the only difference being that ΔA2

t
becomes a function of time and the trace an average over a
region of phase space [58].
The short-time decay of the OTOC, Ct ∼ C0e−t=τD ,

is characterized by the dissipation time τD ¼
ð2γTrð½L̂; ½L̂; Â��2Þ=ðC0NÞÞ−1 and the initial value C0 ¼
Trð½L̂; Â�2Þ=N. Interestingly, this dissipation time is related
to the Hilbert-Schmidt norm of the dissipator acting on the
initial operator [44]. It is analogous to the decoherence rate
found in [6] but now obtained for operators in the
Heisenberg picture. When ½Ĥ0; L̂� ¼ 0, the operators share
a common eigenbasis, and using L̂jni ¼ lnjni, we can
write the dissipative OTOC (7) as

Ct ¼
X
m;n

ðlm − lnÞ2e−2γðlm−lnÞ2tjAnmj2; ð9Þ

where Anm ¼ hnjÂjmi. From this expression, the two
exponentially decaying regimes reported in [34] appear
from the largest and smallest eigenvalue differences gov-
erning the short- and long-time dynamics, respectively.
Note that, for simplicity, we have focused on the infinite

temperature OTOC. However, the connection to OTOC (7)
can be generalized to unregularized thermal OTOC [59] by
tracing (4) over a thermal state ρβ ¼ e−βĤ=Trðe−βĤÞ. In this
case, the SOV-OTOC relation also involves an additional
expectation value of the Lindbladian TrðL½ΔÂ2

t �ρβÞ, which
is nonzero in general. Fidelity OTOCs [60] can be obtained
by taking the jump operator to be a projector over a pure
state. Regularized OTOCs [22] can also be obtained by
modifying the jump operator as L̂ → ρ1=4β L̂ρ1=4β and tracing
over the completely mixed state.
We next illustrate our findings in the Lipkin-Meshkov-

Glick (LMG) model subject to energy dephasing and
characterize its Lyapunov exponent using the SOV-OTOC
connection.
Stochastic Lipkin-Meshkov-Glick (sLMG) model.—The

LMG model describes the collective behavior of N iden-
tical two-level systems fully connected to each other with
the same coupling strength [38]. Its quantum Hamiltonian
reads

ĤLMG ¼ ΩŜz −
2

N
Ŝ2x; ð10Þ
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where Ω is the frequency in units of the coupling strength,
and Ŝj are the general spin operators of dimension 2Sþ 1.

Since the total spin Ŝ2 ¼ Ŝ2x þ Ŝ2y þ Ŝ2z commutes with the

spin operators, ½ĤLMG; Ŝ
2� ¼ 0, the total angular momentum

is conserved;we stay in the sectorS ¼ N=2. Because of time-
translational symmetry, energy is conserved, and since there
is only 1 degree of freedom, this model is integrable. If this
continuous symmetry is broken by periodic kicks in Ŝ2x, the
model turns into the known kicked top [11].
Here, we break time-translational symmetry by adding

noise in the energy scale and consider

Ĥt ¼ ĤLMGð1þ
ffiffiffiffiffi
2γ

p
ξtÞ: ð11Þ

This leads to dephasing in the energy eigenbasis at the
ensemble level. The evolution of the SOV instantaneous
(ordered) eigenvalues satisfying ΔÂ2

t jvkðtÞi ¼ ΛkðtÞjvkðtÞi
for this model, is shown in Fig. 2(a). In analogy with the
theory of quantum transport [61,62], we find diffusive modes
in which ΛkðtÞ ∼ t and superdiffusive modes in which
ΛkðtÞ ∼ t3=2. In the more general case ½Ĥ0; L̂� ≠ 0, one also
finds ballistic modes ΛkðtÞ ∼ t2, as we detail in [44]. Based
on the eigenvalues, one can find a state which minimizes the
SOV at long times

jΨi ¼ lim
t→∞

jv0ðtÞi; ð12Þ

which corresponds to the steady state of the eigenvector with
the smallest deviation, and is thus the state minimally
affected by the noise. The expectation value over this state
is shown in Fig. 2(a) (black dash-dotted) for the sLMG
model, and we verify that it minimizes the spread at long
times. Figure 2(b) shows the evolution of the dissipative
OTOC, computed from the SOV using Eq. (8). We observe
several exponential decays, as apparent from (9) and in

agreement with [34]. This illustrates how the SOV can be
used to obtain the dissipative OTOC.
The classical limit of the Hamiltonian (10) is obtained

by taking its expectation value over SU(2) coherent
states jζi [44,63] in the thermodynamic limit, N → ∞.
We introduce the canonical variables Q and P as ζ ¼ ½ðQ −
iPÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðQ2 þ P2Þ

p
� [39,40], which yields HLMG ¼

limS→∞hζjĤLMGjζi=S ¼ ðΩ=2ÞP2 þ ½ðΩ=2Þ − 1�Q2 þ
1
4
ðQ2P2 þ Q4Þ, where the terms of Oð1=NÞ are neglected

[44]. This model is integrable and exhibits an unstable fixed
point at the origin, Q� ¼ P� ¼ 0, for 0 < Ω < 2. Since
scrambling originates from an unstable point, it is already
present in the semiclassical limit [25,39,40].
Here, we consider the classical equivalent of (11), namely,

Ht ¼ HLMGð1þ
ffiffiffiffiffi
2γ

p
ξtÞ. The evolution of the noise-aver-

aged observable displays the classical analog of energy
dephasing, namely, ∂thAti ¼ −fHLMG; hAtigP þ 2γfHLMG;
fHLMG; hAtigPgP,whereff; ggP denotes thePoissonbracket
of f and g. We characterize the Lyapunov exponent using
three complementary methods: Analytically, the approach
proposed by vanKampen [64,65] yields the Lyapunov for the
sLMGas [44] λð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω −Ω2

p
− γð2Ω −Ω2Þ. (ii) Second,

numerically. The standard, classical definition of the average
Lyapunov exponent gives λð2Þ ¼ hlimt→∞ lnðlt=l0Þ=ti,
where l2

t ¼ ðQt −Q0
tÞ2 þ ðPt − P0

tÞ2 is the distance
between two initially close trajectories evolving with the
same realization of the noise, which is found solving the
stochastic Hamilton’s equations with a stochastic Runge-
Kutta method [44,66]. (iii) Finally, our formalism gives the
Lyapunov from Eq. (7), by taking as observable the position

FIG. 2. Evolution of (a) the SOV eigenvalues, and (b) the
OTOC Ct for the quantum sLMG model. The operator Â ¼
ðŜx þ Ŝy þ ŜzÞ=

ffiffiffi
3

p
evolves under the stochastic Hamiltonian

(11) with γ ¼ 2, Ω ¼ 1, and S ¼ 20. (a) Eigenvalues of the SOV
as a function of time (solid red) and expectation value of the SOV
for the state which minimizes the deviation at long times,
hΨjΔÂ2

t jΨi (black dash-dotted). (b) Dissipative OTOC obtained
from the SOV-OTOC relation (7) (solid line) and short-time
expansion (dashed line) for different values of Ω (color bar)
across the phase transition—at Ωc ¼ 2.

FIG. 3. Lyapunov exponent of the classical sLMG model at the
saddle pointQ� ¼ P� ¼ 0 as function ofΩ (a) for different values
of the noise strength γ and (b) over the phase diagram. (a) λ as
computed (i) analytically using van Kampen’s method λð1Þ (solid
lines), (ii) from the standard definition λð2Þ (circles with error bar),
and (iii) from the SOV-OTOC connection λð3Þ (triangles). The
known results for the LMG correspond to γ ¼ 0 (black). (b) Phase
diagram. The color scale represents the Lyapunov exponent λð2Þ
as a function of the model parameterΩ and the noise strength γ. A
positive value of λ (red) implies exponential divergence of close
initial conditions, while a negative value (blue) indicates ex-
ponential convergence. The dotted horizontal lines represent the
values of γ sampled in (a). The vertical dashed gray line
represents the transition between the double well (Ω < 2) and
single well (Ω ≥ 2) phases.
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At ¼ Qt, the jump operator being the Hamiltonian itself,
L ¼ H0. Namely, λð3Þ ¼ limt→∞ð1=2tÞ ln ðdtΔQ2

t =ϵÞ.
Figure 3(a) shows the Lyapunov exponent λ obtained

from the above methods as a function of Ω for different
noise strengths. We verify that the three methods are in
good agreement up to numerical errors. For γ ¼ 0 (black
line), we recover the behavior of LMG with λ > 0 in the
double well (DW) phase and λ ¼ 0 in the single well (SW)
phase. Introducing a weak stochastic perturbation with γ, the
Lyapunov exponent becomes smaller in the DW phase—
trajectories diverge more slowly—while the SW phase
acquires a positive λ. Increasing the strength of the noise
causes the Lyapunov exponent in the DW phase to decrease
and even reach negative values, where trajectories converge
exponentially, while thevalue of λ in the SWphase increases.
This rich behavior is summarized in the phase diagram
presented in Fig. 3(b). The latter further shows that, under the
application of strong noise, the origin ðQ�; P�Þ ¼ ð0; 0Þ is
stable in the DWphase—trajectories converge exponentially
to it—while it is unstable in the SW phase—trajectories
diverge exponentially from it. Therefore the sLMG in the
DW phase shows a noise-induced transition to stability [67],
analogous to the stabilization seen for periodic driving [68].
In summary, we have introduced the stochastic operator

variance and shown it is a valuable tool to study quantum
systems driven by noise. We have shown that this observ-
able obeys an uncertainty relation (6), and that it can be
used to identify the state (12) which minimizes deviation
from the Lindblad dissipative dynamics. We have provided
a bipartite interpretation of the SOV. In addition, our results
unveil a SOV-OTOC connection (8), which provides an
operational protocol harnessing noise as a resource to
probe OTOC and extract the Lyapunov exponent in noisy
quantum chaotic systems. To illustrate our results, we
introduced a stochastic generalization of LMG model
and characterized its behavior in the quantum and classical
realms. Our results provide the means to elucidate the
fate of quantum chaos in noisy systems and benchmark
NISQ devices.

We thank Howard Wiseman, Niklas Hörnedal, Andrew
Jordan, Federico Roccati, Federico Balducci, and Ruth Shir
for insightful discussions and comments on the manuscript.
This work was partially funded by the Luxembourg
National Research Fund (FNR, Attract Grant
No. 15382998) and the John Templeton Foundation
(Grant No. 62171). The opinions expressed in this pub-
lication are those of the authors and do not necessarily
reflect the views of the John Templeton Foundation.

*pablo.martinez@uni.lu
†aritra.kundu@uni.lu
‡adolfo.delcampo@uni.lu
§aurelia.chenu@uni.lu

[1] J. Preskill, Quantum 2, 79 (2018).

[2] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S.
Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S.
Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and
A. Aspuru-Guzik, Rev. Mod. Phys. 94, 015004 (2022).

[3] A. A. Budini, Phys. Rev. A 64, 052110 (2001).
[4] A. Chenu, M. Beau, J. Cao, and A. del Campo, Phys. Rev.

Lett. 118, 140403 (2017).
[5] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of

Markovian and Non-Markovian Quantum Stochastic Meth-
ods with Applications to Quantum Optics (Springer Science
& Business Media, New York, 2004).

[6] Z. Xu, L. P. García-Pintos, A. Chenu, and A. del Campo,
Phys. Rev. Lett. 122, 014103 (2019).

[7] A. Kiely, Europhys. Lett. 134, 10001 (2021).
[8] D. Bernard and T. Jin, Phys. Rev. Lett. 123, 080601 (2019).
[9] D. Bernard, F. H. L. Essler, L. Hruza, and M. Medenjak,

SciPost Phys. 12, 042 (2022).
[10] L. Hruza and D. Bernard, Phys. Rev. X 13, 011045 (2023).
[11] F. Haake, Quantum Signatures of Chaos (Springer, Berlin

Heidelberg, 2010).
[12] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Lett. B 773, 647

(2017).
[13] T. Can, J. Phys. A 52, 485302 (2019).
[14] A. del Campo and T. Takayanagi, J. High Energy Phys. 02

(2020) 170.
[15] L. Sá, P. Ribeiro, and T. Prosen, Phys. Rev. X 10, 021019

(2020).
[16] L. Sá, P. Ribeiro, T. Can, and T. Prosen, Phys. Rev. B 102,

134310 (2020).
[17] Z. Xu, A. Chenu, T. Prosen, and A. del Campo, Phys. Rev. B

103, 064309 (2021).
[18] A. M. García-García, L. Sá, and J. J. M. Verbaarschot,

Phys. Rev. X 12, 021040 (2022).
[19] A. I. Larkin and Y. N. Ovchinnikov, Sov. J. Exp. Theor.

Phys. 28, 1200 (1969), http://jetp.ras.ru/cgi-bin/e/index/e/
28/6/p1200?a=list.

[20] A. Kitaev, Hidden correlations in the Hawking radiation and
thermal noise, Talk Given at Fundamental Physics Prize
Symposium (2014), https://online.kitp.ucsb.edu/online/
joint98/kitaev/rm/jwvideo.html.

[21] K. Richter, J. D. Urbina, and S. Tomsovic, J. Phys. A 55,
453001 (2022).

[22] J. Maldacena, S. H. Shenker, and D. Stanford, J. High
Energy Phys. 08 (2016) 106.

[23] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Appli-
cations to Physics, Biology, Chemistry and Engineering
(CRC Press, Boca Raton, 2000).

[24] S. Wimberger, Nonlinear Dynamics and Quantum Chaos
(Springer, New York, 2014), Vol. 10.

[25] T. Xu, T. Scaffidi, and X. Cao, Phys. Rev. Lett. 124, 140602
(2020).

[26] E. B. Rozenbaum, L. A. Bunimovich, and V. Galitski,
Phys. Rev. Lett. 125, 014101 (2020).

[27] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng,
and J. Du, Phys. Rev. X 7, 031011 (2017).

[28] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Nat. Phys. 13, 781 (2017).

[29] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier,
P. Zoller, R. Blatt, and C. F. Roos, Phys. Rev. Lett. 124,
240505 (2020).

PHYSICAL REVIEW LETTERS 131, 160202 (2023)

160202-5

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/PhysRevA.64.052110
https://doi.org/10.1103/PhysRevLett.118.140403
https://doi.org/10.1103/PhysRevLett.118.140403
https://doi.org/10.1103/PhysRevLett.122.014103
https://doi.org/10.1209/0295-5075/134/10001
https://doi.org/10.1103/PhysRevLett.123.080601
https://doi.org/10.21468/SciPostPhys.12.1.042
https://doi.org/10.1103/PhysRevX.13.011045
https://doi.org/10.1016/j.physletb.2017.08.054
https://doi.org/10.1016/j.physletb.2017.08.054
https://doi.org/10.1088/1751-8121/ab4d26
https://doi.org/10.1007/JHEP02(2020)170
https://doi.org/10.1007/JHEP02(2020)170
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1103/PhysRevB.102.134310
https://doi.org/10.1103/PhysRevB.102.134310
https://doi.org/10.1103/PhysRevB.103.064309
https://doi.org/10.1103/PhysRevB.103.064309
https://doi.org/10.1103/PhysRevX.12.021040
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1200?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1200?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1200?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1200?a=list
https://online.kitp.ucsb.edu/online/joint98/kitaev/rm/jwvideo.html
https://online.kitp.ucsb.edu/online/joint98/kitaev/rm/jwvideo.html
https://online.kitp.ucsb.edu/online/joint98/kitaev/rm/jwvideo.html
https://online.kitp.ucsb.edu/online/joint98/kitaev/rm/jwvideo.html
https://online.kitp.ucsb.edu/online/joint98/kitaev/rm/jwvideo.html
https://online.kitp.ucsb.edu/online/joint98/kitaev/rm/jwvideo.html
https://doi.org/10.1088/1751-8121/ac9e4e
https://doi.org/10.1088/1751-8121/ac9e4e
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevLett.124.140602
https://doi.org/10.1103/PhysRevLett.124.140602
https://doi.org/10.1103/PhysRevLett.125.014101
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevLett.124.240505
https://doi.org/10.1103/PhysRevLett.124.240505


[30] A.M. Green, A. Elben, C. H. Alderete, L. K. Joshi, N. H.
Nguyen, T. V. Zache, Y. Zhu, B. Sundar, and N.M. Linke,
Phys. Rev. Lett. 128, 140601 (2022).

[31] X. Nie, Z. Zhang, X. Zhao, T. Xin, D. Lu, and J. Li,
arXiv:1903.12237.

[32] B. Vermersch, A. Elben, L. M. Sieberer, N. Y. Yao, and P.
Zoller, Phys. Rev. X 9, 021061 (2019).

[33] S. V. Syzranov, A. V. Gorshkov, and V. M. Galitski, Ann.
Phys. (Amsterdam) 405, 1 (2019).

[34] S. V. Syzranov, A. V. Gorshkov, and V. Galitski, Phys. Rev.
B 97, 161114(R) (2018).

[35] P. Zanardi and N. Anand, Phys. Rev. A 103, 062214
(2021).

[36] B. Swingle and N. Yunger Halpern, Phys. Rev. A 97,
062113 (2018).

[37] Y.-L. Zhang, Y. Huang, and X. Chen, Phys. Rev. B 99,
014303 (2019).

[38] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62,
188 (1965).

[39] S. Pilatowsky-Cameo, J. Chávez-Carlos,M. A. Bastarrachea-
Magnani, P. Stránský, S. Lerma-Hernández, L. F. Santos, and
J. G. Hirsch, Phys. Rev. E 101, 010202(R) (2020).

[40] S. Pappalardi, A. Russomanno, B. Žunkovič, F. Iemini,
A. Silva, and R. Fazio, Phys. Rev. B 98, 134303
(2018).

[41] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H.
Carmichael, G.-D. Lin, L.-M.Duan, C.-C. JosephWang, J. K.
Freericks, and C. Monroe, Nat. Commun. 2, 377 (2011).

[42] S. Campbell, G. De Chiara, M. Paternostro, G. M. Palma,
and R. Fazio, Phys. Rev. Lett. 114, 177206 (2015).

[43] C. W. Gardiner, Handbook of Stochastic Methods (springer,
Berlin, 1985), Vol. 3.

[44] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.160202 for details
on the derivations and the numerics.

[45] S. Gammelmark, B. Julsgaard, and K. Mølmer, Phys. Rev.
Lett. 111, 160401 (2013).

[46] P. Warszawski, H. M. Wiseman, and A. C. Doherty, Phys.
Rev. A 102, 042210 (2020).

[47] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press on Demand,
New York, 2002).

[48] M. Beau, J. Kiukas, I. L. Egusquiza, and A. del Campo,
Phys. Rev. Lett. 119, 130401 (2017).

[49] R. Bhatia, Positive Definite Matrices (Princeton University
Press, Princeton, NJ, 2009).

[50] R. V. Kadison, Ann. Math. 56, 494 (1952).
[51] H. P. Robertson, Phys. Rev. 34, 163 (1929).
[52] E. Schrödinger, Proceedings of the Prussian Academy of

Sciences (Physical-mathematical Class, 1930), pp. 296–303.
[53] P. Zanardi, Phys. Rev. A 63, 040304(R) (2001).
[54] G. Styliaris, N. Anand, and P. Zanardi, Phys. Rev. Lett. 126,

030601 (2021).
[55] N. Anand and P. Zanardi, Quantum 6, 746 (2022).
[56] S. Pappalardi, L. Foini, and J. Kurchan, SciPost Phys. 12,

130 (2022).
[57] P. Lewalle, J. Steinmetz, and A. N. Jordan, Phys. Rev. A 98,

012141 (2018).
[58] J. Wang, G. Benenti, G. Casati, and W. G. Wang, Phys. Rev.

E 103, L030201 (2021).
[59] N. Tsuji, T. Shitara, and M. Ueda, Phys. Rev. E 97, 012101

(2018).
[60] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and

A.M. Rey, Nat. Commun. 10, 1581 (2019).
[61] A. M. Jayannavar and N. Kumar, Phys. Rev. Lett. 48, 553

(1982).
[62] P. D. Hislop, K. Kirkpatrick, S. Olla, and J. Schenker,

J. Math. Phys. (N.Y.) 60, 083303 (2019).
[63] A. Perelomov, in Generalized Coherent States and Their

Applications (Springer, Berlin, Heidelberg, 1986), pp. 54–66.
[64] N. G. V. Kampen, Stochastic Processes in Physics and

Chemistry (Elsevier, New York, 1992), Chap. XVI.
[65] N. G. Van Kampen, Phys. Rep. 24, 171 (1976).
[66] P. E. Kloeden and E. Platen,Numerical Solution of Stochastic

Differential Equations (Springer, Berlin, Heidelberg, 1992).
[67] W. Horsthemke and R. Lafever, Noise-Induced Transitions

(Springer, Berlin Heidelberg, 2006).
[68] N. Defenu, A. Lerose, and S. Pappalardi, arXiv:2307.04802.

PHYSICAL REVIEW LETTERS 131, 160202 (2023)

160202-6

https://doi.org/10.1103/PhysRevLett.128.140601
https://arXiv.org/abs/1903.12237
https://doi.org/10.1103/PhysRevX.9.021061
https://doi.org/10.1016/j.aop.2019.03.008
https://doi.org/10.1016/j.aop.2019.03.008
https://doi.org/10.1103/PhysRevB.97.161114
https://doi.org/10.1103/PhysRevB.97.161114
https://doi.org/10.1103/PhysRevA.103.062214
https://doi.org/10.1103/PhysRevA.103.062214
https://doi.org/10.1103/PhysRevA.97.062113
https://doi.org/10.1103/PhysRevA.97.062113
https://doi.org/10.1103/PhysRevB.99.014303
https://doi.org/10.1103/PhysRevB.99.014303
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1103/PhysRevE.101.010202
https://doi.org/10.1103/PhysRevB.98.134303
https://doi.org/10.1103/PhysRevB.98.134303
https://doi.org/10.1038/ncomms1374
https://doi.org/10.1103/PhysRevLett.114.177206
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.160202
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.160202
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.160202
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.160202
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.160202
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.160202
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.160202
https://doi.org/10.1103/PhysRevLett.111.160401
https://doi.org/10.1103/PhysRevLett.111.160401
https://doi.org/10.1103/PhysRevA.102.042210
https://doi.org/10.1103/PhysRevA.102.042210
https://doi.org/10.1103/PhysRevLett.119.130401
https://doi.org/10.2307/1969657
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRevA.63.040304
https://doi.org/10.1103/PhysRevLett.126.030601
https://doi.org/10.1103/PhysRevLett.126.030601
https://doi.org/10.22331/q-2022-06-27-746
https://doi.org/10.21468/SciPostPhys.12.4.130
https://doi.org/10.21468/SciPostPhys.12.4.130
https://doi.org/10.1103/PhysRevA.98.012141
https://doi.org/10.1103/PhysRevA.98.012141
https://doi.org/10.1103/PhysRevE.103.L030201
https://doi.org/10.1103/PhysRevE.103.L030201
https://doi.org/10.1103/PhysRevE.97.012101
https://doi.org/10.1103/PhysRevE.97.012101
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1103/PhysRevLett.48.553
https://doi.org/10.1103/PhysRevLett.48.553
https://doi.org/10.1063/1.5054017
https://doi.org/10.1016/0370-1573(76)90029-6
https://arXiv.org/abs/2307.04802

